1
|
Doherty EL, Krohn G, Warren EC, Patton A, Whitworth CP, Rathod M, Biehl A, Aw WY, Freytes DO, Polacheck WJ. Human Cell-Derived Matrix Composite Hydrogels with Diverse Composition for Use in Vasculature-on-chip Models. Adv Healthc Mater 2024; 13:e2400192. [PMID: 38518808 PMCID: PMC11281875 DOI: 10.1002/adhm.202400192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Microphysiological and organ-on-chip platforms seek to address critical gaps in human disease models and drug development that underlie poor rates of clinical success for novel interventions. While the fabrication technology and model cells used to synthesize organs-on-chip have advanced considerably, most platforms rely on animal-derived or synthetic extracellular matrix as a cell substrate, limiting mimicry of human physiology and precluding use in modeling diseases in which matrix dynamics play a role in pathogenesis. Here, the development of human cell-derived matrix (hCDM) composite hydrogels for use in 3D microphysiologic models of the vasculature is reported. hCDM composite hydrogels are derived from human donor fibroblasts and maintain a complex milieu of basement membrane, proteoglycans, and nonfibrillar matrix components. The use of hCDM composite hydrogels as 2D and 3D cell culture substrates is demonstrated, and hCDM composite hydrogels are patterned to form engineered human microvessels. Interestingly, hCDM composite hydrogels are enriched in proteins associated with vascular morphogenesis as determined by mass spectrometry, and functional analysis demonstrates proangiogenic signatures in human endothelial cells cultured in these hydrogels. In conclusion, this study suggests that human donor-derived hCDM composite hydrogels could address technical gaps in human organs-on-chip development and serve as substrates to promote vascularization.
Collapse
Affiliation(s)
- Elizabeth L Doherty
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Grace Krohn
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Emily C Warren
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Alexandra Patton
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Chloe P Whitworth
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill School of Medicine, 130 Mason Farm Road, Chapel Hill, Carolina, NC 27599, USA
| | - Mitesh Rathod
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Andreea Biehl
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Wen Yih Aw
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Donald O Freytes
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - William J Polacheck
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Chapel Hill, Carolina, NC 27599, USA
| |
Collapse
|
2
|
Kang C, Yang H. The journey of decellularized vessel: from laboratory to operating room. Front Bioeng Biotechnol 2024; 12:1413518. [PMID: 38983603 PMCID: PMC11231200 DOI: 10.3389/fbioe.2024.1413518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Over the past few decades, there has been a remarkable advancement in the field of transplantation. But the shortage of donors is still an urgent problem that requires immediate attention. As with xenotransplantation, bioengineered organs are promising solutions to the current shortage situation. And decellularization is a unique technology in organ-bioengineering. However, at present, there is no unified decellularization method for different tissues, and there is no gold-standard for evaluating decellularization efficiency. Meanwhile, recellularization, re-endothelialization and modification are needed to form transplantable organs. With this mind, we can start with decellularization and re-endothelialization or modification of small blood vessels, which would serve to address the shortage of small-diameter vessels while simultaneously gathering the requisite data and inspiration for further recellularization of the whole organ-scale vascular network. In this review, we collect the related experiments of decellularization and post-decellularization approaches of small vessels in recent years. Subsequently, we summarize the experience in relation to the decellularization and post-decellularization combinations, and put forward obstacle we face and possible solutions.
Collapse
Affiliation(s)
- Chenbin Kang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongji Yang
- Organ Transplant Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province and Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Ali ZM, Wang X, Shibru MG, Alhosani M, Alfadhli N, Alnuaimi A, Murtaza FF, Zaid A, Khaled R, Salih AE, Vurivi H, Daoud S, Butt H, Chan V, Pantic IV, Paunovic J, Corridon PR. A sustainable approach to derive sheep corneal scaffolds from stored slaughterhouse waste. Regen Med 2024; 19:303-315. [PMID: 39177571 PMCID: PMC11346552 DOI: 10.1080/17460751.2024.2357499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 05/10/2024] [Indexed: 08/24/2024] Open
Abstract
Aim: The escalating demand for corneal transplants significantly surpasses the available supply. To bridge this gap, we concentrated on ethical and sustainable corneal grafting sources. Our objective was to create viable corneal scaffolds from preserved slaughterhouse waste.Materials & methods: Corneas were extracted and decellularized from eyeballs that had been refrigerated for several days. These scaffolds underwent evaluation through DNA quantification, histological analysis, surface tension measurement, light propagation testing, and tensile strength assessment.Results: Both the native and acellular corneas (with ~90% DNA removed using a cost-effective and environmentally friendly surfactant) maintained essential optical and biomechanical properties for potential clinical use.Conclusion: Our method of repurposing slaughterhouse waste, stored at 4°C for several days, to develop corneal scaffolds offers a sustainable and economical alternative xenograft model.
