1
|
Rudzinska-Radecka M, Turos-Korgul L, Mukherjee D, Podszywalow-Bartnicka P, Piwocka K, Guzowski J. High-throughput formulation of reproducible 3D cancer microenvironments for drug testing in myeloid leukemia. Biofabrication 2024; 17:015035. [PMID: 39622161 DOI: 10.1088/1758-5090/ad998d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Leukemic microenvironment has been recognized as a factor that strongly supports the mechanisms of resistance. Therefore, targeting the microenvironment is currently one of the major directions in drug development and preclinical studies in leukemia. Despite the variety of available leukemia 3D culture models, the reproducible generation of miniaturized leukemic microenvironments, suitable for high-throughput drug testing, has remained a challenge. Here, we use droplet microfluidics to generate tens of thousands of highly monodisperse leukemic-bone marrow microenvironments within minutes. We employ gelatin methacryloyl (GelMA) as a model extracellular matrix (ECM) and tune the concentration of the biopolymer, check the impact of other components of the ECM (hyaluronic acid), cell concentration and the ratio of leukemic cells to bone marrow cells within the microbeads to establish the optimal conditions for microtissue formation. We administer model kinase inhibitor, imatinib, at various concentrations to the encapsulated leukemic microtissues, and, via comparing mono- and co-culture conditions (cancer alone vs cancer-stroma), we find that the stroma-leukemia crosstalk systematically protects the encapsulated cells against the drug-induced cytotoxicity. With that we demonstrate that our system mimics the physiological stroma-dependent protection. We discuss applicability of our model to (i) studying the role of direct- or close-contact interactions between the leukemia and bone marrow cells embedded in microscale 3D ECM on the stroma-mediated protection, and (ii) high-throughput screening of anti-cancer therapeutics in personalized leukemia therapies.
Collapse
Affiliation(s)
- M Rudzinska-Radecka
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
- Equal contribution.v
| | - L Turos-Korgul
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., Warsaw 02-093, Poland
- Equal contribution.v
| | - D Mukherjee
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - P Podszywalow-Bartnicka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., Warsaw 02-093, Poland
| | - K Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., Warsaw 02-093, Poland
| | - J Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
2
|
Zhong C, Tang Z, Yu X, Wang L, Ren C, Qin L, Zhou P. Advances in the Construction and Application of Bone-on-a-Chip Based on Microfluidic Technologies. J Biomed Mater Res B Appl Biomater 2024; 112:e35502. [PMID: 39555794 DOI: 10.1002/jbm.b.35502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Bone-on-a-chip (BOC) models that based on microfluidic technology have widely applied to understand bone physiology and the pathogenesis of related diseases. In this review, we provide an overview of bone biology and related diseases, explain the advantages and applications of microfluidic technology in the construction of BOC models, and summarize their progress in physiology, pathology, and drug development. Finally, we discussed the problems to be solved and the future directions of microfluidic technology and BOC platforms, so as to provide a reference for researchers to design better BOC models.
Collapse
Affiliation(s)
- Chang Zhong
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Zihui Tang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Xin Yu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Lu Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Chenyuan Ren
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Liying Qin
- School of Stomatology, Gansu Health Vocational College, Lanzhou, China
| | - Ping Zhou
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Kim J, Ro J, Cho YK. Vascularized platforms for investigating cell communication via extracellular vesicles. BIOMICROFLUIDICS 2024; 18:051504. [PMID: 39323481 PMCID: PMC11421861 DOI: 10.1063/5.0220840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The vascular network plays an essential role in the maintenance of all organs in the body via the regulated delivery of oxygen and nutrients, as well as tissue communication via the transfer of various biological signaling molecules. It also serves as a route for drug administration and affects pharmacokinetics. Due to this importance, engineers have sought to create physiologically relevant and reproducible vascular systems in tissue, considering cell-cell and extracellular matrix interaction with structural and physical conditions in the microenvironment. Extracellular vesicles (EVs) have recently emerged as important carriers for transferring proteins and genetic material between cells and organs, as well as for drug delivery. Vascularized platforms can be an ideal system for studying interactions between blood vessels and EVs, which are crucial for understanding EV-mediated substance transfer in various biological situations. This review summarizes recent advances in vascularized platforms, standard and microfluidic-based techniques for EV isolation and characterization, and studies of EVs in vascularized platforms. It provides insights into EV-related (patho)physiological regulations and facilitates the development of EV-based therapeutics.
