1
|
Yang L, Du J, Jin S, Yang S, Chen Z, Yu S, Fan C, Zhou C, Ruan H. Chirality-Induced Hydroxyapatite Manipulates Enantioselective Bone-Implant Interactions Toward Ameliorative Osteoporotic Osseointegration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411602. [PMID: 39738981 DOI: 10.1002/advs.202411602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/12/2024] [Indexed: 01/02/2025]
Abstract
Inspired by the fundamental attribute of chirality in nature, chiral-engineered biomaterials now represent a groundbreaking frontier in biomedical fields. However, the integration of chirality within inorganic materials remains a critical challenge and developments of chirality-induced bionic bone implants are still in infancy. In this view, novel chiral hydroxyapatite (CHA) coated Ti alloys are successfully synthesized by a sophisticated chiral molecule-induced self-assembly method for the first time. The obtained samples are characterized by stereospecific L-/D-/Rac-chiral hierarchical morphology, nanotopography rough surfaces, improved hydrophilicity, and bioactivity. Following implantation into rat femoral condyle defects, the distinct stereospecific chiral hierarchical structures exhibit highly enantioselective bone-implants interactions, wherein the left-handed chirality of L-CHA strongly promotes osteoporotic osseointegration and vice versa for right-handed chirality of D-CHA. Consistently, in vitro assays further validate the superior enantiomer-dependent osteoporotic osseointegration ability of L-CHA, mainly by manipulating desired immunomodulation coupled with enhanced neurogenesis, angiogenesis, and osteogenesis. Moreover, as analyzed by transcriptomic RNA-seq, a new discovery of down-regulated IL-17 signaling pathway is considered predominately responsible for the desired immunomodulation ability of L-CHA. These results provide new insights into biological multifunctionality and mechanism underlying L-chirality's roles for bone healing, thus may inspiring developments of new generation of chiral biomaterials.
Collapse
Affiliation(s)
- Liang Yang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 200233, P. R. China
| | - Jinzhou Du
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 200233, P. R. China
| | - Shengyang Jin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Shuyi Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Zhaowei Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Shiyang Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 200233, P. R. China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 200233, P. R. China
| | - Chao Zhou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 200233, P. R. China
| | - Hongjiang Ruan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 200233, P. R. China
| |
Collapse
|
2
|
Vaishya R, Gupta BM, Mamdapur GMN, Vaish A, Bhadani JS, Mukhopadhaya J. Highly-Cited Papers on Fracture Non-union - A Bibliometric Analysis of the Global Literature (1990-2023). Indian J Orthop 2024; 58:1756-1767. [PMID: 39664351 PMCID: PMC11628477 DOI: 10.1007/s43465-024-01176-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 12/13/2024]
Abstract
Objective The growing interest in this field of fracture nonunion has been informally acknowledged through published studies. A bibliometric analysis was conducted to objectively outline the patterns in published clinical research concerning nonunion fractures by utilizing highly cited papers (HCPs). Methods Through a predetermined search strategy, we gathered literature on the clinical management of nonunion fractures from the Scopus database and utilized bibliometrics to examine the publication dates, countries, institutions, journals, authors, HCPs, and research focal points. Statistical analysis and visualization were conducted using MS Excel and VOSviewer software. Results From 1990 to 2023, a total of 168 HCPs in the field of fracture nonunion were identified. They received an average of 167.68 citations per paper (CPP). Among them, 4.08% received external funding, while 17.26% were involved in international collaboration. The United States (49.4% share) was the most productive country and France had the highest citation impact. P.V. Gianoudis had the highest productivity with 13 publications and P. Hernigou had the highest citation impact. The Mayo Clinic was the most productive organization and Hopital Henri Mondor achieved the highest citation impact. The most productive journal was Clinical Orthopedics & Related Research, and the Journal of Bone & Joint Surgery, American Volume had the highest average citation impact. Conclusion This contemporary bibliometric study illustrates the research features and developments of nonunion fractures. Through the use of VOSviewer, key countries, organizations, and authors could be identified, providing researchers with essential information to pinpoint current and future areas of interest in fracture nonunion. Supplementary Information The online version contains supplementary material available at 10.1007/s43465-024-01176-6.
