1
|
Vidler C, Halwes M, Kolesnik K, Segeritz P, Mail M, Barlow AJ, Koehl EM, Ramakrishnan A, Caballero Aguilar LM, Nisbet DR, Scott DJ, Heath DE, Crozier KB, Collins DJ. Dynamic interface printing. Nature 2024; 634:1096-1102. [PMID: 39478212 PMCID: PMC11525192 DOI: 10.1038/s41586-024-08077-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2024] [Indexed: 11/02/2024]
Abstract
Additive manufacturing is an expanding multidisciplinary field encompassing applications including medical devices1, aerospace components2, microfabrication strategies3,4 and artificial organs5. Among additive manufacturing approaches, light-based printing technologies, including two-photon polymerization6, projection micro stereolithography7,8 and volumetric printing9-14, have garnered significant attention due to their speed, resolution or potential applications for biofabrication. Here we introduce dynamic interface printing, a new 3D printing approach that leverages an acoustically modulated, constrained air-liquid boundary to rapidly generate centimetre-scale 3D structures within tens of seconds. Unlike volumetric approaches, this process eliminates the need for intricate feedback systems, specialized chemistry or complex optics while maintaining rapid printing speeds. We demonstrate the versatility of this technique across a broad array of materials and intricate geometries, including those that would be impossible to print with conventional layer-by-layer methods. In doing so, we demonstrate the rapid fabrication of complex structures in situ, overprinting, structural parallelization and biofabrication utility. Moreover, we show that the formation of surface waves at the air-liquid boundary enables enhanced mass transport, improves material flexibility and permits 3D particle patterning. We, therefore, anticipate that this approach will be invaluable for applications where high-resolution, scalable throughput and biocompatible printing is required.
Collapse
Affiliation(s)
- Callum Vidler
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| | - Michael Halwes
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Kirill Kolesnik
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Philipp Segeritz
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Matthew Mail
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Anders J Barlow
- Materials Characterisation and Fabrication Platform (MCFP), The University of Melbourne, Parkville, Victoria, Australia
| | - Emmanuelle M Koehl
- Department of Plastic and Reconstructive Surgery, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Anand Ramakrishnan
- Department of Plastic and Reconstructive Surgery, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Surgery, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Lilith M Caballero Aguilar
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - David R Nisbet
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Science, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel J Scott
- The Florey Institute, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Kenneth B Crozier
- School of Physics, The University of Melbourne, Parkville, Victoria, Australia
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Australian Research Council (ARC) Centre of Excellence for Transformative Meta-Optical Systems, The University of Melbourne, Parkville, Victoria, Australia
| | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
- The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Donati L, Valicenti ML, Giannoni S, Morena F, Martino S. Biomaterials Mimicking Mechanobiology: A Specific Design for a Specific Biological Application. Int J Mol Sci 2024; 25:10386. [PMID: 39408716 PMCID: PMC11476540 DOI: 10.3390/ijms251910386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Mechanosensing and mechanotransduction pathways between the Extracellular Matrix (ECM) and cells form the essential crosstalk that regulates cell homeostasis, tissue development, morphology, maintenance, and function. Understanding these mechanisms involves creating an appropriate cell support that elicits signals to guide cellular functions. In this context, polymers can serve as ideal molecules for producing biomaterials designed to mimic the characteristics of the ECM, thereby triggering responsive mechanisms that closely resemble those induced by a natural physiological system. The generated specific stimuli depend on the different natural or synthetic origins of the polymers, the chemical composition, the assembly structure, and the physical and surface properties of biomaterials. This review discusses the most widely used polymers and their customization to develop biomaterials with tailored properties. It examines how the characteristics of biomaterials-based polymers can be harnessed to replicate the functions of biological cells, making them suitable for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Leonardo Donati
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Maria Luisa Valicenti
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Samuele Giannoni
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
- Centro di Eccellenza Materiali Innovativi Nanostrutturati per Applicazioni Chimiche Fisiche e Biomediche (CEMIN), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
3
|
Vitkūnaitė E, Žymantaitė E, Mlynska A, Andrijec D, Limanovskaja K, Kaszynski G, Matulis D, Šakalys V, Jonušauskas L. Advancing 3D Spheroid Research through 3D Scaffolds Made by Two-Photon Polymerization. Bioengineering (Basel) 2024; 11:902. [PMID: 39329644 PMCID: PMC11429241 DOI: 10.3390/bioengineering11090902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Three-dimensional cancer cell cultures have been a valuable research model for developing new drug targets in the preclinical stage. However, there are still limitations to these in vitro models. Scaffold-based systems offer a promising approach to overcoming these challenges in cancer research. In this study, we show that two-photon polymerization (TPP)-assisted printing of scaffolds enhances 3D tumor cell culture formation without additional modifications. TPP is a perfect fit for this task, as it is an advanced 3D-printing technique combining a μm-level resolution with complete freedom in the design of the final structure. Additionally, it can use a wide array of materials, including biocompatible ones. We exploit these capabilities to fabricate scaffolds from two different biocompatible materials-PEGDA and OrmoClear. Cubic spheroid scaffolds with a more complex architecture were produced and tested. The biological evaluation showed that the human ovarian cancer cell lines SKOV3 and A2780 formed 3D cultures on printed scaffolds without a preference for the material. The gene expression evaluation showed that the A2780 cell line exhibited substantial changes in CDH1, CDH2, TWIST, COL1A1, and SMAD3 gene expression, while the SKOV3 cell line had slight changes in said gene expression. Our findings show how the scaffold architecture design impacts tumor cell culture 3D spheroid formation, especially for the A2780 cancer cell line.
