1
|
Musciacchio L, Mardirossian M, Marussi G, Crosera M, Turco G, Porrelli D. Core-shell electrospun polycaprolactone nanofibers, loaded with rifampicin and coated with silver nanoparticles, for tissue engineering applications. BIOMATERIALS ADVANCES 2025; 166:214036. [PMID: 39276661 DOI: 10.1016/j.bioadv.2024.214036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
In the field of tissue engineering, the use of core-shell fibers represents an advantageous approach to protect and finely tune the release of bioactive compounds with the aim to regulate their efficacy. In this work, core-shell electrospun polycaprolactone nanofiber-based membranes, loaded with rifampicin and coated with silver nanoparticles, were developed and characterized. The membranes are composed by randomly oriented nanofibers with a homogeneous diameter, as demonstrated by scanning electron microscopy (SEM). An air-plasma treatment was applied to increase the hydrophilicity of the membranes as confirmed by contact angle measurements. The rifampicin release from untreated and air-plasma treated membranes, evaluated by UV spectrophotometry, displayed a similar and constant over-time release profile, demonstrating that the air-plasma treatment does not degrade the rifampicin, loaded in the core region of the nanofibers. The presence and the distribution of silver nanoparticles on the nanofiber surface were investigated by SEM and Energy Dispersive Spectroscopy. Moreover, SEM imaging demonstrated that the produced membranes possess a good stability over time, in terms of structure maintenance. The developed membranes showed a good biocompatibility towards murine fibroblasts, human osteosarcoma cells and urotheliocytes, reveling the absence of cytotoxic effects. Moreover, doble-functionalized membranes inhibit the growth of E. coli and S. aureus. Thanks to the possibilities offered by the coaxial electrospinning, the membranes here proposed are promising for several tissue engineering applications.
Collapse
Affiliation(s)
- Luigi Musciacchio
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy
| | - Mario Mardirossian
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy
| | - Giovanna Marussi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Matteo Crosera
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Gianluca Turco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy
| | - Davide Porrelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy.
| |
Collapse
|
2
|
Kheradvar Kolour A, Ghoraishizadeh S, Zaman MS, Alemzade A, Banavand M, Esmaeili J, Shahrousvand M. Janus Films Wound Dressing Comprising Electrospun Gelatin/PCL Nanofibers and Gelatin/Honey/Curcumin Thawed Layer. ACS APPLIED BIO MATERIALS 2024; 7:8642-8655. [PMID: 39676562 DOI: 10.1021/acsabm.4c01449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
A promising approach for wound treatment is using multilayer wound dressings that offer multifunctional properties. In this study, a bilayered electrospun/hydrogel gelatin-based scaffold integrated with honey and curcumin was developed to treat wounds under an in vivo study. The first layer consisted of an enzymatic cross-linked gelatin hydrogel containing honey and curcumin, which gelatin/PCL nanofibers reinforced. The physicochemical, mechanical, and biological properties of both layers were evaluated. Then, the bilayered wound dressing was compared to a commercial wound dressing in an in vivo study. The results showed that this strategy provided the wound dressing with a strength of 40 MPa, 70% elongation, 800% swelling rate, and 8 g/h/m2 water vapor permeability. Furthermore, MTT and histopathological staining demonstrated that the bilayered wound dressing promoted wound closure accelerated collagen production and tissue granulation, and promoted immune system response and re-epithelialization compared to other groups. The presence of a nanofibrous layer on the surface of the wound dressing facilitated its use, and the inclusion of honey and gelatin in the hydrogel layer prevented adhesion to the wound tissue and allowed for easy replacement without damaging the wound bed. Overall, the bilayered dressing with multifunctional properties holds great potential for developing wound dressings.