Collapse
Affiliation(s)
- Raju Vaishya
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospitals, Sarita Vihar, New Delhi, 110076 India
| | | | - Ghouse Modin N. Mamdapur
- Department of Library and Information Science, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018 Karnataka India
| | - Abhishek Vaish
- Department of Orthopaedics, Indraprastha Apollo Hospitals, New Delhi, 110076 India
| | | | | |
Collapse
|
3
|
Popescu F, Albu Kaya MG, Miculescu F, Coman AE, Ancuta DL, Coman C, Barbilian A. Novel Collagenous Sponge Composites for Osteochondral Regeneration in Rat Knee Models: A Comparative Study of Keratin, Hydroxyapatite, and Combined Treatments. Cureus 2024; 16:e73428. [PMID: 39664129 PMCID: PMC11633078 DOI: 10.7759/cureus.73428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
This study aims to evaluate the osteoconductive and osteoinductive potential of novel composite collagenous sponges enriched with keratin (K), hydroxyapatite (HA), and their combination (K+HA) for osteochondral regeneration in rat knee models. By examining cell proliferation, mineralization, and vascularization, we aim to determine the regenerative effectiveness of these materials in promoting osteochondral repair, particularly in load-bearing joints like the knee. Addressing the problem of osteochondral defects (OCD), which lead to osteoarthritis-a condition characterized by pain and functional impairment-the hereby research evaluates these biomaterials for their potential to foster bone and cartilage repair, especially in load-bearing joints as the knee. By leveraging an experimental living rat knee model, the effectiveness of these bio-composites is tasted through detailed morphological, biomechanical, and histological analyses. We have employed a rigorous methodology encompassing the selection of biomaterials based on their osteoconductive and osteoinductive traits, their intraosseous application in Wistar rats, and ulterior comprehensive and minutely monitoring. The comparison covers aspects such as cell growth, mean pixel intensity, and other key morphological properties, offering good insights into each material's regenerative capacity. Furthermore, in the present study we have highlighted the fabrication processes of the sponges, including lyophilization and crosslinking, underlining the importance of the biomaterials' physical characteristics in achieving targeted and optimal regenerative outcomes. Preliminary results obtained illustrate the biocompatibility and potential efficacy of these collagen-based composites in promoting bone healing and regeneration, with particular attention being given to the synergistic effects observed in the K+HA combination. This research will contribute to the understanding of material-based regeneration of osteochondral units but also might open avenues for future investigations into the optimization of such therapies for further clinical application. Through a detailed examination of the materials' integration with the test animal bone and cartilaginous tissues and their impact on bone and cartilage healing, this study sets the stage for the advancement of regenerative medicine solutions for OCD and the array of related conditions, offering hope for patients suffering from joint degeneration and injury.
