1
|
Jiang C, Sun Y, Li G, Zhou T, Wang Q, Zhang J, Song Y, Xu W, A L. Magnetic Hydroxyapatite-Coated Iron-Chromium Microspheres for Dental Surface Polishing and Plaque Removal. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5554-5567. [PMID: 38278767 DOI: 10.1021/acsami.3c16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
This research aimed to engineer magnetic hydroxyapatite-coated iron-chromium (HAp-FeCr) microspheres to enhance dental surface polishing and plaque elimination. Utilizing a tailored sol-gel approach, the HAp-FeCr microspheres were synthesized and exhaustively characterized via scanning electron microscopy, energy-dispersive X-ray spectroscopy, ζ-potential, X-ray diffractometry, and X-ray photoelectron spectroscopy methodologies. Key findings showcased that these microspheres retained their magnetic properties post-HAp coating, as evidenced by the magnetization curves. An innovative magnetic polishing system was developed, incorporating these microspheres and a 2000 rpm magnet. Comparative evaluations between traditional air-powder polishing and the proposed magnetic technique demonstrated the latter's superiority. Notably, the magnetic polishing led to a substantial reduction in dental plaque on the tooth surface, decreasing bacterial adhesion and early biofilm formation by Streptococcus gordonii and Lactobacillus acidophilus, where the most pronounced effects were observed in samples with elevated HAp content. A significant 60% reduction in dental plaque was achieved with the magnetic method relative to air-powder polishing. Furthermore, the HAp-FeCr microspheres' biocompatibility was verified through cytotoxicity tests and animal studies. In essence, the magnetic HAp-FeCr microspheres present a novel and efficient strategy for dental treatments, holding immense potential for improving oral health.
Collapse
Affiliation(s)
- Cong Jiang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yue Sun
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun 130021, China
| | - Gaojie Li
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130021, China
| | - Tianyu Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Qiqi Wang
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jingdan Zhang
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yulai Song
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130021, China
| | - Wenzhou Xu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun 130021, China
| | - Lan A
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun 130021, China
| |
Collapse
|
2
|
Sun X, Jiao X, Wang Z, Ma J, Wang T, Zhu D, Li H, Tang L, Li H, Wang C, Li Y, Xu C, Wang J, Gan Y, Jin W. Polydopamine-coated 3D-printed β-tricalcium phosphate scaffolds to promote the adhesion and osteogenesis of BMSCs for bone-defect repair: mRNA transcriptomic sequencing analysis. J Mater Chem B 2023; 11:1725-1738. [PMID: 36723218 DOI: 10.1039/d2tb02280j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cellular bioactivity and tissue regeneration can be affected by coatings on tissue-engineered scaffolds. Using mussel-inspired polydopamine (PDA) is a convenient and effective approach to surface modification. Therefore, 3D-printed β-tricalcium phosphate (β-TCP) scaffolds were coated with PDA in this study. The effects of the scaffolds on the adhesion and osteogenic differentiation of seeded bone marrow mesenchymal stem cells (BMSCs) in vitro and on new-bone formation in vivo were investigated. The potential mechanisms and related differential genes were assessed using mRNA sequencing. It was seen that PDA coating increased the surface roughness of the 3D-printed β-TCP scaffolds. Furthermore, it prompted the adhesion and osteogenic differentiation of seeded BMSCs. mRNA sequencing analysis revealed that PDA coating might affect the osteogenic differentiation of BMSCs through the calcium signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway, etc. Moreover, the expression of osteogenesis-related genes, such as R-spondin 1 and chemokine c-c-motif ligand 2, was increased. Finally, both the 3D-printed β-TCP scaffolds and PDA-coated scaffolds could significantly accelerate the formation of new bone in critical-size calvarial defects in rats compared with the control group; and the new bone formation was obviously higher in the PDA-coated scaffolds than in β-TCP scaffolds. In summary, 3D-printed β-TCP scaffolds with a PDA coating can improve the physicochemical characteristics and cellular bioactivity of the scaffold surface for bone regeneration. Potential differential genes were identified, which can be used as a foundation for further research.