Collapse
Affiliation(s)
- Zehara M Ali
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Xinyu Wang
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
- Biomedical Engineering & Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, UAE
| | - Meklit G Shibru
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Maha Alhosani
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Nouf Alfadhli
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Aysha Alnuaimi
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Fiza F Murtaza
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Aisha Zaid
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Rodaina Khaled
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Ahmed E Salih
- Department of Mechanical Engineering, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Hema Vurivi
- Center for Biotechnology, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Sayel Daoud
- Anatomical Pathology Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi,UAE
| | - Haider Butt
- Department of Mechanical Engineering, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Vincent Chan
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
- Biomedical Engineering & Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, UAE
| | - Igor V Pantic
- University of Belgrade, Faculty of Medicine, Department of Medical Physiology, Laboratory for Cellular Physiology, Visegradska 26/II, Belgrade, RS-11129, Serbia
- University of Haifa, 199 Abba Hushi Blvd, Mount Carmel, Haifa, 3498838,Israel
- Department of Pharmacology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Jovana Paunovic
- University of Belgrade, Faculty of Medicine, Department of Medical Physiology, Laboratory for Cellular Physiology, Visegradska 26/II, Belgrade, RS-11129, Serbia
| | - Peter R Corridon
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
- Biomedical Engineering & Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, UAE
- Center for Biotechnology, Khalifa University of Science & Technology, Abu Dhabi, UAE
| |
Collapse
|
4
|
Wang T, Lu P, Wan Z, He Z, Cheng S, Zhou Y, Liao S, Wang M, Wang T, Shu C. Adaptation process of decellularized vascular grafts as hemodialysis access in vivo. Regen Biomater 2024; 11:rbae029. [PMID: 38638701 PMCID: PMC11026144 DOI: 10.1093/rb/rbae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Arteriovenous grafts (AVGs) have emerged as the preferred option for constructing hemodialysis access in numerous patients. Clinical trials have demonstrated that decellularized vascular graft exhibits superior patency and excellent biocompatibility compared to polymer materials; however, it still faces challenges such as intimal hyperplasia and luminal dilation. The absence of suitable animal models hinders our ability to describe and explain the pathological phenomena above and in vivo adaptation process of decellularized vascular graft at the molecular level. In this study, we first collected clinical samples from patients who underwent the construction of dialysis access using allogeneic decellularized vascular graft, and evaluated their histological features and immune cell infiltration status 5 years post-transplantation. Prior to the surgery, we assessed the patency and intimal hyperplasia of the decellularized vascular graft using non-invasive ultrasound. Subsequently, in order to investigate the in vivo adaptation of decellularized vascular grafts in an animal model, we attempted to construct an AVG model using decellularized vascular grafts in a small animal model. We employed a physical-chemical-biological approach to decellularize the rat carotid artery, and histological evaluation demonstrated the successful removal of cellular and antigenic components while preserving extracellular matrix constituents such as elastic fibers and collagen fibers. Based on these results, we designed and constructed the first allogeneic decellularized rat carotid artery AVG model, which exhibited excellent patency and closely resembled clinical characteristics. Using this animal model, we provided a preliminary description of the histological features and partial immune cell infiltration in decellularized vascular grafts at various time points, including Day 7, Day 21, Day 42, and up to one-year post-implantation. These findings establish a foundation for further investigation into the in vivo adaptation process of decellularized vascular grafts in small animal model.
Collapse
Affiliation(s)
- Tun Wang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
| | - Peng Lu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
| | - Zicheng Wan
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
| | - Zhenyu He
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
| | - Siyuan Cheng
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
| | - Yang Zhou
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
| | - Sheng Liao
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
| | - Mo Wang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
| | - Tianjian Wang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
- Center of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
5
|
Laowpanitchakorn P, Zeng J, Piantino M, Uchida K, Katsuyama M, Matsusaki M. Biofabrication of engineered blood vessels for biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2330339. [PMID: 38633881 PMCID: PMC11022926 DOI: 10.1080/14686996.2024.2330339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/10/2024] [Indexed: 04/19/2024]
Abstract
To successfully engineer large-sized tissues, establishing vascular structures is essential for providing oxygen, nutrients, growth factors and cells to prevent necrosis at the core of the tissue. The diameter scale of the biofabricated vasculatures should range from 100 to 1,000 µm to support the mm-size tissue while being controllably aligned and spaced within the diffusion limit of oxygen. In this review, insights regarding biofabrication considerations and techniques for engineered blood vessels will be presented. Initially, polymers of natural and synthetic origins can be selected, modified, and combined with each other to support maturation of vascular tissue while also being biocompatible. After they are shaped into scaffold structures by different fabrication techniques, surface properties such as physical topography, stiffness, and surface chemistry play a major role in the endothelialization process after transplantation. Furthermore, biological cues such as growth factors (GFs) and endothelial cells (ECs) can be incorporated into the fabricated structures. As variously reported, fabrication techniques, especially 3D printing by extrusion and 3D printing by photopolymerization, allow the construction of vessels at a high resolution with diameters in the desired range. Strategies to fabricate of stable tubular structures with defined channels will also be discussed. This paper provides an overview of the many advances in blood vessel engineering and combinations of different fabrication techniques up to the present time.