Collapse
Affiliation(s)
- Alireza Kheradvar Kolour
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rezvanshar, Guilan 43861-91836, Iran
- Tissue Engineering Department, TISSUEHUB Co., Tehran 19568-54977, Iran
| | | | - Mohammad Sadegh Zaman
- Tissue Engineering Department, TISSUEHUB Co., Tehran 19568-54977, Iran
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Amirata Alemzade
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15916-34311, Iran
| | - Mozhgan Banavand
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin 59811-34197, Iran
| | - Javad Esmaeili
- Tissue Engineering Department, TISSUEHUB Co., Tehran 19568-54977, Iran
- Tissue Engineering Hub (TEHUB), Universal Scientific Education and Research Network (USERN), Tehran 19568-54977, Iran
- Department of Applied Science, UQAC University, Quebec G7H 2B1, Canada
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rezvanshar, Guilan 43861-91836, Iran
| |
Collapse
|
3
|
Oliyaei N, Altemimi AB, Abedi E, Hashemi SMB. An overview of fucoidan electrospun nanofibers: Fabrication, modification, characterizations and applications. Food Chem 2024; 467:142318. [PMID: 39642423 DOI: 10.1016/j.foodchem.2024.142318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 11/30/2024] [Indexed: 12/08/2024]
Abstract
Nanofibers provide tunable attributes which make them promising for various applications. The electrospinning technique provides nanofibers with a large surface area and eases functionalization for various food and pharmaceutical applications. Numerous biopolymers have been employed to produce nanofibers due to their biocompatibility, biodegradability, and absorbability. Among different biopolymers, algal polysaccharides have gained much attention. Fucoidan is a sulfated polysaccharide isolated from brown macroalgae with a broad range of biological properties; therefore, it is highly investigated as a functional and therapeutic agent in foods and pharmaceuticals. Thus, different chemical modifications, such as depolymerization, oversulfation, phosphorylation, amination, acetylation, and benzoylation, or conjugation and functionalization with other polymers, have been used to make them desirable for target applications. The present study comprehensively reviews the electrospinning technique, applications, and crosslinking methods, then highlights the fucoidan attributes, fabrication of fucoidan-based electrospun nanofibers, their properties and functionality for food and biomedical applications.
Collapse
Affiliation(s)
- Najmeh Oliyaei
- Department of Food Science and Technology, and Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Ammar B Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah, Iraq
| | - Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran.
| | | |
Collapse
|
4
|
Tayebi-Khorrami V, Rahmanian-Devin P, Fadaei MR, Movaffagh J, Askari VR. Advanced applications of smart electrospun nanofibers in cancer therapy: With insight into material capabilities and electrospinning parameters. Int J Pharm X 2024; 8:100265. [PMID: 39045009 PMCID: PMC11263755 DOI: 10.1016/j.ijpx.2024.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/25/2024] Open
Abstract
Cancer remains a major global health challenge, and despite available treatments, its prognosis remains poor. Recently, researchers have turned their attention to intelligent nanofibers for cancer drug delivery. These nanofibers exhibit remarkable capabilities in targeted and controlled drug release. Their inherent characteristics, such as a high surface area-to-volume ratio, make them attractive candidates for drug delivery applications. Smart nanofibers can release drugs in response to specific stimuli, including pH, temperature, magnetic fields, and light. This unique feature not only reduces side effects but also enhances the overall efficiency of drug delivery systems. Electrospinning, a widely used method, allows the precision fabrication of smart nanofibers. Its advantages include high efficiency, user-friendliness, and the ability to control various manufacturing parameters. In this review, we explore the latest developments in producing smart electrospun nanofibers for cancer treatment. Additionally, we discuss the materials used in manufacturing these nanofibers and the critical parameters involved in the electrospinning process.
Collapse
Affiliation(s)
- Vahid Tayebi-Khorrami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jebraeel Movaffagh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Rathore K, Upadhyay D, Verma N, Gupta AK, Matheshwaran S, Sharma S, Verma V. Asymmetric Janus Nanofibrous Agar-Based Wound Dressing Infused with Enhanced Antioxidant and Antibacterial Properties. ACS APPLIED BIO MATERIALS 2024; 7:7608-7623. [PMID: 39482271 DOI: 10.1021/acsabm.4c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
In the present study, we have developed an agar-based asymmetric Janus nanofibrous wound dressing comprising a support and an electrospun layer with antibacterial and antioxidant properties, respectively, to facilitate healing effectively. The support layer containing agar and silver nitrate was fabricated by using solvent casting for sustained release, combating the dose-dependent cytotoxicity of silver nanoparticles, where nanoparticles were synthesized using a one-pot reduction method. The electrospun layer, fabricated with a mixture of agar and polycaprolactone infused with gallic acid, was electrospun over the support layer to impart antioxidant properties. Characterizations using UV-vis spectroscopy, transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy validated the synthesis of nanoparticles in 10-20 nm diameter and the asymmetric Janus dressing. The developed Janus nanofibrous structure exhibited 98% porosity, excellent fluid-handling properties, a moisture permeability of 1200 g/m2/day, and a water absorption of ∼250%. Moreover, the time-kill assay confirmed potent bacteriostatic effect against Gram-positive and Gram-negative bacteria, and sustained release of silver nanoparticles followed the Korsmeyer-Peppas model. With over 90% free radical scavenging efficacy, 37% degradation in 7 days, and less than 2% hemolysis, the dressings demonstrated exceptional antioxidant, biodegradable, and hemocompatible properties. The biocompatibility assessment further confirmed its cytocompatible efficacy, with more than 79% wound closure in the wound scratch assay. Most importantly, in vivo studies demonstrated the efficacy of the developed Janus dressing, promoting over 97% healing within 12 days of injury with higher epithelial formation. Overall, the in vitro and in vivo assessment of the developed Janus dressing confirmed its potential to function as a versatile and effective material for wound care applications.