Collapse
Affiliation(s)
- Florin Popescu
- Department of Orthopedics and Traumatology, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| | - Madalina Georgiana Albu Kaya
- Department of Collagen, National Research and Development Institute for Textiles and Leather (INCDTP) Division Leather and Footwear Research Institute (ICPI), Bucharest, ROU
| | - Florin Miculescu
- Department of Metallic Materials Science, Physical Metallurgy, National University of Science and Technology Politehnica Bucharest, Bucharest, ROU
| | - Alina Elena Coman
- Department of Collagen, National Research and Development Institute for Textiles and Leather (INCDTP) Division Leather and Footwear Research Institute (ICPI), Bucharest, ROU
| | - Diana-Larisa Ancuta
- Preclinical Testing Unit, Technological Development Research Center, "Cantacuzino" National Medical-Military Institute for Research and Development, Bucharest, ROU
| | - Cristin Coman
- Experimental Medicine and Transnational Research Platform, Technological Development Research Center, "Cantacuzino" National Medical-Military Institute for Research and Development, Bucharest, ROU
| | - Adrian Barbilian
- Department of Orthopedics and Traumatology, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| |
Collapse
|
4
|
Theodosaki AM, Tzemi M, Galanis N, Bakopoulou A, Kotsiomiti E, Aggelidou E, Kritis A. Bone Regeneration with Mesenchymal Stem Cells in Scaffolds: Systematic Review of Human Clinical Trials. Stem Cell Rev Rep 2024; 20:938-966. [PMID: 38407793 PMCID: PMC11087324 DOI: 10.1007/s12015-024-10696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
The aim of the study is to determine the effectiveness of stem cells in scaffolds in the treatment of bone deficits, in regard of bone regeneration, safety, rehabilitation and quality of life in humans. The systematic review was conducted in accordance with PRISMA 2020. A systematic search was conducted in three search engines and two registries lastly in 29-9-2022.for studies of the last 15 years. The risk of bias was assessed with RoB-2, ROBINS- I and NIH Quality of Before-After (Pre-Post) Studies with no Control group. The certainty of the results was assessed with the GRADE assessment tool. Due to heterogeneity, the results were reported in tables, graphs and narratively. The study protocol was published in PROSPERO with registration number CRD42022359049. Of the 10,091 studies retrieved, 14 were meeting the inclusion criteria, and were qualitatively analyzed. 138 patients were treated with mesenchymal stem cells in scaffolds, showing bone healing in all cases, and even with better results than the standard care. The adverse events were mild in most cases and in accordance with the surgery received. When assessed, there was a rehabilitation of the deficit and a gain in quality of life was detected. Although the heterogeneity between the studies and the small number of patients, the administration of mesenchymal stem cells in scaffolds seems safe and effective in the regeneration of bone defects. These results pave the way for the conduction of more clinical trials, with greater number of participants, with more standardized procedures.
Collapse
Affiliation(s)
- Astero Maria Theodosaki
- Research Methodology in Medicine and Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
- Regenerative Medicine Center, Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece.
- Postgraduate program of Research Methodology in Medicine and Health Sciences, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
- , Thessaloniki, Greece.
| | - Maria Tzemi
- Research Methodology in Medicine and Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Postgraduate program of Research Methodology in Medicine and Health Sciences, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikiforos Galanis
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- 1st Orthopaedic Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, Faculty of Dentistry, Aristotle University of Thessaloniki, University Campus, Dentistry Building, 54124, Thessaloniki, Greece
- Regenerative Medicine Center, Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece
| | - Eleni Kotsiomiti
- Department of Prosthodontics, Faculty of Dentistry, Aristotle University of Thessaloniki, University Campus, Dentistry Building, 54124, Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, University Campus, 54006, Thessaloniki, Greece
- Regenerative Medicine Center, Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, University Campus, 54006, Thessaloniki, Greece
- Regenerative Medicine Center, Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece
| |
Collapse
|
5
|
Zhu J, Lu Y, Shan Y, Yuan L, Wu Q, Shen Z, Sun F, Shi H. Global Bibliometric and Visualized Analysis of Tracheal Tissue Engineering Research. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:198-216. [PMID: 37658839 DOI: 10.1089/ten.teb.2023.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The development of tracheal tissue engineering (TTE) has seen a rapid growth in recent years. The purpose of this study was to investigate the global status, trends, and hotspots of TTE research based on bibliometrics and visualization analysis. Publications related to TTE were retrieved and included in the Web of Science Core Collection. VOSviewer and CiteSpace were used to generate knowledge maps. Six hundred fifty-five publications were identified, and the quantity of the annual publications worldwide was on the increase. International collaboration is a widespread reality. The United States led the world in the field of trachea tissue engineering, whereas University College London was the institution with the greatest contribution. In addition, Biomaterials had a great influence in this field, attracting the largest number of papers. Moreover, the topics of TTE research largely concentrated on the biomechanical scaffold preparation, the vascularization and epithelialization of scaffold, the tracheal cartilage regeneration, and the tissue-engineered tracheal transplantation. And the research on the application of decellularization and 3D printing for the construction of a tissue-engineered trachea was likely to receive more widespread attention in the future. Impact statement In recent years, tracheal tissue engineering (TTE) has experienced rapid growth. In this study, we investigated the worldwide status and trends of TTE research, and revealed the countries, institutions, journals, and authors that had made significant contributions to the field of TTE. Moreover, the possible research hotspots in the future were predicted. According to our research, researchers can gain a better understanding of the trends in this field, and stay informed of the most current research by tracking key journals, institutions, and authors.