Collapse
Affiliation(s)
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Marie Piantino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Kentaro Uchida
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Misa Katsuyama
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Chen TA, Sharma D, Jia W, Ha D, Man K, Zhang J, Yang Y, Zhou Y, Kamp TJ, Zhao F. Detergent-Based Decellularization for Anisotropic Cardiac-Specific Extracellular Matrix Scaffold Generation. Biomimetics (Basel) 2023; 8:551. [PMID: 37999192 PMCID: PMC10669368 DOI: 10.3390/biomimetics8070551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Cell-derived extracellular matrix (ECM) has become increasingly popular in tissue engineering applications due to its ability to provide tailored signals for desirable cellular responses. Anisotropic cardiac-specific ECM scaffold decellularized from human induced pluripotent stem cell (hiPSC)-derived cardiac fibroblasts (hiPSC-CFs) mimics the native cardiac microenvironment and provides essential biochemical and signaling cues to hiPSC-derived cardiomyocytes (hiPSC-CMs). The objective of this study was to assess the efficacy of two detergent-based decellularization methods: (1) a combination of ethylenediaminetetraacetic acid and sodium dodecyl sulfate (EDTA + SDS) and (2) a combination of sodium deoxycholate and deoxyribonuclease (SD + DNase), in preserving the composition and bioactive substances within the aligned ECM scaffold while maximumly removing cellular components. The decellularization effects were evaluated by characterizing the ECM morphology, quantifying key structural biomacromolecules, and measuring preserved growth factors. Results showed that both treatments met the standard of cell removal (less than 50 ng/mg ECM dry weight) and substantially preserved major ECM biomacromolecules and growth factors. The EDTA + SDS treatment was more time-efficient and has been determined to be a more efficient method for generating an anisotropic ECM scaffold from aligned hiPSC-CFs. Moreover, this cardiac-specific ECM has demonstrated effectiveness in supporting the alignment of hiPSC-CMs and their expression of mature structural and functional proteins in in vitro cultures, which is crucial for cardiac tissue engineering.
Collapse
Affiliation(s)
- Te-An Chen
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Dhavan Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Wenkai Jia
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Donggi Ha
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Kun Man
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76203, USA
| | - Jianhua Zhang
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76203, USA
| | - Yuxiao Zhou
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Timothy J. Kamp
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Allu I, Sahi AK, Koppadi M, Gundu S, Sionkowska A. Decellularization Techniques for Tissue Engineering: Towards Replicating Native Extracellular Matrix Architecture in Liver Regeneration. J Funct Biomater 2023; 14:518. [PMID: 37888183 PMCID: PMC10607724 DOI: 10.3390/jfb14100518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
The process of tissue regeneration requires the utilization of a scaffold, which serves as a structural framework facilitating cellular adhesion, proliferation, and migration within a physical environment. The primary aim of scaffolds in tissue engineering is to mimic the structural and functional properties of the extracellular matrix (ECM) in the target tissue. The construction of scaffolds that accurately mimic the architecture of the extracellular matrix (ECM) is a challenging task, primarily due to the intricate structural nature and complex composition of the ECM. The technique of decellularization has gained significant attention in the field of tissue regeneration because of its ability to produce natural scaffolds by removing cellular and genetic components from the extracellular matrix (ECM) while preserving its structural integrity. The present study aims to investigate the various decellularization techniques employed for the purpose of isolating the extracellular matrix (ECM) from its native tissue. Additionally, a comprehensive comparison of these methods will be presented, highlighting their respective advantages and disadvantages. The primary objective of this study is to gain a comprehensive understanding of the anatomical and functional features of the native liver, as well as the prevalence and impact of liver diseases. Additionally, this study aims to identify the limitations and difficulties associated with existing therapeutic methods for liver diseases. Furthermore, the study explores the potential of tissue engineering techniques in addressing these challenges and enhancing liver performance. By investigating these aspects, this research field aims to contribute to the advancement of liver disease treatment and management.