Collapse
Affiliation(s)
- Xin Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| | - Xin Jiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| | - Zengguang Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| | - Jie Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| | - Tianchang Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| | - Dan Zhu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 280 Mohe Road, Shanghai 201999, China
| | - Han Li
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University. No. 30 Shuangqing Road, Beijing 100084, China
| | - Liang Tang
- Department of Orthopedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine. No. 1111 Xianxia Road, Shanghai 200336, China
| | - Heyue Li
- Department of Obstetrics and Gynecology, Shanghai Seventh People's Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine. No. 358 Datong Road, Shanghai 200137, China
| | - Changde Wang
- Department of Geriatric Orthopeadics, Shenzhen Pingle Orthopaedic Hospital. No. 15 Lanjin 4th Road, Shenzhen 518000, China
| | - Yiming Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| | - Chen Xu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| | - Yaogai Gan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| | - Wenjie Jin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| |
Collapse
|
3
|
Hou Z, Yang M, Huang L, Xin S, Yang H, Hou J. Polydopamine-based nanospheres as nanoplatforms to kill Staphylococcus aureus and to promote wound healing by photothermal therapy. Front Chem 2022; 10:1111701. [PMID: 36618860 PMCID: PMC9817027 DOI: 10.3389/fchem.2022.1111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Bacterial infections have always been a threat when it comes to public health accounting for increased morbidity and mortality rates around the world. For the first time, Polydopamine is often used as an ocular surface drug delivery medium to treat some ocular surface diseases based on its good tissue affinity. Mesoporous polydopamine nanospheres (MPDA NPs) under photothermal therapy (PTT) are demonstrated as efficient therapeutic nanoplatforms for Staphylococcus aureus (S. aureus) infection and wound healing. MPDA NPs were found to exhibit excellent photothermal performance, significantly causing an increase in temperature within a short period of NIR-I exposure (808 nm, 1 W cm-2, 6 min). The MPDA NPs under the NIR irradiation remarkably eliminated S. aureus in vitro. Moreover, these synergistic effects turnouts to be phenomenal in vivo, effectively killing and healing S. aureus-infected abscesses in mice. These revealed the combined effect of the intrinsic antibacterial activity of MPDA NPs enhanced upon NIR-I exposure. Hence, MPDA NPs under NIR-I could prove excellent therapeutic nanoplatforms for bacteria-related infections and other biomedical applications.
Collapse
Affiliation(s)
- Zhidian Hou
- Department of hand and foot surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Min Yang
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Ling Huang
- Department of Ophthalmology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Songlin Xin
- Department of Ophthalmology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huiming Yang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jiangping Hou
- Department of Ophthalmology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China,*Correspondence: Jiangping Hou,
| |
Collapse
|
4
|
Xie L, Li Q, Liao Y, Huang Z, Liu Y, Liu C, Shi L, Li Q, Yuan M. Toxicity Analysis of Mesoporous Polydopamine on Intestinal Tissue and Microflora. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196461. [PMID: 36234997 PMCID: PMC9571127 DOI: 10.3390/molecules27196461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022]
Abstract
As a promising therapy, photothermal therapy (PTT) converts near-infrared (NIR) light into heat through efficient photothermal agents (PTAs), causing a rapid increase in local temperature. Considering the importance of PTAs in the clinical application of PTT, the safety of PTAs should be carefully evaluated before their widespread use. As a promising PTA, mesoporous polydopamine (MPDA) was studied for its clinical applications for tumor photothermal therapy and drug delivery. Given the important role that intestinal microflora plays in health, the impacts of MPDA on the intestine and on intestinal microflora were systematically evaluated in this study. Through biological and animal experiments, it was found that MPDA exhibited excellent biocompatibility, in vitro and in vivo. Moreover, 16S rRNA analysis demonstrated that there was no obvious difference in the composition and classification of intestinal microflora between different drug delivery groups and the control group. The results provided new evidence that MPDA was safe to use in large doses via different drug delivery means, and this lays the foundation for further clinical applications.
Collapse
Affiliation(s)
- Luoyijun Xie
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Qiyan Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Yingying Liao
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Zihua Huang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Yulin Liu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Chutong Liu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Leilei Shi
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Qingjiao Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| |
Collapse
|