1
|
Bliven EK, Fung A, Baker A, Fleps I, Ferguson SJ, Guy P, Helgason B, Cripton PA. How accurately do finite element models predict the fall impact response of ex vivo specimens augmented by prophylactic intramedullary nailing? J Orthop Res 2025; 43:396-406. [PMID: 39354743 DOI: 10.1002/jor.25984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/07/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
Hip fracture prevention approaches like prophylactic augmentation devices have been proposed to strengthen the femur and prevent hip fracture in a fall scenario. The aim of this study was to validate the finite element model (FEM) of specimens augmented by prophylactic intramedullary nailing in a simulated sideways fall impact against ex vivo experimental data. A dynamic inertia-driven sideways fall simulator was used to test six cadaveric specimens (3 females, 3 males, age 63-83 years) prophylactically implanted with an intramedullary nailing system used to augment the femur. Impact force measurements, pelvic deformation, effective pelvic stiffness, and fracture outcomes were compared between the ex vivo experiments and the FEMs. The FEMs over-predicted the effective pelvic stiffness for most specimens and showed variability in terms of under- and over-predicting peak impact force and pelvis compression depending on the specimen. A significant correlation was found for time to peak impact force when comparing ex vivo and FEM data. No femoral fractures were found in the ex vivo experiments, but two specimens sustained pelvic fractures. These two pelvis fractures were correctly identified by the FEMs, but the FEMs made three additional false-positive fracture identifications. These validation results highlight current limitations of these sideways fall impact models specific to the inclusion of an orthopaedic implant. These FEMs present a conservative strategy for fracture prediction in future applications. Further evaluation of the modelling approaches used for the bone-implant interface is recommended for modelling augmented specimens, alongside the importance of maintaining well-controlled experimental conditions.
Collapse
Affiliation(s)
- Emily K Bliven
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anita Fung
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | - Ingmar Fleps
- Skeletal Mechanobiology & Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| | | | - Pierre Guy
- Division of Orthopaedic Trauma, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Aging SMART, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Peter A Cripton
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Aging SMART, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Vlachos C, Ampadiotaki MM, Papagrigorakis E, Galanis A, Patilas C, Sakellariou E, Rodis G, Vasiliadis E, Kontogeorgakos VA, Pneumaticos S, Vlamis J. Is Regional Bone Mineral Density the Differentiating Factor Between Femoral Neck and Femoral Trochanteric Fractures? Cureus 2024; 16:e53003. [PMID: 38406115 PMCID: PMC10894667 DOI: 10.7759/cureus.53003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Background Osteoporosis is globally recognized as a prevalent bone disease, and proximal femoral fractures constitute a serious complication associated with it. In recent years, the frequency of hip fractures has increased rapidly, with ramifications that extend into the social and economic aspects of both patients' lives and healthcare systems. The primary goal of this study is to discover whether bone mineral density (BMD) in specific regions of the hip could be related to femoral neck or trochanteric fractures. Methodology This prospective cohort study employed dual-energy X-ray absorptiometry (DEXA) measurements on 70 individuals with proximal femoral fractures. The participants sought treatment at the emergency department of our unit for hip fractures and adhered to our predefined eligibility criteria. These criteria primarily included (i) age exceeding 60 years and (ii) a diagnosis of either femoral neck or trochanteric fracture attributed to (iii) a low-energy lateral fall and (iv) a previously established state of complete ambulation before the occurrence of the fracture. In this context, we recorded the BMD of the hip, as well as the BMD values of the upper and lower halves of the neck, trochanteric region, and diaphysis. For the comparison of the categorical variables, Pearson's χ2 criterion was used, whereas Student's t-test was applied for the comparison of means of quantitative variables across fracture types. Results No statistical differences were identified when comparing regional BMDs and T-scores with the fracture type. This conclusion was also reconfirmed concerning age, gender, and Tonnis classification. Only a moderate correlation was observed, demonstrating lower values of regional BMDs in women compared to men. Conclusions The inability of our study to establish a direct correlation between BMD measurements across diverse areas of the proximal femur underlines the imperative need for subsequent investigations. These studies should not only integrate more precise techniques for measuring and mapping the BMD of different hip regions but should also encompass a comprehensive examination that would consider both intrinsic and extrinsic characteristics of the proximal femur.