Collapse
Affiliation(s)
- Eglė Vitkūnaitė
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Eglė Žymantaitė
- Laboratory of Immunology, National Cancer Institute, P. Baublio g. 3B, LT-08406 Vilnius, Lithuania; (E.Ž.); (A.M.)
- Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - Agata Mlynska
- Laboratory of Immunology, National Cancer Institute, P. Baublio g. 3B, LT-08406 Vilnius, Lithuania; (E.Ž.); (A.M.)
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
| | - Dovilė Andrijec
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Karolina Limanovskaja
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Grzegorz Kaszynski
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania;
| | - Vidmantas Šakalys
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Linas Jonušauskas
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| |
Collapse
|
4
|
Shi W, Zhang Z, Wang X. The Prospect of Hepatic Decellularized Extracellular Matrix as a Bioink for Liver 3D Bioprinting. Biomolecules 2024; 14:1019. [PMID: 39199406 PMCID: PMC11352484 DOI: 10.3390/biom14081019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
The incidence of liver diseases is high worldwide. Many factors can cause liver fibrosis, which in turn can lead to liver cirrhosis and even liver cancer. Due to the shortage of donor organs, immunosuppression, and other factors, only a few patients are able to undergo liver transplantation. Therefore, how to construct a bioartificial liver that can be transplanted has become a global research hotspot. With the rapid development of three-dimensional (3D) bioprinting in the field of tissue engineering and regenerative medicine, researchers have tried to use various 3D bioprinting technologies to construct bioartificial livers in vitro. In terms of the choice of bioinks, liver decellularized extracellular matrix (dECM) has many advantages over other materials for cell-laden hydrogel in 3D bioprinting. This review mainly summarizes the acquisition of liver dECM and its application in liver 3D bioprinting as a bioink with respect to availability, printability, and biocompatibility in many aspects and puts forward the current challenges and prospects.
Collapse
Affiliation(s)
- Wen Shi
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University, Shenyang 110122, China;
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhe Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University, Shenyang 110122, China;
| |
Collapse
|
5
|
Fareez UNM, Naqvi SAA, Mahmud M, Temirel M. Computational Fluid Dynamics (CFD) Analysis of Bioprinting. Adv Healthc Mater 2024; 13:e2400643. [PMID: 38648623 DOI: 10.1002/adhm.202400643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Regenerative medicine has evolved with the rise of tissue engineering due to advancements in healthcare and technology. In recent years, bioprinting has been an upcoming approach to traditional tissue engineering practices, through the fabrication of functional tissue by its layer-by-layer deposition process. This overcomes challenges such as irregular cell distribution and limited cell density, and it can potentially address organ shortages, increasing transplant options. Bioprinting fully functional organs is a long stretch but the advancement is rapidly growing due to its precision and compatibility with complex geometries. Computational Fluid Dynamics (CFD), a carestone of computer-aided engineering, has been instrumental in assisting bioprinting research and development by cutting costs and saving time. CFD optimizes bioprinting by testing parameters such as shear stress, diffusivity, and cell viability, reducing repetitive experiments and aiding in material selection and bioprinter nozzle design. This review discusses the current application of CFD in bioprinting and its potential to enhance the technology that can contribute to the evolution of regenerative medicine.