Collapse
|
4
|
Kefallinou D, Grigoriou M, Boumpas DT, Tserepi A. Mesenchymal Stem Cell and Hematopoietic Stem and Progenitor Cell Co-Culture in a Bone-Marrow-on-a-Chip Device toward the Generation and Maintenance of the Hematopoietic Niche. Bioengineering (Basel) 2024; 11:748. [PMID: 39199706 PMCID: PMC11352072 DOI: 10.3390/bioengineering11080748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024] Open
Abstract
Bone marrow has raised a great deal of scientific interest, since it is responsible for the vital process of hematopoiesis and is affiliated with many normal and pathological conditions of the human body. In recent years, organs-on-chips (OoCs) have emerged as the epitome of biomimetic systems, combining the advantages of microfluidic technology with cellular biology to surpass conventional 2D/3D cell culture techniques and animal testing. Bone-marrow-on-a-chip (BMoC) devices are usually focused only on the maintenance of the hematopoietic niche; otherwise, they incorporate at least three types of cells for on-chip generation. We, thereby, introduce a BMoC device that aspires to the purely in vitro generation and maintenance of the hematopoietic niche, using solely mesenchymal stem cells (MSCs) and hematopoietic stem and progenitor cells (HSPCs), and relying on the spontaneous formation of the niche without the inclusion of gels or scaffolds. The fabrication process of this poly(dimethylsiloxane) (PDMS)-based device, based on replica molding, is presented, and two membranes, a perforated, in-house-fabricated PDMS membrane and a commercial poly(ethylene terephthalate) (PET) one, were tested and their performances were compared. The device was submerged in a culture dish filled with medium for passive perfusion via diffusion in order to prevent on-chip bubble accumulation. The passively perfused BMoC device, having incorporated a commercial poly(ethylene terephthalate) (PET) membrane, allows for a sustainable MSC and HSPC co-culture and proliferation for three days, a promising indication for the future creation of a hematopoietic bone marrow organoid.
Collapse
Affiliation(s)
- Dionysia Kefallinou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Patr. Gregoriou Ε’ and 27 Neapoleos Str., Aghia Paraskevi, 15341 Athens, Greece;
| | - Maria Grigoriou
- Laboratory of Inflammation and Autoimmunity, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (M.G.); (D.T.B.)
| | - Dimitrios T. Boumpas
- Laboratory of Inflammation and Autoimmunity, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (M.G.); (D.T.B.)
- 4th Department of Internal Medicine, Attikon University Hospital and Joint Rheumatology Program, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Angeliki Tserepi
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Patr. Gregoriou Ε’ and 27 Neapoleos Str., Aghia Paraskevi, 15341 Athens, Greece;
| |
Collapse
|
5
|
Olijnik AA, Rodriguez-Romera A, Wong ZC, Shen Y, Reyat JS, Jooss NJ, Rayes J, Psaila B, Khan AO. Generating human bone marrow organoids for disease modeling and drug discovery. Nat Protoc 2024; 19:2117-2146. [PMID: 38532070 DOI: 10.1038/s41596-024-00971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 12/22/2023] [Indexed: 03/28/2024]
Abstract
The bone marrow supports and regulates hematopoiesis, responding to physiological requirements for blood cell production over ontogeny and during pathological challenges. Interactions between hematopoietic cells and niche components are challenging to study mechanistically in the human context, but are important to delineate in order to explore the pathobiology of blood and bone marrow disorders. Organoids are proving transformative in many research settings, but an accurate human bone marrow model incorporating multiple hematopoietic and stromal elements has been lacking. This protocol describes a method to generate three-dimensional, multilineage bone marrow organoids from human induced pluripotent stem cells (hiPSCs), detailing the steps for the directed differentiation of hiPSCs using a series of cytokine cocktails and hydrogel embedding. Over 18 days of differentiation, hiPSCs yield the key lineages that are present in central myelopoietic bone marrow, organized in a well-vascularized architecture that resembles native hematopoietic tissues. This presents a robust, in vitro system that can model healthy and perturbed hematopoiesis in a scalable three-dimensional microenvironment. Bone marrow organoids also support the growth of immortalized cell lines and primary cells from healthy donors and patients with myeloid and lymphoid cancers, including cell types that are poorly viable in standard culture systems. Moreover, we discuss assays for the characterization of organoids, including interrogation of pathogenic remodeling using recombinant TGF-ß treatment, and methods for organoid engraftment with exogenous cells. This protocol can be readily adapted to specific experimental requirements, can be easily implemented by users with tissue culture experience and does not require access to specialist equipment.