Collapse
Affiliation(s)
- Christos Vlachos
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| | | | - Eftychios Papagrigorakis
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| | - Athanasios Galanis
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| | - Christos Patilas
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| | - Evangelos Sakellariou
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| | | | - Elias Vasiliadis
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT Trauma Hospital, Athens, GRC
| | | | - Spiros Pneumaticos
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| | - John Vlamis
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| |
Collapse
|
3
|
Vlachos C, Ampadiotaki MM, Papagrigorakis E, Galanis A, Zachariou D, Vavourakis M, Rodis G, Vasiliadis E, Kontogeorgakos VA, Pneumaticos S, Vlamis J. Distinctive Geometrical Traits of Proximal Femur Fractures-Original Article and Review of Literature. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2131. [PMID: 38138234 PMCID: PMC10744519 DOI: 10.3390/medicina59122131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: The incidence of proximal femoral fractures is escalating rapidly, generating a significant challenge for healthcare systems globally and, carrying serious social and economic implications. The primarily object of this study was to discover potential distinguishing factors between fractures occurring in the femoral neck and trochanteric region. Materials and Methods: We performed a prospective cohort study of the radiographic images of 70 people over 65 years of age who were admitted to the orthopedic department with hip fracture and who fulfilled our eligibility criteria. Neck Length (NL), Offset Lenth (OL), Hip Axis Length (HAL), Neck Shaft Angle (NSA), Wiberg Angle (WA), Acetabular Angle (AA), Femoral Neck Diameter (FND), Femoral Head Diameter (FHD), Femoral Shaft Diameter (FSD), Femoral Canal Diameter (FCD) and Tonnis classification were recorded. For the comparison of the categorical variables, Pearson's χ2 criterion was used, while Student's t-test was applied for the comparison of means of quantitative variables across fracture types. Results: There were no statistically significant variances observed while comparing the selected geometric parameters of the proximal femur with the type of fracture. This finding was reaffirmed in relation to age, gender, and Tonnis classification. However, a moderate correlation was noted, revealing comparatively reduced values of HAL, FHD, and FND in women as opposed to men. Conclusions: The inability of our research to establish the differentiative geometric factors between femoral neck and trochanteric fractures underscores the need for further investigations, which would take into consideration the intrinsic characteristics of the proximal femur.
Collapse
Affiliation(s)
- Christos Vlachos
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece; (E.P.); (A.G.); (D.Z.); (M.V.); (E.V.); (S.P.); (J.V.)
| | | | - Eftychios Papagrigorakis
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece; (E.P.); (A.G.); (D.Z.); (M.V.); (E.V.); (S.P.); (J.V.)
| | - Athanasios Galanis
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece; (E.P.); (A.G.); (D.Z.); (M.V.); (E.V.); (S.P.); (J.V.)
| | - Dimitrios Zachariou
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece; (E.P.); (A.G.); (D.Z.); (M.V.); (E.V.); (S.P.); (J.V.)
| | - Michail Vavourakis
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece; (E.P.); (A.G.); (D.Z.); (M.V.); (E.V.); (S.P.); (J.V.)
| | - George Rodis
- Department of Radiology, KAT General Hospital, 14561 Athens, Greece;
| | - Elias Vasiliadis
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece; (E.P.); (A.G.); (D.Z.); (M.V.); (E.V.); (S.P.); (J.V.)
| | - Vasileios A. Kontogeorgakos
- 1st Orthopedic Department, National and Kapodistrian University of Athens, Attikon General University Hospital, 12462 Chaidari, Greece;
| | - Spiros Pneumaticos
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece; (E.P.); (A.G.); (D.Z.); (M.V.); (E.V.); (S.P.); (J.V.)
| | - John Vlamis
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece; (E.P.); (A.G.); (D.Z.); (M.V.); (E.V.); (S.P.); (J.V.)
| |
Collapse
|