Collapse
Affiliation(s)
- Jianwei Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Yi Lu
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Yibo Shan
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Lei Yuan
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Qiang Wu
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiming Shen
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Fei Sun
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Hongcan Shi
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
- The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Quiles MT, Rodríguez-Contreras A, Guillem-Marti J, Punset M, Sánchez-Soto M, López-Cano M, Sabadell J, Velasco J, Armengol M, Manero JM, Arbós MA. Effect of Functionalization of Texturized Polypropylene Surface by Silanization and HBII-RGD Attachment on Response of Primary Abdominal and Vaginal Fibroblasts. Polymers (Basel) 2024; 16:667. [PMID: 38475352 DOI: 10.3390/polym16050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Soft tissue defects, such as incisional hernia or pelvic organ prolapse, are prevalent pathologies characterized by a tissue microenvironment rich in fragile and dysfunctional fibroblasts. Precision medicine could improve their surgical repair, currently based on polymeric materials. Nonetheless, biomaterial-triggered interventions need first a better understanding of the cell-material interfaces that truly consider the patients' biology. Few tools are available to study the interactions between polymers and dysfunctional soft tissue cells in vitro. Here, we propose polypropylene (PP) as a matrix to create microscale surfaces w/wo functionalization with an HBII-RGD molecule, a fibronectin fragment modified to include an RGD sequence for promoting cell attachment and differentiation. Metal mold surfaces were roughened by shot blasting with aluminum oxide, and polypropylene plates were obtained by injection molding. HBII-RGD was covalently attached by silanization. As a proof of concept, primary abdominal and vaginal wall fasciae fibroblasts from control patients were grown on the new surfaces. Tissue-specific significant differences in cell morphology, early adhesion and cytoskeletal structure were observed. Roughness and biofunctionalization parameters exerted unique and combinatorial effects that need further investigation. We conclude that the proposed model is effective and provides a new framework to inform the design of smart materials for the treatment of clinically compromised tissues.
Collapse
Affiliation(s)
- Maria Teresa Quiles
- General Surgery Research Unit, Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Department of Basic Sciences, School of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Josep Trueta, s/n, 08195 Sant Cugat del Vallés, Spain
| | - Alejandra Rodríguez-Contreras
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department Materials Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Av. Eduard Maristany, 16, 08019 Barcelona, Spain
- Department Materials Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Av. D'Eduard Maristany, 16, 08019 Barcelona, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Jordi Guillem-Marti
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department Materials Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Av. Eduard Maristany, 16, 08019 Barcelona, Spain
- Department Materials Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Av. D'Eduard Maristany, 16, 08019 Barcelona, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Miquel Punset
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department Materials Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Av. Eduard Maristany, 16, 08019 Barcelona, Spain
- Department Materials Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Av. D'Eduard Maristany, 16, 08019 Barcelona, Spain
| | - Miguel Sánchez-Soto
- Department Materials Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Av. D'Eduard Maristany, 16, 08019 Barcelona, Spain
| | - Manuel López-Cano
- General Surgery Research Unit, Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Abdominal Wall Surgery Unit, Department of General Surgery, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Jordi Sabadell
- General Surgery Research Unit, Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Urogynecology and Pelvic Floor Unit, Department of Gynecology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Janice Velasco
- Department of Surgery, Hospital San Rafael, Germanes Hospitalàries, Passeig de la Vall d'Hebron, 107, 08035 Barcelona, Spain
| | - Manuel Armengol
