1
|
Shah BA, Malhotra H, Papade SE, Dhamale T, Ingale OP, Kasarlawar ST, Phale PS. Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation. Front Bioeng Biotechnol 2024; 12:1470522. [PMID: 39364263 PMCID: PMC11446756 DOI: 10.3389/fbioe.2024.1470522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
The perpetual release of natural/synthetic pollutants into the environment poses major risks to ecological balance and human health. Amongst these, contaminants of emerging concern (CECs) are characterized by their recent introduction/detection in various niches, thereby causing significant hazards and necessitating their removal. Pharmaceuticals, plasticizers, cyanotoxins and emerging pesticides are major groups of CECs that are highly toxic and found to occur in various compartments of the biosphere. The sources of these compounds can be multipartite including industrial discharge, improper disposal, excretion of unmetabolized residues, eutrophication etc., while their fate and persistence are determined by factors such as physico-chemical properties, environmental conditions, biodegradability and hydrological factors. The resultant exposure of these compounds to microbiota has imposed a selection pressure and resulted in evolution of metabolic pathways for their biotransformation and/or utilization as sole source of carbon and energy. Such microbial degradation phenotype can be exploited to clean-up CECs from the environment, offering a cost-effective and eco-friendly alternative to abiotic methods of removal, thereby mitigating their toxicity. However, efficient bioprocess development for bioremediation strategies requires extensive understanding of individual components such as pathway gene clusters, proteins/enzymes, metabolites and associated regulatory mechanisms. "Omics" and "Meta-omics" techniques aid in providing crucial insights into the complex interactions and functions of these components as well as microbial community, enabling more effective and targeted bioremediation. Aside from natural isolates, metabolic engineering approaches employ the application of genetic engineering to enhance metabolic diversity and degradation rates. The integration of omics data will further aid in developing systemic-level bioremediation and metabolic engineering strategies, thereby optimising the clean-up process. This review describes bacterial catabolic pathways, genetics, and application of omics and metabolic engineering for bioremediation of four major groups of CECs: pharmaceuticals, plasticizers, cyanotoxins, and emerging pesticides.
Collapse
Affiliation(s)
- Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sandesh E Papade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Omkar P Ingale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
2
|
Sinn M, Riede L, Fleming JR, Funck D, Lutz H, Bachmann A, Mayans O, Hartig JS. Metformin hydrolase is a recently evolved nickel-dependent heteromeric ureohydrolase. Nat Commun 2024; 15:8045. [PMID: 39271653 PMCID: PMC11399263 DOI: 10.1038/s41467-024-51752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
The anti-diabetic drug metformin is one of the most widely prescribed medicines in the world. Together with its degradation product guanylurea, it is a major pharmaceutical pollutant in wastewater treatment plants and surface waters. An operon comprising two genes of the ureohydrolase family in Pseudomonas and Aminobacter species has recently been implicated in metformin degradation. However, the corresponding proteins have not been characterized. Here we show that these genes encode a Ni2+-dependent enzyme that efficiently and specifically hydrolyzes metformin to guanylurea and dimethylamine. The active enzyme is a heteromeric complex of α- and β- subunits in which only the α-subunits contain the conserved His and Asp residues for the coordination of two Ni2+ ions in the active site. A crystal structure of metformin hydrolase reveals an α2β4 stoichiometry of the hexameric complex, which is unprecedented in the ureohydrolase family. By studying a closely related but more widely distributed enzyme, we find that the putative predecessor specifically hydrolyzes dimethylguanidine instead of metformin. Our findings establish the molecular basis for metformin hydrolysis to guanylurea as the primary pathway for metformin biodegradation and provide insight into the recent evolution of ureohydrolase family proteins in response to an anthropogenic compound.
Collapse
Affiliation(s)
- M Sinn
- Department of Chemistry, University of Konstanz, Konstanz, Germany.
| | - L Riede
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - J R Fleming
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - D Funck
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - H Lutz
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - A Bachmann
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - O Mayans
- Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - J S Hartig
- Department of Chemistry, University of Konstanz, Konstanz, Germany.