Collapse
Affiliation(s)
- Ishita Allu
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, India; (I.A.); (M.K.)
| | - Ajay Kumar Sahi
- School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Meghana Koppadi
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, India; (I.A.); (M.K.)
| | - Shravanya Gundu
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, India; (I.A.); (M.K.)
| | - Alina Sionkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Jurija Gagarina 11, 87-100 Torun, Poland
- Faculty of Health Sciences, Calisia University, Nowy Świat 4, 62-800 Kalisz, Poland
| |
Collapse
|
8
|
Wang X, Elbahrawi RT, Abdukadir AM, Ali ZM, Chan V, Corridon PR. A proposed model of xeno-keratoplasty using 3D printing and decellularization. Front Pharmacol 2023; 14:1193606. [PMID: 37799970 PMCID: PMC10548234 DOI: 10.3389/fphar.2023.1193606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
Corneal opacity is a leading cause of vision impairment and suffering worldwide. Transplantation can effectively restore vision and reduce chronic discomfort. However, there is a considerable shortage of viable corneal graft tissues. Tissue engineering may address this issue by advancing xeno-keratoplasty as a viable alternative to conventional keratoplasty. In particular, livestock decellularization strategies offer the potential to generate bioartificial ocular prosthetics in sufficient supply to match existing and projected needs. To this end, we have examined the best practices and characterizations that have supported the current state-of-the-art driving preclinical and clinical applications. Identifying the challenges that delimit activities to supplement the donor corneal pool derived from acellular scaffolds allowed us to hypothesize a model for keratoprosthesis applications derived from livestock combining 3D printing and decellularization.
Collapse
Affiliation(s)
- Xinyu Wang
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rawdah Taha Elbahrawi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Azhar Mohamud Abdukadir
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Zehara Mohammed Ali
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- Hleathcare, Engineering and Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Di Francesco D, Pigliafreddo A, Casarella S, Di Nunno L, Mantovani D, Boccafoschi F. Biological Materials for Tissue-Engineered Vascular Grafts: Overview of Recent Advancements. Biomolecules 2023; 13:1389. [PMID: 37759789 PMCID: PMC10526356 DOI: 10.3390/biom13091389] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical demand for tissue-engineered vascular grafts is still rising, and there are many challenges that need to be overcome, in particular, to obtain functional small-diameter grafts. The many advances made in cell culture, biomaterials, manufacturing techniques, and tissue engineering methods have led to various promising solutions for vascular graft production, with available options able to recapitulate both biological and mechanical properties of native blood vessels. Due to the rising interest in materials with bioactive potentials, materials from natural sources have also recently gained more attention for vascular tissue engineering, and new strategies have been developed to solve the disadvantages related to their use. In this review, the progress made in tissue-engineered vascular graft production is discussed. We highlight, in particular, the use of natural materials as scaffolds for vascular tissue engineering.
Collapse
Affiliation(s)
- Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Alexa Pigliafreddo
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Luca Di Nunno
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| |
Collapse
|
10
|
Pantic IV, Cumic J, Valjarevic S, Shakeel A, Wang X, Vurivi H, Daoud S, Chan V, Petroianu GA, Shibru MG, Ali ZM, Nesic D, Salih AE, Butt H, Corridon PR. Computational approaches for evaluating morphological changes in the corneal stroma associated with decellularization. Front Bioeng Biotechnol 2023; 11:1105377. [PMID: 37304146 PMCID: PMC10250676 DOI: 10.3389/fbioe.2023.1105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/11/2023] [Indexed: 06/13/2023] Open
Abstract
Decellularized corneas offer a promising and sustainable source of replacement grafts, mimicking native tissue and reducing the risk of immune rejection post-transplantation. Despite great success in achieving acellular scaffolds, little consensus exists regarding the quality of the decellularized extracellular matrix. Metrics used to evaluate extracellular matrix performance are study-specific, subjective, and semi-quantitative. Thus, this work focused on developing a computational method to examine the effectiveness of corneal decellularization. We combined conventional semi-quantitative histological assessments and automated scaffold evaluations based on textual image analyses to assess decellularization efficiency. Our study highlights that it is possible to develop contemporary machine learning (ML) models based on random forests and support vector machine algorithms, which can identify regions of interest in acellularized corneal stromal tissue with relatively high accuracy. These results provide a platform for developing machine learning biosensing systems for evaluating subtle morphological changes in decellularized scaffolds, which are crucial for assessing their functionality.