Collapse
Affiliation(s)
- Kalpana Rathore
- Department of Materials Science & Engineering, Indian Institute of Technology Kanpur, Kanpur 208018 Uttar Pradesh, India
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144401 Punjab, India
| | - Dheeraj Upadhyay
- School of Pharmaceutical Sciences (Formerly University of Pharmacy), Chhatrapati Shahu Ji Maharaj University, Kanpur 208024 Uttar Pradesh, India
| | - Noopur Verma
- School of Pharmaceutical Sciences (Formerly University of Pharmacy), Chhatrapati Shahu Ji Maharaj University, Kanpur 208024 Uttar Pradesh, India
| | - Ajay Kumar Gupta
- School of Pharmaceutical Sciences (Formerly University of Pharmacy), Chhatrapati Shahu Ji Maharaj University, Kanpur 208024 Uttar Pradesh, India
| | - Saravanan Matheshwaran
- Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208018 Uttar Pradesh, India
| | - Sandeep Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144401 Punjab, India
| | - Vivek Verma
- Department of Materials Science & Engineering, Indian Institute of Technology Kanpur, Kanpur 208018 Uttar Pradesh, India
- Centre for Environmental Science & Engineering, Indian Institute of Technology Kanpur, Kanpur 208018 Uttar Pradesh, India
- Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, Kanpur 208018 Uttar Pradesh, India
- National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur 208018 Uttar Pradesh, India
| |
Collapse
|
6
|
Zhang Z, Xia Y, Gong W, Zhou J, Yu DG, Xie YF. Electrospun chitosan//ethylcellulose-vitamin E//ethylcellulose-curcumin tri-chamber eccentric Janus nanofibers for a joint antibacterial and antioxidant performance. Int J Biol Macromol 2024; 281:135753. [PMID: 39419678 DOI: 10.1016/j.ijbiomac.2024.135753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Multifunctional materials with both antibacterial and antioxidant properties are highly desired in many scientific applications. The combination of polysaccharide and multi-chamber nanostructures offers a novel perspective for developing antibacterial and antioxidant nanomaterials. In this study, a new kind of tri-chamber eccentric Janus nanostructures (TEJNs) was fabricated through a single-step and straight forward tri-fluid side-by-side electrospinning. The all-in-one TEJNs contained an outer chitosan (CS) chamber, a middle and an inner ethylcellulose (EC)-based chamber loaded with curcumin (Cur) and vitamin E (VE), respectively. The side-by-side multiple-fluid electrospinning processes were implemented robustly and continuously based on a homemade spinneret. Transmission electron microscope and scanning electron microscope evaluations demonstrated the tri-chamber inner structures of TEJNs and the linear morphologies, respectively. The Fourier transform infrared and X-ray diffraction results verified that the components were compatible and coexisted in an amorphous state. In vitro dissolution tests indicated that the TEJNs could provide a sustained release of 90 % of the loaded Cur and VE for 34.30 h and 24.86 h, respectively. Antibacterial and antioxidant experiments demonstrated that the TEJNs were able to provide enhanced antibacterial and antioxidant effects compared to the traditional electrospun homogeneous nanofibers. In the future, the Janus nanofibers can be further developed for several human health applications, such as wound dressings, active food packaging membranes, dental implants and cosmetic films.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yiru Xia
- Department of Periodontology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Wenjian Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jianfeng Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yu-Feng Xie
- Department of Periodontology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China.