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany.
| |
Collapse
|
3
|
Seller-Brison C, Brison A, Yu Y, Robinson SL, Fenner K. Adaptation towards catabolic biodegradation of trace organic contaminants in activated sludge. WATER RESEARCH 2024; 266:122431. [PMID: 39298898 DOI: 10.1016/j.watres.2024.122431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Trace organic contaminants (TrOCs) are omnipresent in wastewater treatment plants (WWTPs), yet, their removal during wastewater treatment is oftentimes incomplete and underlying biotransformation mechanisms are not fully understood. In this study, we elucidate how different factors, including pre-exposure levels and duration, influence microbial adaptation towards catabolic TrOC biodegradation and its potential role in biological wastewater treatment. Four sequencing batch reactors (SBRs) were operated in parallel in three succeeding phases, adding and removing a selection of 26 TrOCs at different concentration levels. After each phase of SBR operation, a series of batch experiments was conducted to monitor biotransformation kinetics of those same TrOCs across various spike concentrations. For half of our test TrOCs, we detected increased biotransformation in sludge pre-exposed to TrOC concentrations ≥5 µg L-1 over a 30-day period, with most significant differences observed for the insect repellent DEET and the artificial sweetener saccharin. Accordingly, 16S rRNA amplicon sequencing revealed enrichment of taxa that have previously been linked to catabolic biodegradation of several test TrOCs, e.g., Bosea sp. and Shinella sp. for acesulfame degradation, and Pseudomonas sp. for caffeine, cyclamate, DEET, metformin, paracetamol, and isoproturon degradation. We further conducted shotgun metagenomics to query for gene products previously reported to be involved in the TrOCs' biodegradation pathways. In the future, directed microbial adaptation may be a solution to improve bioremediation of TrOCs in contaminated environments or in WWTPs.
Collapse
Affiliation(s)
- Carolin Seller-Brison
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland.
| | - Antoine Brison
- Department of Process Engineering, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Yaochun Yu
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Serina L Robinson
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland; Department of Chemistry, University of Zürich, Zürich 8057, Switzerland
| |
Collapse
|
4
|
Borreca A, Vuilleumier S, Imfeld G. Combined effects of micropollutants and their degradation on prokaryotic communities at the sediment-water interface. Sci Rep 2024; 14:16840. [PMID: 39039186 PMCID: PMC11263610 DOI: 10.1038/s41598-024-67308-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Pesticides and pharmaceuticals enter aquatic ecosystems as complex mixtures. Various processes govern their dissipation and effect on the sediment and surface waters. These micropollutants often show persistence and can adversely affect microorganisms even at low concentrations. We investigated the dissipation and effects on procaryotic communities of metformin (antidiabetic drug), metolachlor (agricultural herbicide), and terbutryn (herbicide in building materials). These contaminants were introduced individually or as a mixture (17.6 µM per micropollutant) into laboratory microcosms mimicking the sediment-water interface. Metformin and metolachlor completely dissipated within 70 days, whereas terbutryn persisted. Dissipation did not differ whether the micropollutants were introduced individually or as part of a mixture. Sequence analysis of 16S rRNA gene amplicons evidenced distinct responses of prokaryotic communities in both sediment and water. Prokaryotic community variations were mainly driven by matrix composition and incubation time. Micropollutant exposure played a secondary but influential role, with pronounced effects of recalcitrant metolachlor and terbutryn within the micropollutant mixture. Antagonistic and synergistic non-additive effects were identified for specific taxa across taxonomic levels in response to the micropollutant mixture. This study underscores the importance of considering the diversity of interactions between micropollutants, prokaryotic communities, and their respective environments when examining sediment-water interfaces affected by multiple contaminants.