Collapse
Affiliation(s)
- Igor V. Pantic
- Department of Medical Physiology, Faculty of Medicine, Visegradska 26/II, University of Belgrade, Belgrade, Serbia
- University of Haifa, Haifa, Israel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jelena Cumic
- Faculty of Medicine, University of Belgrade, University Clinical Center of Serbia, Belgrade, Serbia
| | - Svetlana Valjarevic
- Faculty of Medicine, Clinical Hospital Center Zemun, University of Belgrade, Belgrade, Serbia
| | - Adeeba Shakeel
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Xinyu Wang
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Hema Vurivi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sayel Daoud
- Anatomical Pathology Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Georg A. Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Meklit G. Shibru
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Zehara M. Ali
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Dejan Nesic
- Department of Medical Physiology, Faculty of Medicine, Visegradska 26/II, University of Belgrade, Belgrade, Serbia
| | - Ahmed E. Salih
- Department of Mechanical Engineering, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Haider Butt
- Department of Mechanical Engineering, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Wang X, Shakeel A, Salih AE, Vurivi H, Daoud S, Desidery L, Khan RL, Shibru MG, Ali ZM, Butt H, Chan V, Corridon PR. A scalable corneal xenograft platform: simultaneous opportunities for tissue engineering and circular economic sustainability by repurposing slaughterhouse waste. Front Bioeng Biotechnol 2023; 11:1133122. [PMID: 37180037 PMCID: PMC10168539 DOI: 10.3389/fbioe.2023.1133122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction: Corneal disease is a leading cause of blindness globally that stems from various etiologies. High-throughput platforms that can generate substantial quantities of corneal grafts will be invaluable in addressing the existing global demand for keratoplasty. Slaughterhouses generate substantial quantities of underutilized biological waste that can be repurposed to reduce current environmentally unfriendly practices. Such efforts to support sustainability can simultaneously drive the development of bioartificial keratoprostheses. Methods: Scores of discarded eyes from the prominent Arabian sheep breeds in our surrounding region of the United Arab Emirates (UAE) were repurposed to generate native and acellular corneal keratoprostheses. Acellular corneal scaffolds were created using a whole-eye immersion/agitation-based decellularization technique with a widely available, eco-friendly, and inexpensive 4% zwitterionic biosurfactant solution (Ecover, Malle, Belgium). Conventional approaches like DNA quantification, ECM fibril organization, scaffold dimensions, ocular transparency and transmittance, surface tension measurements, and Fourier-transform infrared (FTIR) spectroscopy were used to examine corneal scaffold composition. Results: Using this high-throughput system, we effectively removed over 95% of the native DNA from native corneas while retaining the innate microarchitecture that supported substantial light transmission (over 70%) after reversing opacity, a well-established hallmark of decellularization and long-term native corneal storage, with glycerol. FTIR data revealed the absence of spectral peaks in the frequency range 2849 cm-1 to 3075 cm-1, indicating the effective removal of the residual biosurfactant post-decellularization. Surface tension studies confirmed the FTIR data by capturing the surfactant's progressive and effectual removal through tension measurements ranging from approximately 35 mN/m for the 4% decellularizing agent to 70 mN/m for elutes highlighting the effective removal of the detergent. Discussion: To our knowledge, this is the first dataset to be generated outlining a platform that can produce dozens of ovine acellular corneal scaffolds that effectively preserve ocular transparency, transmittance, and ECM components using an eco-friendly surfactant. Analogously, decellularization technologies can support corneal regeneration with attributes comparable to native xenografts. Thus, this study presents a simplified, inexpensive, and scalable high-throughput corneal xenograft platform to support tissue engineering, regenerative medicine, and circular economic sustainability.
Collapse
Affiliation(s)
- Xinyu Wang
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Adeeba Shakeel
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahmed E. Salih
- Department of Mechanical Engineering, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Hema Vurivi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sayel Daoud
- Anatomical Pathology Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Luca Desidery
- Department of Civil Infrastructure and Environmental Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Raheema L. Khan
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Meklit G. Shibru
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Zehara M. Ali
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Haider Butt
- Department of Mechanical Engineering, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Zhe M, Wu X, Yu P, Xu J, Liu M, Yang G, Xiang Z, Xing F, Ritz U. Recent Advances in Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting in Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3197. [PMID: 37110034 PMCID: PMC10143913 DOI: 10.3390/ma16083197] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
In recent years, three-dimensional (3D) bioprinting has been widely utilized as a novel manufacturing technique by more and more researchers to construct various tissue substitutes with complex architectures and geometries. Different biomaterials, including natural and synthetic materials, have been manufactured into bioinks for tissue regeneration using 3D bioprinting. Among the natural biomaterials derived from various natural tissues or organs, the decellularized extracellular matrix (dECM) has a complex internal structure and a variety of bioactive factors that provide mechanistic, biophysical, and biochemical signals for tissue regeneration and remodeling. In recent years, more and more researchers have been developing the dECM as a novel bioink for the construction of tissue substitutes. Compared with other bioinks, the various ECM components in dECM-based bioink can regulate cellular functions, modulate the tissue regeneration process, and adjust tissue remodeling. Therefore, we conducted this review to discuss the current status of and perspectives on dECM-based bioinks for bioprinting in tissue engineering. In addition, the various bioprinting techniques and decellularization methods were also discussed in this study.