- General Surgery Research Unit, Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Department of General Surgery, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Jose Maria Manero
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department Materials Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Av. Eduard Maristany, 16, 08019 Barcelona, Spain
- Department Materials Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Av. D'Eduard Maristany, 16, 08019 Barcelona, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Maria Antònia Arbós
- General Surgery Research Unit, Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Department of Basic Sciences, School of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Josep Trueta, s/n, 08195 Sant Cugat del Vallés, Spain
| |
Collapse
|
7
|
Zhang K, Liu Y, Zhao Z, Shi X, Zhang R, He Y, Zhang H, Sun Y, Wang W. Synthesis Technology of Magnesium-Doped Nanometer Hydroxyapatite: A Review. ACS OMEGA 2023; 8:44458-44471. [PMID: 38046298 PMCID: PMC10688058 DOI: 10.1021/acsomega.3c06091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023]
Abstract
Ion substitution techniques for nanoparticles have become an important neighborhood of biomedical engineering and have led to the development of innovative bioactive materials for health systems. Magnesium-doped nanohydroxyapatite (Mg-nHA) has good bone conductivity, biological activity, flexural strength, and fracture toughness due to particle doping technology, making it an ideal candidate material for biomedical applications. In this Review, we have systematically presented the synthesis methods of Mg-nHA and their application in the field of biomedical science and highlighted the pros and cons of each method. Finally, some future prospects for this important neighborhood are proposed. The purpose of this Review is to provide readers with an understanding of this new field of research on bioactive materials with innovative functions and systematically introduce the latest technologies for obtaining uniform, continuous, and morphologically diverse Mg-nHA.
Collapse
Affiliation(s)
- Kui Zhang
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yan Liu
- Department
of Gynecology, First Affiliated Hospital
of Xi ’an Medical College, Xi’an, Shaanxi 710000, China
| | - Zhenrui Zhao
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuewen Shi
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ruihao Zhang
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yixiang He
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huaibin Zhang
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yi Sun
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wenji Wang
- Department
of Orthopedics, The First Hospital of Lanzhou
University, Lanzhou, Gansu 730000, China
| |
Collapse
|
8
|
Zhang YQ, Geng Q, Li C, Wang HC, Ren C, Zhang YF, Bai JS, Pan HB, Cui X, Yao MX, Chen W. Application of piezoelectric materials in the field of bone: a bibliometric analysis. Front Bioeng Biotechnol 2023; 11:1210637. [PMID: 37600300 PMCID: PMC10436523 DOI: 10.3389/fbioe.2023.1210637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
In the past 4 decades, many articles have reported on the effects of the piezoelectric effect on bone formation and the research progress of piezoelectric biomaterials in orthopedics. The purpose of this study is to comprehensively evaluate all existing research and latest developments in the field of bone piezoelectricity, and to explore potential research directions in this area. To assess the overall trend in this field over the past 40 years, this study comprehensively collected literature reviews in this field using a literature retrieval program, applied bibliometric methods and visual analysis using CiteSpace and R language, and identified and investigated publications based on publication year (1984-2022), type of literature, language, country, institution, author, journal, keywords, and citation counts. The results show that the most productive countries in this field are China, the United States, and Italy. The journal with the most publications in the field of bone piezoelectricity is the International Journal of Oral & Maxillofacial Implants, followed by Implant Dentistry. The most productive authors are Lanceros-Méndez S, followed by Sohn D.S. Further research on the results obtained leads to the conclusion that the research direction of this field mainly includes piezoelectric surgery, piezoelectric bone tissue engineering scaffold, manufacturing artificial cochleae for hearing loss patients, among which the piezoelectric bone tissue engineering scaffold is the main research direction in this field. The piezoelectric materials involved in this direction mainly include polyhydroxybutyrate valerate, PVDF, and BaTiO3.