Collapse
Affiliation(s)
- Adrien Borreca
- Institut Terre Et Environnement de Strasbourg, UMR 7063 CNRS, ENGEES, Université de Strasbourg, 67000, Strasbourg, France
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156 CNRS, Université de Strasbourg, Strasbourg, France
| | - Stéphane Vuilleumier
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156 CNRS, Université de Strasbourg, Strasbourg, France
| | - Gwenaël Imfeld
- Institut Terre Et Environnement de Strasbourg, UMR 7063 CNRS, ENGEES, Université de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
5
|
Li T, Xu ZJ, Zhang ST, Xu J, Pan P, Zhou NY. Discovery of a Ni 2+-dependent heterohexameric metformin hydrolase. Nat Commun 2024; 15:6121. [PMID: 39033196 PMCID: PMC11271267 DOI: 10.1038/s41467-024-50409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
The biguanide drug metformin is a first-line blood glucose-lowering medication for type 2 diabetes, leading to its presence in the global environment. However, little is known about the fate of metformin by microbial catabolism. Here, we characterize a Ni2+-dependent heterohexameric enzyme (MetCaCb) from the ureohydrolase superfamily, catalyzing the hydrolysis of metformin into guanylurea and dimethylamine. Either subunit alone is catalytically inactive, but together they work as an active enzyme highly specific for metformin. The crystal structure of the MetCaCb complex shows the coordination of the binuclear metal cluster only in MetCa, with MetCb as a protein binder of its active cognate. An in-silico search and functional assay discover a group of MetCaCb-like protein pairs exhibiting metformin hydrolase activity in the environment. Our findings not only establish the genetic and biochemical foundation for metformin catabolism but also provide additional insights into the adaption of the ancient enzymes toward newly occurred substrate.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zhi-Jing Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Shu-Ting Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jia Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Piaopiao Pan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
6
|
Chi B, Li F, Wang X, Pan H, Yi X, Liu Y, Zhan J, Zhang X, Zhou H, Wang W. DMF mineralization and substrate specificity mechanism of Aminobacter ciceronei DMFA1. ENVIRONMENTAL RESEARCH 2024; 245:117980. [PMID: 38142731 DOI: 10.1016/j.envres.2023.117980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/04/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
N,N-dimethylformamide (DMF) is widely used in various industries, but its direct release into water poses high risks to human beings. Although a lot of DMF-degrading bacteria has been isolated, limited studies focus on the degradation preference among DMF and its analogues. In this study, an efficient DMF mineralization bacterium designated Aminobacter ciceronei DMFA1 was isolated from marine sediment. When exposed to a 0.2% DMF (∼1900 mg/L), strain DMFA1 exhibited a degradation efficiency of 100% within 4 days. The observed growth using formamide as the sole carbon source implied the possible DMF degradation pathway of strain DMFA1. Meanwhile,the strain DMFA1 possesses a broad-spectrum substrate degradation, which could effectively degraded 0.2% N,N-dimethylacetamide (DMAC) and N-methylformamide (NMF). Genomic analysis further confirmed the supposed pathway through annotating the genes encoding N, N-dimethylformamidase (DMFase), formamidase, and formate dehydrogenase. The existence of sole DMFase indicating its substrate specificity controlled the preference of DMAc of strain DMFA1. By integrating multiple sequence alignment, homology modeling and molecular docking, the preference of the DMFase in strain DMFA1 towards DMAc are related to: 1) Mutations in key active site residues; 2) the absence of small subunit; and 3) no energy barrier for substrates entering the active site.
Collapse
Affiliation(s)
- Baihui Chi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Fei Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Xukang Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Haixia Pan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Xuwang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China.
| | - Wenyuan Wang
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
7
|
Tassoulas LJ, Rankin JA, Elias MH, Wackett LP. Dinickel enzyme evolved to metabolize the pharmaceutical metformin and its implications for wastewater and human microbiomes. Proc Natl Acad Sci U S A 2024; 121:e2312652121. [PMID: 38408229 PMCID: PMC10927577 DOI: 10.1073/pnas.2312652121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024] Open
Abstract
Metformin is the first-line treatment for type II diabetes patients and a pervasive pollutant with more than 180 million kg ingested globally and entering wastewater. The drug's direct mode of action is currently unknown but is linked to effects on gut microbiomes and may involve specific gut microbial reactions to the drug. In wastewater treatment plants, metformin is known to be transformed by microbes to guanylurea, although genes encoding this metabolism had not been elucidated. In the present study, we revealed the function of two genes responsible for metformin decomposition (mfmA and mfmB) found in isolated bacteria from activated sludge. MfmA and MfmB form an active heterocomplex (MfmAB) and are members of the ureohydrolase protein superfamily with binuclear metal-dependent activity. MfmAB is nickel-dependent and catalyzes the hydrolysis of metformin to dimethylamine and guanylurea with a catalytic efficiency (kcat/KM) of 9.6 × 103 M-1s-1 and KM for metformin of 0.82 mM. MfmAB shows preferential activity for metformin, being able to discriminate other close substrates by several orders of magnitude. Crystal structures of MfmAB show coordination of binuclear nickel bound in the active site of the MfmA subunit but not MfmB subunits, indicating that MfmA is the active site for the MfmAB complex. Mutagenesis of residues conserved in the MfmA active site revealed those critical to metformin hydrolase activity and its small substrate binding pocket allowed for modeling of bound metformin. This study characterizes the products of the mfmAB genes identified in wastewater treatment plants on three continents, suggesting that metformin hydrolase is widespread globally in wastewater.