Collapse
Affiliation(s)
- Umar Naseef Mohamed Fareez
- Mechanical Engineering Department, School of Engineering, Abdullah Gul University, Kayseri, 38080, Turkey
| | - Syed Ali Arsal Naqvi
- Mechanical Engineering Department, School of Engineering, Abdullah Gul University, Kayseri, 38080, Turkey
| | - Makame Mahmud
- Mechanical Engineering Department, School of Engineering, Abdullah Gul University, Kayseri, 38080, Turkey
| | - Mikail Temirel
- Mechanical Engineering Department, School of Engineering, Abdullah Gul University, Kayseri, 38080, Turkey
| |
Collapse
|
6
|
Lu G, Tang R, Nie J, Zhu X. Photocuring 3D Printing of Hydrogels: Techniques, Materials, and Applications in Tissue Engineering and Flexible Devices. Macromol Rapid Commun 2024; 45:e2300661. [PMID: 38271638 DOI: 10.1002/marc.202300661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Photocuring 3D printing of hydrogels, with sophisticated, delicate structures and biocompatibility, attracts significant attention by researchers and possesses promising application in the fields of tissue engineering and flexible devices. After years of development, photocuring 3D printing technologies and hydrogel inks make great progress. Herein, the techniques of photocuring 3D printing of hydrogels, including direct ink writing (DIW), stereolithography (SLA), digital light processing (DLP), continuous liquid interface production (CLIP), volumetric additive manufacturing (VAM), and two photon polymerization (TPP) are reviewed. Further, the raw materials for hydrogel inks (photocurable polymers, monomers, photoinitiators, and additives) and applications in tissue engineering and flexible devices are also reviewed. At last, the current challenges and future perspectives of photocuring 3D printing of hydrogels are discussed.
Collapse
Affiliation(s)
- Guoqiang Lu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruifen Tang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jun Nie
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoqun Zhu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
7
|
Khiari Z. Recent Developments in Bio-Ink Formulations Using Marine-Derived Biomaterials for Three-Dimensional (3D) Bioprinting. Mar Drugs 2024; 22:134. [PMID: 38535475 PMCID: PMC10971850 DOI: 10.3390/md22030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024] Open
Abstract
3D bioprinting is a disruptive, computer-aided, and additive manufacturing technology that allows the obtention, layer-by-layer, of 3D complex structures. This technology is believed to offer tremendous opportunities in several fields including biomedical, pharmaceutical, and food industries. Several bioprinting processes and bio-ink materials have emerged recently. However, there is still a pressing need to develop low-cost sustainable bio-ink materials with superior qualities (excellent mechanical, viscoelastic and thermal properties, biocompatibility, and biodegradability). Marine-derived biomaterials, including polysaccharides and proteins, represent a viable and renewable source for bio-ink formulations. Therefore, the focus of this review centers around the use of marine-derived biomaterials in the formulations of bio-ink. It starts with a general overview of 3D bioprinting processes followed by a description of the most commonly used marine-derived biomaterials for 3D bioprinting, with a special attention paid to chitosan, glycosaminoglycans, alginate, carrageenan, collagen, and gelatin. The challenges facing the application of marine-derived biomaterials in 3D bioprinting within the biomedical and pharmaceutical fields along with future directions are also discussed.
Collapse
Affiliation(s)
- Zied Khiari
- National Research Council of Canada, Aquatic and Crop Resource Development Research Centre, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| |
Collapse
|
8
|
Fu H, Yu B. 3D micro/nano hydrogel structures fabricated by two-photon polymerization for biomedical applications. Front Bioeng Biotechnol 2024; 12:1339450. [PMID: 38433823 PMCID: PMC10904474 DOI: 10.3389/fbioe.2024.1339450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Hydrogels are three-dimensional natural or synthetic cross-linked networks composed of polymer chains formed by hydrophilic monomers. Due to the ability to simulate many properties of natural extracellular matrix, hydrogels have been widely used in the biomedical field. Hydrogels can be obtained through a variety of polymerization strategies such as heating and redox. However, photochemistry is one of the most interesting methods for researchers in this field. Gelatin-methacryloyl (GelMA) inherits the biological activity of gelatin and has become one of the gold standards in the field of biomaterials. GelMA, as a photopolymerizable hydrogel precursor, can be used to fabricate 3D porous structures for biomedical applications through two-photon polymerization. We report a new formulation of GelMA-based photoresist and used it to manufacture a series of two-photon polymerization structures, with a maximum resolution less than 120 nm. The influence of process parameters on 3D structures manufacturing is studied by adjusting the scanning speed, laser power, and layer spacing values in two-photon polymerization processing. In vitro biological tests show that the 3D hydrogel produced by two-photon polymerization in this paper is biocompatible and suitable for MC3T3-E1 cell.