| |
Collapse
|
7
|
Gu D, Liu Y, Liu L, Lan J, Li Z, Zeng R, Ding Y, Pan W. Mesoporous polydopamine (MPDA)-based drug delivery system for oral chemo-photothermal combinational therapy of orthotopic colon cancer. Int J Biol Macromol 2024; 281:136618. [PMID: 39419142 DOI: 10.1016/j.ijbiomac.2024.136618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Oral nano-drug delivery systems offering combination therapy have garnered significant interest in colon cancer treatment due to their precision in targeting tumors and minimizing peripheral tissue exposure. However, challenges such as the complex gastrointestinal environment and effective retention of nanoparticles in the colon have impeded further advancement. We developed a novel oral drug delivery system designed for localized treatment of colon cancer via chemotherapy and photothermal therapy (PTT). This system utilized mesoporous polydopamine (MPDA) as a photothermal carrier for doxorubicin hydrochloride (DOX), with surface modification using folic acid (FA) to enhance systemic tumor targeting. Additionally, to ensure gastrointestinal retention and precise colon localization, the nanoparticles were coated with an enteric-soluble material, ES100, resulting in the formulation MPDA-FA-DOX/ES100. This formulation exhibited high photothermal conversion efficiency, robust photothermal stability, and responsive drug release under near-infrared (NIR) laser stimulation. FA modification significantly enhanced the cellular uptake of nanoparticles by CT26 cells, promoting greater cytotoxic effects through combined chemotherapy and PTT. In vivo, MPDA-FA-DOX/ES100 demonstrated superior accumulation in colon tumor tissues and substantial photothermal effects, and notably, the CT/PTT group demonstrated significant tumor growth inhibition along with excellent biocompatibility. Collectively, these findings highlight the clinical potential of MPDA-FA-DOX/ES100 as an effective platform for localized and synergistic CT/PTT of colon cancer.
Collapse
Affiliation(s)
- Donghao Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
8
|
Zhou J, Wang W, Yang X, Yu DG, Liu P. Electrospun gelatin/tea polyphenol@pullulan nanofibers for fast-dissolving antibacterial and antioxidant applications. J Food Sci 2024; 89:7803-7818. [PMID: 39379334 DOI: 10.1111/1750-3841.17425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/22/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
Bio-based active food packaging materials have a high market demand. We use coaxial electrospinning technology to prepare core-shell structured nanofibers with sustained antibacterial and antioxidant properties. The fiber core layer was composed of gelatin and tea polyphenols, whereas tea polyphenols provide antibacterial and antioxidant properties; the fiber sheath was composed of pullulan polysaccharides with antioxidant properties. By using a scanning electron microscope, it can be seen that the diameter distribution of the prepared nanofibers was uniform and the surface is smooth; using a transmission electron microscope, it can be clearly seen that the nanofibers have a core-shell structure; Fourier Transform Infrared and X-ray diffraction analysis indicate that the nanofibers have an amorphous structure; the 2,2-diphenyl-1-picrylhydrazyl free radical scavenging shows that nanofibers have higher antioxidant properties with the addition of tea polyphenols; antibacterial test showed that nanofibers had obvious inhibitory effect on the growth of Staphylococcus aureus and Escherichia coli; and the nanofiber film dissolution test shows that nanofibers can be used as fast soluble active packaging. Finally, core-sheath-structured nanofibers can serve as active packaging for instant food, possessing both rapid water solubility and excellent antibacterial and antioxidant activity, making water-soluble nanofibers interesting applications in the field of food packaging.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| | - Weiqiang Wang
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| | - Xingjian Yang
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Chen Q, Liu S, Wang Y, Tong M, Sun H, Dong M, Lu Y, Niu W, Wang L. Yam Carbon Dots Promote Bone Defect Repair by Modulating Histone Demethylase 4B. Int J Nanomedicine 2024; 19:10415-10434. [PMID: 39430312 PMCID: PMC11491100 DOI: 10.2147/ijn.s477587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Chronic apical periodontitis is a typical inflammatory disease of the oral cavity, the pathology is characterized by an inflammatory reaction with bone defects in the periapical area. Chinese medicine is our traditional medicine, Carbon Dots (CDs) are a new type of nanomaterials. The purpose of this study was to prepare Yam Carbon Dots (YAM-CDs) to investigate the mechanism of action of YAM-CDs on bone differentiation in vivo and in vitro. Methods We characterized YAM-CDs using transmission electron microscopy (TEM), Fourier Transform Infrared Spectrometer (FTIR), X-Ray Diffraction (XRD) and photoluminescence (PL). CCK-8 assay, Real-time qPCR, and Western Blot were conducted using bone marrow mesenchymal stem cells (BMSCs) to verify that YAM-CDs promote osteoblast differentiation. In addition, we investigated the role of YAM-CDs in promoting bone formation in an inflammatory setting in an in vivo mouse model of cranial defects. Results The results of TEM and PL showed that the YAM-CDs mostly consisted of the components C1s, O1s, and N1s. Additionally the average sizes of YAM-CDs were 2-6 nm. The quantum yield was 4.44%, with good fluorescence stability and biosafety. Real-time qPCR and Western blot analysis showed that YAM-CDs promoted osteoblast differentiation under an inflammatory environment by regulating expression of histone demethylase 4B (KDM4B). In vivo, results showed that YAM-CDs effectively repaired cranial bone defects in a mouse model and reduced the expression of inflammatory factors under the action of lipopolysaccharides (LPS). Conclusion YAM-CDs promoted the proliferation and differentiation of osteoblasts by regulating the expression of KDM4B to repair cranial bone defects in mice under an LPS-induced inflammatory milieu, which will provide a new idea for the treatment of clinical periapical inflammation and other bone defect diseases.