Collapse
Affiliation(s)
- Lambros J. Tassoulas
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, Minneapolis, MN55455
- BioTechnology Institute, University of Minnesota, St. Paul, MN55108
| | - Joel A. Rankin
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, Minneapolis, MN55455
- BioTechnology Institute, University of Minnesota, St. Paul, MN55108
| | - Mikael H. Elias
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, Minneapolis, MN55455
- BioTechnology Institute, University of Minnesota, St. Paul, MN55108
| | - Lawrence P. Wackett
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, Minneapolis, MN55455
- BioTechnology Institute, University of Minnesota, St. Paul, MN55108
| |
Collapse
|
8
|
Schuldiner S. On the link between antibiotic resistance, diabetes, and wastewater. J Gen Physiol 2024; 156:e202313533. [PMID: 38294433 PMCID: PMC10829510 DOI: 10.1085/jgp.202313533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
The study by Lucero et al. (https://doi.org/10.1085/jgp.202313464) sheds light on the remarkable capabilities of bacterial transporters to adapt to new selective pressures. Their findings provide insight into the mechanism of a subtype of SMR transporters.
Collapse
Affiliation(s)
- Shimon Schuldiner
- Department of Biological Chemistry, Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Short B. SMR transporters meet the challenge of metformin metabolites. J Gen Physiol 2024; 156:e202413549. [PMID: 38324209 PMCID: PMC10849910 DOI: 10.1085/jgp.202413549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
JGP study (Lucero et al. http://www.doi.org/10.1085/jgp.202313464) shows that members of the SMRGdx subtype can export the degradation products of metformin, helping bacteria adapt to high environmental levels of the commonly prescribed diabetes medication.
Collapse
Affiliation(s)
- Ben Short
- Science Writer, Rockefeller University Press, New York, NY, USA
| |
Collapse
|
10
|
Lucero RM, Demirer K, Yeh TJ, Stockbridge RB. Transport of metformin metabolites by guanidinium exporters of the small multidrug resistance family. J Gen Physiol 2024; 156:e202313464. [PMID: 38294434 PMCID: PMC10829512 DOI: 10.1085/jgp.202313464] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Proteins from the small multidrug resistance (SMR) family are frequently associated with horizontally transferred multidrug resistance gene arrays found in bacteria from wastewater and the human-adjacent biosphere. Recent studies suggest that a subset of SMR transporters might participate in the metabolism of the common pharmaceutical metformin by bacterial consortia. Here, we show that both genomic and plasmid-associated transporters of the SMRGdx functional subtype export byproducts of microbial metformin metabolism, with particularly high export efficiency for guanylurea. We use solid-supported membrane electrophysiology to evaluate the transport kinetics for guanylurea and native substrate guanidinium by four representative SMRGdx homologs. Using an internal reference to normalize independent electrophysiology experiments, we show that transport rates are comparable for genomic and plasmid-associated SMRGdx homologs, and using a proteoliposome-based transport assay, we show that 2 proton:1 substrate transport stoichiometry is maintained. Additional characterization of guanidinium and guanylurea export properties focuses on the structurally characterized homolog, Gdx-Clo, for which we examined the pH dependence and thermodynamics of substrate binding and solved an x-ray crystal structure with guanylurea bound. Together, these experiments contribute in two main ways. By providing the first detailed kinetic examination of the structurally characterized SMRGdx homolog Gdx-Clo, they provide a functional framework that will inform future mechanistic studies of this model transport protein. Second, this study casts light on a potential role for SMRGdx transporters in microbial handling of metformin and its microbial metabolic byproducts, providing insight into how native transport physiologies are co-opted to contend with new selective pressures.