Collapse
Affiliation(s)
| | - Baojun Yu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| |
Collapse
|
9
|
Shi W, Wang J, Gao J, Zou X, Dong Q, Huang Z, Sheng J, Guan C, Xu Y, Cui Y, Zhong X. Utilization of 3D printing technology in hepatopancreatobiliary surgery. J Zhejiang Univ Sci B 2024; 25:123-134. [PMID: 38303496 PMCID: PMC10835207 DOI: 10.1631/jzus.b2300175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/23/2023] [Indexed: 02/03/2024]
Abstract
The technology of three-dimensional (3D) printing emerged in the late 1970s and has since undergone considerable development to find numerous applications in mechanical engineering, industrial design, and biomedicine. In biomedical science, several studies have initially found that 3D printing technology can play an important role in the treatment of diseases in hepatopancreatobiliary surgery. For example, 3D printing technology has been applied to create detailed anatomical models of disease organs for preoperative personalized surgical strategies, surgical simulation, intraoperative navigation, medical training, and patient education. Moreover, cancer models have been created using 3D printing technology for the research and selection of chemotherapy drugs. With the aim to clarify the development and application of 3D printing technology in hepatopancreatobiliary surgery, we introduce seven common types of 3D printing technology and review the status of research and application of 3D printing technology in the field of hepatopancreatobiliary surgery.
Collapse
Affiliation(s)
- Wujiang Shi
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiangang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xian 710032, China
| | - Jianjun Gao
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xinlei Zou
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jialin Sheng
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Canghai Guan
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China. ,
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China. ,
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361000, China. ,
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. ,
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng 224007, China. ,
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou 310053, China. ,
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China. ,
- Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China. ,
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China. ,
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
10
|
Li Y, Zhang X, Zhang X, Zhang Y, Hou D. Recent Progress of the Vat Photopolymerization Technique in Tissue Engineering: A Brief Review of Mechanisms, Methods, Materials, and Applications. Polymers (Basel) 2023; 15:3940. [PMID: 37835989 PMCID: PMC10574968 DOI: 10.3390/polym15193940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Vat photopolymerization (VP), including stereolithography (SLA), digital light processing (DLP), and volumetric printing, employs UV or visible light to solidify cell-laden photoactive bioresin contained within a vat in a point-by-point, layer-by-layer, or volumetric manner. VP-based bioprinting has garnered substantial attention in both academia and industry due to its unprecedented control over printing resolution and accuracy, as well as its rapid printing speed. It holds tremendous potential for the fabrication of tissue- and organ-like structures in the field of regenerative medicine. This review summarizes the recent progress of VP in the fields of tissue engineering and regenerative medicine. First, it introduces the mechanism of photopolymerization, followed by an explanation of the printing technique and commonly used biomaterials. Furthermore, the application of VP-based bioprinting in tissue engineering was discussed. Finally, the challenges facing VP-based bioprinting are discussed, and the future trends in VP-based bioprinting are projected.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xueqin Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuxuan Zhang
- FuYang Sineva Materials Technology Co., Ltd., Beijing 100176, China
| | - Dan Hou
- Chinese Academy of Meteorological Sciences, China National Petroleum Corporation, Beijing 102206, China
| |
Collapse
|
11
|
Frankowski J, Kurzątkowska M, Sobczak M, Piotrowska U. Utilization of 3D bioprinting technology in creating human tissue and organoid models for preclinical drug research - State-of-the-art. Int J Pharm 2023; 644:123313. [PMID: 37579828 DOI: 10.1016/j.ijpharm.2023.123313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Rapid development of tissue engineering in recent years has increased the importance of three-dimensional (3D) bioprinting technology as novel strategy for fabrication functional 3D tissue and organoid models for pharmaceutical research. 3D bioprinting technology gives hope for eliminating many problems associated with traditional cell culture methods during drug screening. However, there is a still long way to wider clinical application of this technology due to the numerous difficulties associated with development of bioinks, advanced printers and in-depth understanding of human tissue architecture. In this review, the work associated with relatively well-known extrusion-based bioprinting (EBB), jetting-based bioprinting (JBB), and vat photopolymerization bioprinting (VPB) is presented and discussed with the latest advances and limitations in this field. Next we discuss state-of-the-art research of 3D bioprinted in vitro models including liver, kidney, lung, heart, intestines, eye, skin as well as neural and bone tissue that have potential applications in the development of new drugs.
