1
|
Chovelon B, Ranganathan V, Srinivasan S, McConnell EM, Faure P, Fiore E, Ravelet C, Peyrin E, DeRosa M. Noncompetitive Determination of Small Analytes by Sandwich-Type Lateral Flow Assay Based on an Aptamer Kissing Complex. Anal Chem 2024; 96:6875-6880. [PMID: 38651263 DOI: 10.1021/acs.analchem.3c05472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Here, we present the proof-of-concept of a lateral flow assay (LFA) that is capable of detecting small-molecule targets in a noncompetitive manner by deploying a sandwich-type format based on the aptamer kissing complex (AKC) strategy. A fluorescently labeled hairpin aptamer served as the signaling agent, while a specific RNA hairpin grafted onto the strip served as the capture element. The hairpin aptamer switched from an unfolded to a folded form in the presence of the target, resulting in kissing interactions between the loops of the reporter and the capture agents. This design triggered a target-dependent fluorescent signal at the test line. The AKC-based LFA was developed for the detection of adenosine, achieving a detection limit in the micromolar range. The assay revealed the presence of the same analyte in urine. The method also proved effective with another small molecule (theophylline). We believe that the AKC-based LFA approach could overcome many of the shortcomings associated with conventional signal-off methods and competitive processes.
Collapse
Affiliation(s)
- Benoit Chovelon
- University Grenoble Alpes, DPM UMR 5063, CNRS, F-38041 Grenoble, France
- Biochemistry, Toxicology and Pharmacology Department, Grenoble Site Nord CHU-Biology and Pathology Institute, F-38041 Grenoble, France
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Velu Ranganathan
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Sathya Srinivasan
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Erin M McConnell
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Patrice Faure
- University Grenoble Alpes, DPM UMR 5063, CNRS, F-38041 Grenoble, France
- Biochemistry, Toxicology and Pharmacology Department, Grenoble Site Nord CHU-Biology and Pathology Institute, F-38041 Grenoble, France
| | - Emmanuelle Fiore
- University Grenoble Alpes, DPM UMR 5063, CNRS, F-38041 Grenoble, France
| | - Corinne Ravelet
- University Grenoble Alpes, DPM UMR 5063, CNRS, F-38041 Grenoble, France
| | - Eric Peyrin
- University Grenoble Alpes, DPM UMR 5063, CNRS, F-38041 Grenoble, France
| | - Maria DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
2
|
Im SH, Robby AI, Choi H, Chung JY, Kim YS, Park SY, Chung HJ. A Wireless, CRISPR-Polymer Dot Electrochemical Sensor for the Diagnosis of Bacterial Pneumonia and Multi-Drug Resistance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5637-5647. [PMID: 38278531 DOI: 10.1021/acsami.3c17151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Rapid and accurate diagnosis is crucial for managing the global health threat posed by multidrug-resistant bacterial infections; however, current methods have limitations in either being time-consuming, labor-intensive, or requiring instruments with high costs. Addressing these challenges, we introduce a wireless electrochemical sensor integrating the CRISPR/Cas system with electroconductive polymer dot (PD) nanoparticles to rapidly detect bacterial pathogens from human sputum. To enhance the electroconductive properties, we synthesized copper-ion-immobilized PD (PD-Cu), followed by conjugation of the deactivated Cas9 protein (dCas9) onto PD-Cu-coated Si electrodes to generate the dCas9-PD-Cu sensor. The dCas9-PD-Cu sensor integrated with isothermal amplification can specifically detect target nucleic acids of multidrug-resistant bacteria, such as the antibiotic resistance genes kpc-2 and mecA. The dCas9-PD-Cu sensor exhibits high sensitivity, allowing for the detection of ∼54 femtograms of target nucleic acids, based on measuring the changes in resistivity of the Si electrodes through target capture by dCas9. Furthermore, a wireless sensing platform of the dCas9-PD-Cu sensor was established using a Bluetooth module and a microcontroller unit for detection using a smartphone. We demonstrate the feasibility of the platform in diagnosing multidrug-resistant bacterial pneumonia in patients' sputum samples, achieving 92% accuracy. The current study presents a versatile biosensor platform that can overcome the limitations of conventional diagnostics in the clinic.
Collapse
Affiliation(s)
- San Hae Im
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Akhmad Irhas Robby
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Heewon Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ju Yeon Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yang Soo Kim
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Sung Young Park
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
- Department of IT and Energy Convergence, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Yudin Kharismasari C, Irkham, Zein MIHL, Hardianto A, Nur Zakiyyah S, Umar Ibrahim A, Ozsoz M, Wahyuni Hartati Y. CRISPR/Cas12-based electrochemical biosensors for clinical diagnostic and food monitoring. Bioelectrochemistry 2024; 155:108600. [PMID: 37956622 DOI: 10.1016/j.bioelechem.2023.108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
Each organism has a unique sequence of nitrogenous bases in in the form of DNA or RNA which distinguish them from other organisms. This characteristic makes nucleic acid-based detection extremely selective and compare to other molecular techniques. In recent years, several nucleic acid-based detection technology methods have been developed, one of which is the electrochemical biosensor. Electrochemical biosensors are known to have high sensitivity and accuracy. In addition, the ease of miniaturization of this electrochemical technique has garnered interest from many researchers. On the other hand, the CRISPR/Cas12 method has been widely used in detecting nucleic acids due to its highly selective nature. The CRISPR/Cas12 method is also reported to increase the sensitivity of electrochemical biosensors through the utilization of modified electrodes. The electrodes can be modified according to detection needs so that the biosensor's performance can be improved. This review discusses the application of CRISPR/Cas12-based electrochemical biosensors, as well as various electrode modifications that have been successfully used to improve the performance of these biosensors in the clinical and food monitoring fields.
Collapse
Affiliation(s)
- Clianta Yudin Kharismasari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Muhammad Ihda H L Zein
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Ari Hardianto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Salma Nur Zakiyyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Abdullahi Umar Ibrahim
- Department of Biomedical Engineering, Near East University, Mersin 99138, Turkey; Operational Research Centre in Healthcare, Near East University, Mersin 10, TRNC, Turkey
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, Mersin 99138, Turkey
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia.
| |
Collapse
|