Collapse
Affiliation(s)
- Rachael M. Lucero
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kemal Demirer
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Randy B. Stockbridge
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Tassoulas LJ, Wackett LP. Insights into the action of the pharmaceutical metformin: Targeted inhibition of the gut microbial enzyme agmatinase. iScience 2024; 27:108900. [PMID: 38318350 PMCID: PMC10839685 DOI: 10.1016/j.isci.2024.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Metformin is the first-line treatment for type 2 diabetes, yet its mechanism of action is not fully understood. Recent studies suggest metformin's interactions with gut microbiota are responsible for exerting therapeutic effects. In this study, we report that metformin targets the gut microbial enzyme agmatinase, as a competitive inhibitor, which may impair gut agmatine catabolism. The metformin inhibition constant (Ki) of E. coli agmatinase is 1 mM and relevant in the gut where the drug concentration is 1-10 mM. Metformin analogs phenformin, buformin, and galegine are even more potent inhibitors of E. coli agmatinase (Ki = 0.6, 0.1, and 0.007 mM, respectively) suggesting a shared mechanism. Agmatine is a known effector of human host metabolism and has been reported to augment metformin's therapeutic effects for type 2 diabetes. This gut-derived inhibition mechanism gives new insights on metformin's action in the gut and may lead to significant discoveries in improving metformin therapy.
Collapse
Affiliation(s)
- Lambros J. Tassoulas
- Department of Biochemistry, Biophysics & Molecular Biology, University of Minnesota, Minneapolis, MN 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Lawrence P. Wackett
- Department of Biochemistry, Biophysics & Molecular Biology, University of Minnesota, Minneapolis, MN 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
12
|
Lucero RM, Demirer K, Yeh TJ, Stockbridge RB. Transport of metformin metabolites by guanidinium exporters of the Small Multidrug Resistance family. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552832. [PMID: 37645731 PMCID: PMC10461911 DOI: 10.1101/2023.08.10.552832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Proteins from the Small Multidrug Resistance (SMR) family are frequently associated with horizontally transferred multidrug resistance gene arrays found in bacteria from wastewater and the human-adjacent biosphere. Recent studies suggest that a subset of SMR transporters might participate in metabolism of the common pharmaceutical metformin by bacterial consortia. Here, we show that both genomic and plasmid-associated transporters of the SMRGdx functional subtype export byproducts of microbial metformin metabolism, with particularly high export efficiency for guanylurea. We use solid supported membrane electrophysiology to evaluate the transport kinetics for guanylurea and native substrate guanidinium by four representative SMRGdx homologues. Using an internal reference to normalize independent electrophysiology experiments, we show that transport rates are comparable for genomic and plasmid-associated SMRGdx homologues, and using a proteoliposome-based transport assay, we show that 2 proton:1 substrate transport stoichiometry is maintained. Additional characterization of guanidinium and guanylurea export properties focuses on the structurally characterized homologue, Gdx-Clo, for which we examined the pH dependence and thermodynamics of substrate binding and solved an x-ray crystal structure with guanylurea bound. Together, these experiments contribute in two main ways. By providing the first detailed kinetic examination of the structurally characterized SMRGdx homologue Gdx-Clo, they provide a functional framework that will inform future mechanistic studies of this model transport protein. Second, this study casts light on a potential role for SMRGdx transporters in microbial handling of metformin and its microbial metabolic byproducts, providing insight into how native transport physiologies are co-opted to contend with new selective pressures.
Collapse
Affiliation(s)
| | - Kemal Demirer
- Department of Molecular, Cellular, and Developmental Biology
| | - Trevor Justin Yeh
- Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Randy B Stockbridge
- Program in Chemical Biology
- Department of Molecular, Cellular, and Developmental Biology
- Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|