Collapse
Affiliation(s)
- QianYang Chen
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - Shuo Liu
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - Yuhan Wang
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - MeiChen Tong
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - HaiBo Sun
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - Ming Dong
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - Yun Lu
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - WeiDong Niu
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - LiNa Wang
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| |
Collapse
|
10
|
Dong R, Gong W, Guo Q, Liu H, Yu DG. Synergistic Effects of Radical Distributions of Soluble and Insoluble Polymers within Electrospun Nanofibers for an Extending Release of Ferulic Acid. Polymers (Basel) 2024; 16:2614. [PMID: 39339078 PMCID: PMC11435815 DOI: 10.3390/polym16182614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Polymeric composites for manipulating the sustained release of an encapsulated active ingredient are highly sought after for many practical applications; particularly, water-insoluble polymers and core-shell structures are frequently explored to manipulate the release behaviors of drug molecules over an extended time period. In this study, electrospun core-shell nanostructures were utilized to develop a brand-new strategy to tailor the spatial distributions of both an insoluble polymer (ethylcellulose, EC) and soluble polymer (polyvinylpyrrolidone, PVP) within the nanofibers, thereby manipulating the extended-release behaviors of the loaded active ingredient, ferulic acid (FA). Scanning electron microscopy and transmission electron microscopy assessments revealed that all the prepared nanofibers had a linear morphology without beads or spindles, and those from the coaxial processes had an obvious core-shell structure. X-ray diffraction and attenuated total reflectance Fourier transform infrared spectroscopic tests confirmed that FA had fine compatibility with EC and PVP, and presented in all the nanofibers in an amorphous state. In vitro dissolution tests indicated that the radical distributions of EC (decreasing from shell to core) and PVP (increasing from shell to core) were able to play their important role in manipulating the release behaviors of FA elaborately. On one hand, the core-shell nanofibers F3 had the advantages of homogeneous composite nanofibers F1 with a higher content of EC prepared from the shell solutions to inhibit the initial burst release and provide a longer time period of sustained release. On the other hand, F3 had the advantages of nanofibers F2 with a higher content of PVP prepared from the core solutions to inhibit the negative tailing-off release. The key element was the water permeation rates, controlled by the ratios of soluble and insoluble polymers. The new strategy based on core-shell structure paves a way for developing a wide variety of polymeric composites with heterogeneous distributions for realizing the desired functional performances.