Collapse
Affiliation(s)
- Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Wu
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Jiawei Xu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ming Liu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guang Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhou Xiang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Xing
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
13
|
Corridon PR. Capturing effects of blood flow on the transplanted decellularized nephron with intravital microscopy. Sci Rep 2023; 13:5289. [PMID: 37002341 PMCID: PMC10066218 DOI: 10.1038/s41598-023-31747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Organ decellularization creates cell-free, collagen-based extracellular matrices that can be used as scaffolds for tissue engineering applications. This technique has recently gained much attention, yet adequate scaffold repopulation and implantation remain a challenge. Specifically, there still needs to be a greater understanding of scaffold responses post-transplantation and ways we can improve scaffold durability to withstand the in vivo environment. Recent studies have outlined vascular events that limit organ decellularization/recellularization scaffold viability for long-term transplantation. However, these insights have relied on in vitro/in vivo approaches that need enhanced spatial and temporal resolutions to investigate such issues at the microvascular level. This study uses intravital microscopy to gain instant feedback on their structure, function, and deformation dynamics. Thus, the objective of this study was to capture the effects of in vivo blood flow on the decellularized glomerulus, peritubular capillaries, and tubules after autologous and allogeneic orthotopic transplantation into rats. Large molecular weight dextran molecules labeled the vasculature. They revealed substantial degrees of translocation from glomerular and peritubular capillary tracks to the decellularized tubular epithelium and lumen as early as 12 h after transplantation, providing real-time evidence of the increases in microvascular permeability. Macromolecular extravasation persisted for a week, during which the decellularized microarchitecture was significantly and comparably compromised and thrombosed in both autologous and allogeneic approaches. These results indicate that in vivo multiphoton microscopy is a powerful approach for studying scaffold viability and identifying ways to promote scaffold longevity and vasculogenesis in bioartificial organs.
Collapse
Affiliation(s)
- Peter R Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Healthcare Engineering Innovation Center, Biomedical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Center for Biotechnology, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1083, USA.
| |
Collapse
|
14
|
Corridon PR. Enhancing the expression of a key mitochondrial enzyme at the inception of ischemia-reperfusion injury can boost recovery and halt the progression of acute kidney injury. Front Physiol 2023; 14:1024238. [PMID: 36846323 PMCID: PMC9945300 DOI: 10.3389/fphys.2023.1024238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Hydrodynamic fluid delivery has shown promise in influencing renal function in disease models. This technique provided pre-conditioned protection in acute injury models by upregulating the mitochondrial adaptation, while hydrodynamic injections of saline alone have improved microvascular perfusion. Accordingly, hydrodynamic mitochondrial gene delivery was applied to investigate the ability to halt progressive or persistent renal function impairment following episodes of ischemia-reperfusion injuries known to induce acute kidney injury (AKI). The rate of transgene expression was approximately 33% and 30% in rats with prerenal AKI that received treatments 1 (T1hr) and 24 (T24hr) hours after the injury was established, respectively. The resulting mitochondrial adaptation via exogenous IDH2 (isocitrate dehydrogenase 2 (NADP+) and mitochondrial) significantly blunted the effects of injury within 24 h of administration: decreased serum creatinine (≈60%, p < 0.05 at T1hr; ≈50%, p < 0.05 at T24hr) and blood urea nitrogen (≈50%, p < 0.05 at T1hr; ≈35%, p < 0.05 at T24hr) levels, and increased urine output (≈40%, p < 0.05 at T1hr; ≈26%, p < 0.05 at T24hr) and mitochondrial membrane potential, Δψm, (≈ by a factor of 13, p < 0.001 at T1hr; ≈ by a factor of 11, p < 0.001 at T24hr), despite elevated histology injury score (26%, p < 0.05 at T1hr; 47%, p < 0.05 at T24hr). Therefore, this study identifies an approach that can boost recovery and halt the progression of AKI at its inception.
Collapse
Affiliation(s)
- Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
15
|
Khan RL, Khraibi AA, Dumée LF, Corridon PR. From waste to wealth: Repurposing slaughterhouse waste for xenotransplantation. Front Bioeng Biotechnol 2023; 11:1091554. [PMID: 36815880 PMCID: PMC9935833 DOI: 10.3389/fbioe.2023.1091554] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Slaughterhouses produce large quantities of biological waste, and most of these materials are underutilized. In many published reports, the possibility of repurposing this form of waste to create biomaterials, fertilizers, biogas, and feeds has been discussed. However, the employment of particular offal wastes in xenotransplantation has yet to be extensively uncovered. Overall, viable transplantable tissues and organs are scarce, and developing bioartificial components using such discarded materials may help increase their supply. This perspective manuscript explores the viability and sustainability of readily available and easily sourced slaughterhouse waste, such as blood vessels, eyes, kidneys, and tracheas, as starting materials in xenotransplantation derived from decellularization technologies. The manuscript also examines the innovative use of animal stem cells derived from the excreta to create a bioartificial tissue/organ platform that can be translated to humans. Institutional and governmental regulatory approaches will also be outlined to support this endeavor.