Collapse
Affiliation(s)
- Yu-Qin Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Qian Geng
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chao Li
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Hai-Cheng Wang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Chuan Ren
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Yi-Fan Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Jun-Sheng Bai
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Hao-Bo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xu Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Meng-Xuan Yao
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Wei Chen
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Saginova D, Tashmetov E, Kamyshanskiy Y, Tuleubayev B, Rimashevskiy D. Evaluation of Bone Regenerative Capacity in Rabbit Femoral Defect Using Thermally Disinfected Bone Human Femoral Head Combined with Platelet-Rich Plasma, Recombinant Human Bone Morphogenetic Protein 2, and Zoledronic Acid. Biomedicines 2023; 11:1729. [PMID: 37371824 DOI: 10.3390/biomedicines11061729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
This research aimed to assess the effect of bone allograft combined with platelet-rich plasma (PRP), recombinant human bone morphogenetic protein-2 (rhBMP-2), and zoledronic acid (Zol) on bone formation. A total of 96 rabbits were used, and femoral bone defects (5 mm) were created. The rabbits were divided into four groups: (1) bone allograft with PRP (AG + PRP), (2) bone allograft with rhBMP-2 5 μg (AG + BMP-2), (3) bone allograft with Zol 5 μg (AG + Zol), and (4) bone allograft (AG). A histopathological examination was performed to evaluate bone defect healing after 14, 30, and 60 days. The new bone formation and neovascularization inside the bone allograft was significantly greater in the AG + PRP group compared to AG and AG + Zol groups after 14 and 30 days (p < 0.001). The use of bone allograft with rhBMP-2 induced higher bone formation compared to AG and AG + Zol groups on days 14 and 30 (p < 0.001), but excessive osteoclast activity was observed on day 60. The local co-administration of Zol with a heat-treated allograft inhibits allograft resorption as well as new bone formation at all periods. In conclusion, this study demonstrated that PRP and rhBMP-2, combined with a Marburg bone allograft, can significantly promote bone formation in the early stage of bone defect healing.
Collapse
Affiliation(s)
- Dina Saginova
- Center for Applied Scientific Research, National Scientific Center of Traumatology and Orthopaedics Named after Academician N.D. Batpenov, Astana 010000, Kazakhstan
| | - Elyarbek Tashmetov
- Department of Surgical Diseases, Karaganda Medical University, Karaganda 100000, Kazakhstan
| | - Yevgeniy Kamyshanskiy
- Pathology Unit of the University Clinic, Karaganda Medical University, Karaganda 100000, Kazakhstan
| | - Berik Tuleubayev
- Department of Surgical Diseases, Karaganda Medical University, Karaganda 100000, Kazakhstan
| | - Denis Rimashevskiy
- Department of Traumatology and Orthopaedics, Peoples' Friendship University of Russia, Moscow 101000, Russia
| |
Collapse
|
10
|
Torres-Guzman RA, Avila FR, Maita KC, Garcia JP, De Sario GD, Borna S, Eldaly AS, Quinones-Hinojosa A, Zubair AC, Ho OA, Forte AJ. Bone Morphogenic Protein and Mesenchymal Stem Cells to Regenerate Bone in Calvarial Defects: A Systematic Review. J Clin Med 2023; 12:4064. [PMID: 37373757 DOI: 10.3390/jcm12124064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The use of bone morphogenic protein and mesenchymal stem cells has shown promise in promoting bone regeneration in calvarial defects. However, a systematic review of the available literature is needed to evaluate the efficacy of this approach. METHODS We comprehensively searched electronic databases using MeSH terms related to skull defects, bone marrow mesenchymal stem cells, and bone morphogenic proteins. Eligible studies included animal studies that used BMP therapy and mesenchymal stem cells to promote bone regeneration in calvarial defects. Reviews, conference articles, book chapters, and non-English language studies were excluded. Two independent investigators conducted the search and data extraction. RESULTS Twenty-three studies published between 2010 and 2022 met our inclusion criteria after a full-text review of the forty-five records found in the search. Eight of the 23 studies used mice as models, while 15 used rats. The most common mesenchymal stem cell was bone marrow-derived, followed by adipose-derived. BMP-2 was the most popular. Stem cells were embedded in Scaffold (13), Transduction (7), and Transfection (3), and they were delivered BMP to cells. Each treatment used 2 × 104-1 × 107 mesenchymal stem cells, averaging 2.26 × 106. Most BMP-transduced MSC studies used lentivirus. CONCLUSIONS This systematic review examined BMP and MSC synergy in biomaterial scaffolds or alone. BMP therapy and mesenchymal stem cells in calvarial defects, alone, or with a scaffold regenerated bone. This method treats skull defects in clinical trials. The best scaffold material, therapeutic dosage, administration method, and long-term side effects need further study.