Collapse
Affiliation(s)
- Aude-Anais Olijnik
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Antonio Rodriguez-Romera
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Zoë C Wong
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Yuqi Shen
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jasmeet S Reyat
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Natalie J Jooss
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Bethan Psaila
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Abdullah O Khan
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
6
|
Janssen R, Benito-Zarza L, Cleijpool P, Valverde MG, Mihăilă SM, Bastiaan-Net S, Garssen J, Willemsen LEM, Masereeuw R. Biofabrication Directions in Recapitulating the Immune System-on-a-Chip. Adv Healthc Mater 2024:e2304569. [PMID: 38625078 DOI: 10.1002/adhm.202304569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Ever since the implementation of microfluidics in the biomedical field, in vitro models have experienced unprecedented progress that has led to a new generation of highly complex miniaturized cell culture platforms, known as Organs-on-a-Chip (OoC). These devices aim to emulate biologically relevant environments, encompassing perfusion and other mechanical and/or biochemical stimuli, to recapitulate key physiological events. While OoCs excel in simulating diverse organ functions, the integration of the immune organs and immune cells, though recent and challenging, is pivotal for a more comprehensive representation of human physiology. This comprehensive review covers the state of the art in the intricate landscape of immune OoC models, shedding light on the pivotal role of biofabrication technologies in bridging the gap between conceptual design and physiological relevance. The multifaceted aspects of immune cell behavior, crosstalk, and immune responses that are aimed to be replicated within microfluidic environments, emphasizing the need for precise biomimicry are explored. Furthermore, the latest breakthroughs and challenges of biofabrication technologies in immune OoC platforms are described, guiding researchers toward a deeper understanding of immune physiology and the development of more accurate and human predictive models for a.o., immune-related disorders, immune development, immune programming, and immune regulation.
Collapse
Affiliation(s)
- Robine Janssen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Laura Benito-Zarza
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Pim Cleijpool
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Marta G Valverde
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Silvia M Mihăilă
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Shanna Bastiaan-Net
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, 6708 WG, The Netherlands
| | - Johan Garssen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
- Danone Global Research & Innovation Center, Danone Nutricia Research B.V., Utrecht, 3584 CT, The Netherlands
| | - Linette E M Willemsen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| |
Collapse
|
7
|
Ramadan Q, Hazaymeh R, Zourob M. Immunity-on-a-Chip: Integration of Immune Components into the Scheme of Organ-on-a-Chip Systems. Adv Biol (Weinh) 2023; 7:e2200312. [PMID: 36866511 DOI: 10.1002/adbi.202200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Indexed: 03/04/2023]
Abstract
Studying the immune system in vitro aims to understand how, when, and where the immune cells migrate/differentiate and respond to the various triggering events and the decision points along the immune response journey. It becomes evident that organ-on-a-chip (OOC) technology has a superior capability to recapitulate the cell-cell and tissue-tissue interaction in the body, with a great potential to provide tools for tracking the paracrine signaling with high spatial-temporal precision and implementing in situ real-time, non-destructive detection assays, therefore, enabling extraction of mechanistic information rather than phenotypic information. However, despite the rapid development in this technology, integration of the immune system into OOC devices stays among the least navigated tasks, with immune cells still the major missing components in the developed models. This is mainly due to the complexity of the immune system and the reductionist methodology of the OOC modules. Dedicated research in this field is demanded to establish the understanding of mechanism-based disease endotypes rather than phenotypes. Herein, we systemically present a synthesis of the state-of-the-art of immune-cantered OOC technology. We comprehensively outlined what is achieved and identified the technology gaps emphasizing the missing components required to establish immune-competent OOCs and bridge these gaps.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| | - Rana Hazaymeh
- Almaarefa University, Diriyah, 13713, Kingdom of Saudi Arabia
| | | |
Collapse
|
8
|
Campanile M, Bettinelli L, Cerutti C, Spinetti G. Bone marrow vasculature advanced in vitro models for cancer and cardiovascular research. Front Cardiovasc Med 2023; 10:1261849. [PMID: 37915743 PMCID: PMC10616801 DOI: 10.3389/fcvm.2023.1261849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiometabolic diseases and cancer are among the most common diseases worldwide and are a serious concern to the healthcare system. These conditions, apparently distant, share common molecular and cellular determinants, that can represent targets for preventive and therapeutic approaches. The bone marrow plays an important role in this context as it is the main source of cells involved in cardiovascular regeneration, and one of the main sites of liquid and solid tumor metastasis, both characterized by the cellular trafficking across the bone marrow vasculature. The bone marrow vasculature has been widely studied in animal models, however, it is clear the need for human-specific in vitro models, that resemble the bone vasculature lined by endothelial cells to study the molecular mechanisms governing cell trafficking. In this review, we summarized the current knowledge on in vitro models of bone marrow vasculature developed for cardiovascular and cancer research.