Collapse
Affiliation(s)
- Joachim Frankowski
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Matylda Kurzątkowska
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Marcin Sobczak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Urszula Piotrowska
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland.
| |
Collapse
|
12
|
Wu H, Chen J, Zhao P, Liu M, Xie F, Ma X. Development and Prospective Applications of 3D Membranes as a Sensor for Monitoring and Inducing Tissue Regeneration. MEMBRANES 2023; 13:802. [PMID: 37755224 PMCID: PMC10535523 DOI: 10.3390/membranes13090802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
For decades, tissue regeneration has been a challenging issue in scientific modeling and human practices. Although many conventional therapies are already used to treat burns, muscle injuries, bone defects, and hair follicle injuries, there remains an urgent need for better healing effects in skin, bone, and other unique tissues. Recent advances in three-dimensional (3D) printing and real-time monitoring technologies have enabled the creation of tissue-like membranes and the provision of an appropriate microenvironment. Using tissue engineering methods incorporating 3D printing technologies and biomaterials for the extracellular matrix (ECM) containing scaffolds can be used to construct a precisely distributed artificial membrane. Moreover, advances in smart sensors have facilitated the development of tissue regeneration. Various smart sensors may monitor the recovery of the wound process in different aspects, and some may spontaneously give feedback to the wound sites by releasing biological factors. The combination of the detection of smart sensors and individualized membrane design in the healing process shows enormous potential for wound dressings. Here, we provide an overview of the advantages of 3D printing and conventional therapies in tissue engineering. We also shed light on different types of 3D printing technology, biomaterials, and sensors to describe effective methods for use in skin and other tissue regeneration, highlighting their strengths and limitations. Finally, we highlight the value of 3D bioengineered membranes in various fields, including the modeling of disease, organ-on-a-chip, and drug development.
Collapse
Affiliation(s)
| | | | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China (F.X.); (X.M.)
| | | | | | | |
Collapse
|
13
|
Wang H, Fu H, Fu Y, Jiang L, Wang L, Tong H, Xie Z, Huang P, Sun M. Knowledge mapping concerning applications of nanocomposite hydrogels for drug delivery: A bibliometric and visualized study (2003-2022). Front Bioeng Biotechnol 2023; 10:1099616. [PMID: 36686234 PMCID: PMC9852897 DOI: 10.3389/fbioe.2022.1099616] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Nanocomposite Hydrogels (NHs) are 3D molecular networks formed by physically or covalently crosslinking polymer with nanoparticles or nanostructures, which are particularly suitable for serving as carriers for drug delivery systems. Many articles pertaining to the applications of Nanocomposite Hydrogels for drug delivery have been published, however, the use of bibliometric and visualized analysis in this area remains unstudied. The purpose of this bibliometric study intended to comprehensively analyze the knowledge domain, research hotspots and frontiers associated with the applications of Nanocomposite Hydrogels for drug delivery. Methods: We identified and retrieved the publications concerning the applications of NHs for drug delivery between 2003 and 2022 from Web of Science Core Collection Bibliometric and visualized analysis was utilized in this investigative study. Results: 631 articles meeting the inclusion criteria were identified and retrieved from WoSCC. Among those, 2,233 authors worldwide contributed in the studies, accompanied by an average annual article increase of 24.67%. The articles were co-authored by 764 institutions from 52 countries/regions, and China published the most, followed by Iran and the United States. Five institutions published more than 40 papers, namely Univ Tabriz (n = 79), Tabriz Univ Med Sci (n = 70), Islamic Azad Univ (n = 49), Payame Noor Univ (n = 42) and Texas A&M Univ (n = 41). The articles were published in 198 journals, among which the International Journal of Biological Macromolecules (n = 53) published the most articles, followed by Carbohydrate Polymers (n = 24) and ACS Applied Materials and Interfaces (n = 22). The top three journals most locally cited were Carbohydrate Polymers, Biomaterials and Advanced materials. The most productive author was Namazi H (29 articles), followed by Bardajee G (15 articles) and Zhang J (11 articles) and the researchers who worked closely with other ones usually published more papers. "Doxorubicin," "antibacterial" and "responsive hydrogels" represent the current research hotspots in this field and "cancer therapy" was a rising research topic in recent years. "(cancer) therapeutics" and "bioadhesive" represent the current research frontiers. Conclusion: This bibliometric and visualized analysis offered an investigative study and comprehensive understanding of publications regarding the applications of Nanocomposite Hydrogels for drug delivery from 2003 to 2022. The outcome of this study would provide insights for researchers in the field of Nanocomposite Hydrogels applications for drug delivery.