Collapse
Affiliation(s)
- Raheema L. Khan
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ludovic F. Dumée
- Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
16
|
Artificial neural networks in contemporary toxicology research. Chem Biol Interact 2023; 369:110269. [PMID: 36402212 DOI: 10.1016/j.cbi.2022.110269] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Artificial neural networks (ANNs) have a huge potential in toxicology research. They may be used to predict toxicity of various chemical compounds or classify the compounds based on their toxic effects. Today, numerous ANN models have been developed, some of which may be used to detect and possibly explain complex chemico-biological interactions. Fully connected multilayer perceptrons may in some circumstances have high classification accuracy and discriminatory power in separating damaged from intact cells after exposure to a toxic substance. Regularized and not fully connected convolutional neural networks can detect and identify discrete changes in patterns of two-dimensional data associated with toxicity. Bayesian neural networks with weight marginalization sometimes may have better prediction performance when compared to traditional approaches. With the further development of artificial intelligence, it is expected that ANNs will in the future become important parts of various accurate and affordable biosensors for detection of various toxic substances and evaluation of their biochemical properties. In this concise review article, we discuss the recent research focused on the scientific value of ANNs in evaluation and prediction of toxicity of chemical compounds.
Collapse
|
17
|
Shakeel A, Corridon PR. Mitigating challenges and expanding the future of vascular tissue engineering-are we there yet? Front Physiol 2023; 13:1079421. [PMID: 36685187 PMCID: PMC9846051 DOI: 10.3389/fphys.2022.1079421] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Adeeba Shakeel
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Corridon PR. Still finding ways to augment the existing management of acute and chronic kidney diseases with targeted gene and cell therapies: Opportunities and hurdles. Front Med (Lausanne) 2023; 10:1143028. [PMID: 36960337 PMCID: PMC10028138 DOI: 10.3389/fmed.2023.1143028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
The rising global incidence of acute and chronic kidney diseases has increased the demand for renal replacement therapy. This issue, compounded with the limited availability of viable kidneys for transplantation, has propelled the search for alternative strategies to address the growing health and economic burdens associated with these conditions. In the search for such alternatives, significant efforts have been devised to augment the current and primarily supportive management of renal injury with novel regenerative strategies. For example, gene- and cell-based approaches that utilize recombinant peptides/proteins, gene, cell, organoid, and RNAi technologies have shown promising outcomes primarily in experimental models. Supporting research has also been conducted to improve our understanding of the critical aspects that facilitate the development of efficient gene- and cell-based techniques that the complex structure of the kidney has traditionally limited. This manuscript is intended to communicate efforts that have driven the development of such therapies by identifying the vectors and delivery routes needed to drive exogenous transgene incorporation that may support the treatment of acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- *Correspondence: Peter R. Corridon,
| |
Collapse
|
19
|
Decellularized vascularized bone grafts as therapeutic solution for bone reconstruction: A mechanical evaluation. PLoS One 2023; 18:e0280193. [PMID: 36638107 PMCID: PMC9838862 DOI: 10.1371/journal.pone.0280193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Large bone defects are challenging for surgeons. Available reimplanted bone substitutes can't properly restore optimal function along and long term osteointegration of the bone graft. Bone substitute based on the perfusion-decellularization technique seem to be interesting in order to overcome these limitations. We present here an evaluation of the biomechanics of the bones thus obtained. MATERIAL AND METHODS Two decellularization protocols were chosen for this study. One using Sodium Dodecyl Sulfate (SDS) (D1) and one using NaOH and H2O2 (D2). The decellularization was performed on porcine forearms. We then carried out compression, three-point bending, indentation and screw pull-out tests on each sample. Once these tests were completed, we compared the results obtained between the different decellularization protocols and with samples left native. RESULTS The difference in the means was similar between the tests performed on bones decellularized with the SDS protocol and native bones for pull-out test: +1.4% (CI95% [-10.5%- 12.4%]) of mean differences when comparing Native vs D1, compression -14.9% (CI95% [-42.7%- 12.5%]), 3-point bending -5.7% (CI95% [-22.5%- 11.1%]) and indentation -10.8% (CI95% [-19.5%- 4.6%]). Bones decellularized with the NaOH protocol showed different results from those obtained with the SDS protocol or native bones during the pull-out screw +40.7% (CI95% [24.3%- 57%]) for Native vs D2 protocol and 3-point bending tests +39.2% (CI95% [13.7%- 64.6%]) for Native vs D2 protocol. The other tests, compression and indentation, gave similar results for all our samples. CONCLUSION Vascularized decellularized grafts seem to be an interesting means for bone reconstruction. Our study shows that the decellularization method affects the mechanical results of our specimens. Some methods seem to limit these alterations and could be used in the future for bone decellularization.