Collapse
Affiliation(s)
- Marzia Campanile
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
| | - Leonardo Bettinelli
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
- Department of Experimental Oncology, IRCCS-IEO, European Institute of Oncology, Milan, Italy
| | - Camilla Cerutti
- Department of Experimental Oncology, IRCCS-IEO, European Institute of Oncology, Milan, Italy
| | - Gaia Spinetti
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
9
|
Li C, Zhao R, Yang H, Ren L. Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms. Int J Mol Sci 2023; 24:ijms24086999. [PMID: 37108162 PMCID: PMC10139217 DOI: 10.3390/ijms24086999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The normal physiological activities and functions of bone cells cannot be separated from the balance of the oxygenation level, and the physiological activities of bone cells are different under different oxygenation levels. At present, in vitro cell cultures are generally performed in a normoxic environment, and the partial pressure of oxygen of a conventional incubator is generally set at 141 mmHg (18.6%, close to the 20.1% oxygen in ambient air). This value is higher than the mean value of the oxygen partial pressure in human bone tissue. Additionally, the further away from the endosteal sinusoids, the lower the oxygen content. It follows that the construction of a hypoxic microenvironment is the key point of in vitro experimental investigation. However, current methods of cellular research cannot realize precise control of oxygenation levels at the microscale, and the development of microfluidic platforms can overcome the inherent limitations of these methods. In addition to discussing the characteristics of the hypoxic microenvironment in bone tissue, this review will discuss various methods of constructing oxygen gradients in vitro and measuring oxygen tension from the microscale based on microfluidic technology. This integration of advantages and disadvantages to perfect the experimental study will help us to study the physiological responses of cells under more physiological-relevant conditions and provide a new strategy for future research on various in vitro cell biomedicines.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Rong Zhao
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Ren
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
10
|
Al-Kaabneh B, Frisch B, Aljitawi OS. The Potential Role of 3D In Vitro Acute Myeloid Leukemia Culture Models in Understanding Drug Resistance in Leukemia Stem Cells. Cancers (Basel) 2022; 14:5252. [PMID: 36358676 PMCID: PMC9656790 DOI: 10.3390/cancers14215252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/14/2023] Open
Abstract
The complexity of the bone marrow (BM) microenvironment makes studying hematological malignancies in vitro a challenging task. Three-dimensional cell cultures are being actively studied, particularly due to their ability to serve as a bridge of the gap between 2D cultures and animal models. The role of 3D in vitro models in studying the mechanisms of chemotherapeutic resistance and leukemia stem cells (LSCs) in acute myeloid leukemia (AML) is not well-reviewed. We present an overview of 3D cell models used for studying AML, emphasizing the recent advancements in microenvironment modeling, chemotherapy testing, and resistance.
Collapse
Affiliation(s)
- Basil Al-Kaabneh
- Hematology/Oncology Division, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Benjamin Frisch
- Departments of Pathology and Biomedical Engineering, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Omar S. Aljitawi
- Hematology/Oncology Division, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|