Collapse
Affiliation(s)
- Hao Wang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Hongxun Fu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China,Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Yefan Fu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Lin Jiang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Liye Wang
- College of Pharmacy, University of Houston, Houston, TX, United States
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zuoxu Xie
- College of Pharmacy, University of Houston, Houston, TX, United States
| | - Peng Huang
- Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,*Correspondence: Peng Huang, ; Meiyan Sun,
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin, China,*Correspondence: Peng Huang, ; Meiyan Sun,
| |
Collapse
|
14
|
Fu H, Yu B, Wang H, Tong H, Jiang L, Zhang Y, Meng G, Sun M, Lin J. Knowledge domain and hotspots concerning photosensitive hydrogels for tissue engineering applications: A bibliometric and visualized analysis (1996-2022). Front Bioeng Biotechnol 2022; 10:1067111. [PMID: 36466359 PMCID: PMC9709615 DOI: 10.3389/fbioe.2022.1067111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 10/31/2024] Open
Abstract
Objective: The aim of tissue engineering (TE) is to replace the damaged tissues or failed organs, or restore their missing functions. The important means to achieve this aim is to integrate biomaterials and life elements. Hydrogels are very attractive biomaterials in the field of TE. In particular, engineering extracellular matrices (ECMs) formed by photosensitive hydrogels have captivated much attention, because photopolymerization has many advantages over traditional polymerization approaches, such as rapidity of reaction, spatiotemporal controllability of polymerization process, and operability at physiological temperature, especially it can realize the fabrications of engineering ECMs in the presence of living cells. There have been many excellent reviews on the applications of photosensitive hydrogels in TE in recent years, however, it is inevitable that researchers may have left out many important facts due to exploring the literature from one or a few aspects. It is also a great challenge for researchers to explore the internal relationships among countries, institutions, authors, and references from a large number of literatures in related fields. Therefore, bibliometrics may be a powerful tool to solve the above problems. A bibliometric and visualized analysis of publications concerning the photosensitive hydrogels for TE applications was performed, and the knowledge domain, research hotspots and frontiers in this topic were identified according to the analysis results. Methods: We identified and retrieved the publications regarding the photosensitive hydrogels for TE applications between 1996 and 2022 from Web of Science Core Collection (WoSCC). Bibliometric and visualized analysis employing CiteSpace software and R-language package Bibliometrix were performed in this study. Results: 778 publications meeting the eligibility criteria were identified and retrieved from WoSCC. Among those, 2844 authors worldwide participated in the studies in this field, accompanied by an average annual article growth rate of 15.35%. The articles were co-authored by 800 institutions from 46 countries/regions, and the United States published the most, followed by China and South Korea. As the two countries that published the most papers, the United States and China could further strengthen cooperation in this field. Univ Colorado published the most articles (n = 150), accounting for 19.28% of the total. The articles were distributed in 112 journals, among which Biomaterials (n = 66) published the most articles, followed by Acta Biomaterialia (n = 54) and Journal of Biomedical Materials Research Part A (n = 42). The top 10 journals published 47.8% of the 778 articles. The most prolific author was Anseth K (n = 33), followed by Khademhosseini A (n = 29) and Bryant S (n = 22). A total of 1443 keywords were extracted from the 778 articles and the keyword with the highest centrality was "extracellular matrix" (centrality: 0.12). The keywords appeared recently with strong citation bursts were "gelatin", "3d printing" and "3d bioprinting", representing the current research hotspots in this field. "Gelma", "3d printing" and "thiol-ene" were the research frontiers in recent years. Conclusion: This bibliometric and visualized study offered a comprehensive understanding of publications regarding the photosensitive hydrogels for TE applications from 1996 to 2022, including the knowledge domain, research hotspots and frontiers in this filed. The outcome of this study would provide insights for scholars in the related research filed.