Collapse
|
20
|
Sellahewa SG, Li JY, Xiao Q. Updated Perspectives on Direct Vascular Cellular Reprogramming and Their Potential Applications in Tissue Engineered Vascular Grafts. J Funct Biomater 2022; 14:21. [PMID: 36662068 PMCID: PMC9866165 DOI: 10.3390/jfb14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease is a globally prevalent disease with far-reaching medical and socio-economic consequences. Although improvements in treatment pathways and revascularisation therapies have slowed disease progression, contemporary management fails to modulate the underlying atherosclerotic process and sustainably replace damaged arterial tissue. Direct cellular reprogramming is a rapidly evolving and innovative tissue regenerative approach that holds promise to restore functional vasculature and restore blood perfusion. The approach utilises cell plasticity to directly convert somatic cells to another cell fate without a pluripotent stage. In this narrative literature review, we comprehensively analyse and compare direct reprogramming protocols to generate endothelial cells, vascular smooth muscle cells and vascular progenitors. Specifically, we carefully examine the reprogramming factors, their molecular mechanisms, conversion efficacies and therapeutic benefits for each induced vascular cell. Attention is given to the application of these novel approaches with tissue engineered vascular grafts as a therapeutic and disease-modelling platform for cardiovascular diseases. We conclude with a discussion on the ethics of direct reprogramming, its current challenges, and future perspectives.
Collapse
Affiliation(s)
- Saneth Gavishka Sellahewa
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jojo Yijiao Li
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
21
|
Wang X, Chan V, Corridon PR. Acellular Tissue-Engineered Vascular Grafts from Polymers: Methods, Achievements, Characterization, and Challenges. Polymers (Basel) 2022; 14:4825. [PMID: 36432950 PMCID: PMC9695055 DOI: 10.3390/polym14224825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Extensive and permanent damage to the vasculature leading to different pathogenesis calls for developing innovative therapeutics, including drugs, medical devices, and cell therapies. Innovative strategies to engineer bioartificial/biomimetic vessels have been extensively exploited as an effective replacement for vessels that have seriously malfunctioned. However, further studies in polymer chemistry, additive manufacturing, and rapid prototyping are required to generate highly engineered vascular segments that can be effectively integrated into the existing vasculature of patients. One recently developed approach involves designing and fabricating acellular vessel equivalents from novel polymeric materials. This review aims to assess the design criteria, engineering factors, and innovative approaches for the fabrication and characterization of biomimetic macro- and micro-scale vessels. At the same time, the engineering correlation between the physical properties of the polymer and biological functionalities of multiscale acellular vascular segments are thoroughly elucidated. Moreover, several emerging characterization techniques for probing the mechanical properties of tissue-engineered vascular grafts are revealed. Finally, significant challenges to the clinical transformation of the highly promising engineered vessels derived from polymers are identified, and unique perspectives on future research directions are presented.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Vincent Chan
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Peter R. Corridon
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
22
|
Corridon PR. Intravital microscopy datasets examining key nephron segments of transplanted decellularized kidneys. Sci Data 2022; 9:561. [PMID: 36088356 PMCID: PMC9464233 DOI: 10.1038/s41597-022-01685-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/07/2022] [Indexed: 12/28/2022] Open
Abstract
AbstractThis study contains intravital microscopy (IVM) data examining the microarchitecture of acellular kidney scaffolds. Acellular scaffolds are cell-free collagen-based matrices derived from native organs that can be used as templates for regenerative medicine applications. This data set contains in vivo assays that evaluate the effectiveness of decellularization and how these acellular nephron compartments perform in the post-transplantation environment. Qualitative and quantitative assessments of scaffold DNA concentrations, tissue fluorescence signals, and structural and functional integrities of decellularized tubular and peritubular capillary segments were acquired and compared to the native (non-transplanted) organ. Cohorts of 2–3-month-old male Sprague Dawley rats were used: non-transplanted (n = 4), transplanted day 0 (n = 4), transplanted day 1 (n = 4), transplanted day 2 (n = 4), and transplanted day 7 (n = 4). Micrographs and supporting measurements are provided to illustrate IVM processes used to perform this study and are publicly available in a data repository to assist scientific reproducibility and extend the use of this powerful imaging application to analyze other scaffold systems.
Measurements(s)
DNA quantification • tissue fluorescence • microvascular leakage • tubular and peritubular capillary integrity
Technology Type(s)
intravital microscopy • multiphoton microscopy • UV-visible spectroscopy
Sample Characterization(s)
rats • native and decellularized kidneys
Collapse
|