Collapse
Affiliation(s)
- Ran Dong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenjian Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qiuyun Guo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
11
|
Gong W, Wang ML, Liu Y, Yu DG, Bligh SWA. Shell Distribution of Vitamin K3 within Reinforced Electrospun Nanofibers for Improved Photo-Antibacterial Performance. Int J Mol Sci 2024; 25:9556. [PMID: 39273503 PMCID: PMC11394794 DOI: 10.3390/ijms25179556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Personal protective equipment (PPE) has attracted more attention since the outbreak of the epidemic in 2019. Advanced nano techniques, such as electrospinning, can provide new routes for developing novel PPE. However, electrospun antibacterial PPE is not easily obtained. Fibers loaded with photosensitizers prepared using single-fluid electrospinning have a relatively low utilization rate due to the influence of embedding and their inadequate mechanical properties. For this study, monolithic nanofibers and core-shell nanofibers were prepared and compared. Monolithic F1 fibers comprising polyethylene oxide (PEO), poly(vinyl alcohol-co-ethylene) (PVA-co-PE), and the photo-antibacterial agent vitamin K3 (VK3) were created using a single-fluid blending process. Core-shell F2 nanofibers were prepared using coaxial electrospinning, in which the extensible material PEO was set as the core section, and a composite consisting of PEO, PVA-co-PE, and VK3 was set as the shell section. Both F1 and F2 fibers with the designed structural properties had an average diameter of approximately 1.0 μm, as determined using scanning electron microscopy and transmission electron microscopy. VK3 was amorphously dispersed within the polymeric matrices of F1 and F2 fibers in a compatible manner, as revealed using X-ray diffraction and Fourier transform infrared spectroscopy. Monolithic F1 fibers had a higher tensile strength of 2.917 ± 0.091 MPa, whereas the core-shell F2 fibers had a longer elongation with a break rate of 194.567 ± 0.091%. Photoreaction tests showed that, with their adjustment, core-shell F2 nanofibers could produce 0.222 μmol/L ·OH upon illumination. F2 fibers had slightly better antibacterial performance than F1 fibers, with inhibition zones of 1.361 ± 0.012 cm and 1.296 ± 0.022 cm for E. coli and S. aureus, respectively, but with less VK3. The intentional tailoring of the components and compositions of the core-shell nanostructures can improve the process-structure-performance relationship of electrospun nanofibers for potential sunlight-activated antibacterial PPE.
Collapse
Affiliation(s)
- Wenjian Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Meng-Long Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| | - Yanan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sim Wan Annie Bligh
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| |
Collapse
|
12
|
Chen Y, Gong W, Zhang Z, Zhou J, Yu DG, Yi T. Reverse Gradient Distributions of Drug and Polymer Molecules within Electrospun Core-Shell Nanofibers for Sustained Release. Int J Mol Sci 2024; 25:9524. [PMID: 39273471 PMCID: PMC11395202 DOI: 10.3390/ijms25179524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Core-shell nanostructures are powerful platforms for the development of novel nanoscale drug delivery systems with sustained drug release profiles. Coaxial electrospinning is facile and convenient for creating medicated core-shell nanostructures with elaborate designs with which the sustained-release behaviors of drug molecules can be intentionally adjusted. With resveratrol (RES) as a model for a poorly water-soluble drug and cellulose acetate (CA) and PVP as polymeric carriers, a brand-new electrospun core-shell nanostructure was fabricated in this study. The guest RES and the host CA molecules were designed to have a reverse gradient distribution within the core-shell nanostructures. Scanning electron microscope and transmission electron microscope evaluations verified that these nanofibers had linear morphologies, without beads or spindles, and an obvious core-shell double-chamber structure. The X-ray diffraction patterns and Fourier transform infrared spectroscopic results indicated that the involved components were highly compatible and presented in an amorphous molecular distribution state. In vitro dissolution tests verified that the new core-shell structures were able to prevent the initial burst release, extend the continuous-release time period, and reduce the negative tailing-off release effect, thus ensuring a better sustained-release profile than the traditional blended drug-loaded nanofibers. The mechanism underlying the influence of the new core-shell structure with an RES/CA reverse gradient distribution on the behaviors of RES release is proposed. Based on this proof-of-concept demonstration, a series of advanced functional nanomaterials can be similarly developed based on the gradient distributions of functional molecules within electrospun multi-chamber nanostructures.