Collapse
Affiliation(s)
- Hongxun Fu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, Jilin Province, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Baojun Yu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, Jilin Province, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Hao Wang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Lin Jiang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yupeng Zhang
- Affiliated Hospital of Beihua University, Jilin, China
| | - Guixian Meng
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Jieqiong Lin
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, Jilin Province, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| |
Collapse
|
15
|
Fu H, Jing X, Lin J, Wang L, Jiang H, Yu B, Sun M. Knowledge domain and hotspots analysis concerning applications of two-photon polymerization in biomedical field: A bibliometric and visualized study. Front Bioeng Biotechnol 2022; 10:1030377. [PMID: 36246385 PMCID: PMC9561250 DOI: 10.3389/fbioe.2022.1030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
Objective: Two-photon polymerization (TPP) utilizes an optical nonlinear absorption process to initiate the polymerization of photopolymerizable materials. To date, it is the only technique capable of fabricating complex 3D microstructures with finely adjusted geometry on the cell and sub-cell scales. TPP shows a very promising potential in biomedical applications related to high-resolution features, including drug delivery, tissue engineering, microfluidic devices, and so forth. Therefore, it is of high significance to grasp the global scientific achievements in this field. An analysis of publications concerning the applications of TPP in the biomedical field was performed, and the knowledge domain, research hotspots, frontiers, and research directions in this topic were identified according to the research results. Methods: The publications concerning TPP applications in biomedical field were retrieved from WoSCC between 2003 and 2022, Bibliometrics and visual analysis employing CiteSpace software and R-language package Bibliometrix were performed in this study. Results: A total of 415 publications regarding the TPP applications in the biomedical field were retrieved from WoSCC, including 377 articles, and 38 review articles. The studies pertaining to the biomedical applications of TPP began back in 2003 and showed an upward trend constantly. Especially in the recent 5 years, studies of TPP in biomedical field have increased rapidly, with the number of publications from 2017 to 2021 accounting for 52.29% of the total. In terms of output, China was the leading country and Chinese Acad Sci, Tech Inst Phys and Chem was the leading institution. The United States showed the closest cooperation with other countries. ACS applied materials and interfaces was the most prolific journal (n = 13), followed by Biofabrication (n = 11) and Optics express (n = 10). The journals having the top cited papers were Biomaterials, Advanced materials, and Applied physic letters. The most productive author was Aleksandr Ovsianikov (27 articles). Meanwhile, researchers who had close cooperation with other researchers were also prolific authors. “cell behavior”, " (tissue engineering) scaffolds”, “biomaterials,” and “hydrogel” were the main co-occurrence keywords and “additional manufacturing”, “3D printing,” and “microstructures” were the recent burst keywords. The Keyword clusters, “stem cells,” and “mucosal delivery”, appeared recently. A paper reporting unprecedented high-resolution bull models fabricated by TPP was the most locally cited reference (cited 60 times). “Magnetic actuation” and “additive manufacturing” were recently co-cited reference clusters and an article concerning ultracompact compound lens systems manufactured by TPP was the latest burst reference. Conclusion: The applications of TPP in biomedical field is an interdisciplinary research topic and the development of this field requires the active collaboration of researchers and experts from all relevant disciplines. Bringing up a better utilization of TPP as an additive manufacturing technology to better serve the biomedical development has always been the research focus in this field. Research on stem cells behaviors and mucosal delivery based on microstructures fabricated using TPP were becoming new hotspots. And it can be predicted that using TPP as a sourcing technique to fabricate biomedical-related structures and devices is a new research direction. In addition, the research of functional polymers, such as magnetic-driven polymers, was the frontier topic of TPP biomedical applications.
Collapse
Affiliation(s)
- Hongxun Fu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Xian Jing
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Jieqiong Lin
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Liye Wang
- College of Pharmacy, University of Houston, Houston, TX, United States
| | - Hancheng Jiang
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Baojun Yu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
- *Correspondence: Baojun Yu, ; Meiyan Sun,
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Changchun, Jilin, China
- *Correspondence: Baojun Yu, ; Meiyan Sun,
| |
Collapse
|