Collapse
Affiliation(s)
| | - Francisco R Avila
- Division of Plastic Surgery, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, USA
| | - Karla C Maita
- Division of Plastic Surgery, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, USA
| | - John P Garcia
- Division of Plastic Surgery, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, USA
| | - Gioacchino D De Sario
- Division of Plastic Surgery, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, USA
| | - Sahar Borna
- Division of Plastic Surgery, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, USA
| | - Abdullah S Eldaly
- Division of Plastic Surgery, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, USA
| | | | - Abba C Zubair
- Department of Laboratory Medicine and Pathology, Transfusion Medicines and Stem Cell Therapy, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Olivia A Ho
- Division of Plastic Surgery, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, USA
| | - Antonio J Forte
- Division of Plastic Surgery, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, USA
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
11
|
Hoshi M, Taira M, Sawada T, Hachinohe Y, Hatakeyama W, Takafuji K, Tekemoto S, Kondo H. Preparation of Collagen/Hydroxyapatite Composites Using the Alternate Immersion Method and Evaluation of the Cranial Bone-Forming Capability of Composites Complexed with Acidic Gelatin and b-FGF. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8802. [PMID: 36556608 PMCID: PMC9787395 DOI: 10.3390/ma15248802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Bone-substitute materials are essential in dental implantology. We prepared collagen (Col)/hydroxyapatite (Hap)/acidic gelatin (AG)/basic fibroblast growth factor (b-FGF) constructs with enhanced bone-forming capability. The Col/Hap apatite composites were prepared by immersing Col sponges alternately in calcium and phosphate ion solutions five times, for 20 and 60 min, respectively. Then, the sponges were heated to 56 °C for 48 h. Scanning electron microscopy/energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction analyses showed that the Col/Hap composites contained poorly crystalline Hap precipitates on the Col matrix. Col/Hap composite granules were infiltrated by AG, freeze-dried, and immersed in b-FGF solution. The wet quaternary constructs were implanted in rat cranial bone defects for 8 weeks, followed by soft X-ray measurements and histological analysis. Animal studies have shown that the constructs moderately increase bone formation in cranial bone defects. We found that an alternate immersion time of 20 min led to the greatest bone formation (p < 0.05). Constructs placed inside defects slightly extend the preexisting bone from the defect edges and lead to the formation of small island-like bones inside the defect, followed by disappearance of the constructs. The combined use of Col, Hap, AG, and b-FGF might bring about novel bone-forming biomaterials.
Collapse
Affiliation(s)
- Miki Hoshi
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Masayuki Taira
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho 028-3694, Japan
| | - Tomofumi Sawada
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho 028-3694, Japan
| | - Yuki Hachinohe
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Wataru Hatakeyama
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Kyoko Takafuji
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Shinji Tekemoto
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho 028-3694, Japan
| | - Hisatomo Kondo
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| |
Collapse
|