Collapse
Affiliation(s)
- Yaoning Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenjian Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhiyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jianfeng Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tao Yi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macau 999078, China
| |
Collapse
|
13
|
Louis L, Simonassi-Paiva B, McAfee M, Nugent MJD. Co-axial electrosprayed RAD001-loaded polycaprolactone/polyvinyl alcohol core-shell particles for treating pediatric brain tumours. Eur J Pharm Biopharm 2024; 201:114376. [PMID: 38901620 DOI: 10.1016/j.ejpb.2024.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Core-shell particles composed of polycaprolactone/polyvinyl alcohol (PCL/PVA) with pH sensitive properties were successfully fabricated by co-axial electrospraying in which PVA and PCL formed the shell and core layers respectively. The core-shell structure was confirmed by FTIR, DSC and SEM analysis. No chemical interaction between PVA and PCL core-shell were observed in the FTIR analysis. The RAD001 loaded core-shell particles showed a sustained and pH dependent drug release and was assayed via our previously developed HPLC method. After indirect treatment of the PF-A cells with the core-shell particles for 24 h and 5 days a decrease in cell viability was observed. Additionally, a comparison was made with our previously developed nanoparticles containing 2 %PVA-14 %SOL®-0.6 % RAD001, for the cell viability study on ependymoma. Our findings show that optimised core-shell particles exerted a significant effect for the 24 h and 5 day treatment however further studies are required to ensure toxicity of the control core-shell particles with no drug is reduced. In comparison, the 2 %PVA-14 %SOL®-0.6 %RAD001 uniaxial electrosprayed nanoparticles also exerted a toxicity effect decreasing cell viability with no toxicity observed for the control nanoparticles as well. Such pH-sensitive core-shell particles, which can degrade effectively in either acidic or neutral condition, have great potential for application in the biomedical field.
Collapse
Affiliation(s)
- Lynn Louis
- PRISM Research Institute, Technological University of the Shannon, Athlone, Co. Westmeath, Ireland
| | - Bianca Simonassi-Paiva
- Biosciences Research Institute, Technological University of the Shannon, Athlone, Co. Westmeath, Ireland
| | - Marion McAfee
- Centre for mathematical modelling and Intelligent Systems for health and environment (MISHE), Atlantic Technological University, Sligo, Ireland
| | - Michael J D Nugent
- PRISM Research Institute, Technological University of the Shannon, Athlone, Co. Westmeath, Ireland.
| |
Collapse
|
14
|
Baran E, Birczyński A, Milanowski B, Klaja J, Nowak P, Dorożyński P, Kulinowski P. 3D Printed Drug Delivery Systems in Action-Magnetic Resonance Imaging and Relaxometry for Monitoring Mass Transport Phenomena. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39056539 DOI: 10.1021/acsami.4c08501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The hypothesis of the study was that (1) 3D printed drug delivery systems (DDS) could be characterized in situ during drug release using NMR/MRI techniques in terms of mass transport phenomena description (interfacial phenomena), particularly for systems dealing with two mobile phases (e.g., water and low molecular weight liquid polymer); (2) consequently, it could be possible to deduce how these interfacial mass transport phenomena influence functional properties of 3D printed DDS. Matrix drug delivery systems, prepared using masked stereolithography (MSLA), containing poly(ethylene glycol) diacrylate (PEGDA) and low molecular weight polyethylene glycol (PEG) with ropinirole hydrochloride (RH) were studied as example formulations. The PEGDA to PEG (mobile phase) concentration ratio influenced drug release. It was reflected in spatiotemporal changes in parametric T2 relaxation time (T2) and amplitude (A) images obtained using magnetic resonance imaging (MRI) and T1-T2 relaxation time correlations obtained using low-field time-domain nuclear magnetic resonance (LF TD NMR) relaxometry during incubation in water. For most of the tested formulations, two signal components related to PEG and water were assessed in the hydrated matrices by MRI relaxometry (parametric T2/A images). The PEG component faded out due to outward PEG diffusion and was gradually replaced by the water component. Both components spatially and temporally changed their parameters, reflecting evolving water-polymer interactions. The study shows that dynamic phenomena related to bidirectional mass transport can be quantified in situ using NMR and MRI techniques to gain insight into drug release mechanisms from 3D printed DDS systems.
Collapse
Affiliation(s)
- Ewelina Baran
- Institute of Technology, University of the National Education Commission, Krakow, ul. Podchora̧żych 2, Kraków 30-084, Poland
| | - Artur Birczyński
- Institute of Technology, University of the National Education Commission, Krakow, ul. Podchora̧żych 2, Kraków 30-084, Poland
| | - Bartłomiej Milanowski
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, ul. Rokietnicka 3, Poznań 60-806, Poland
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, Zba̧szyń 64-360, Poland
| | - Jolanta Klaja
- Oil and Gas Institute - National Research Institute, ul. Lubicz 25 A, Kraków 31-503, Poland
| | - Piotr Nowak
- Faculty of Computer Science, Electronics and Telecommunications, AGH University of Krakow, al. Mickiewicza 30, Kraków 30-059 , Poland
| | - Przemysław Dorożyński
- Chair of Inorganic Chemistry and Pharmaceutical Analytics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, Kraków 30-688, Poland
| | - Piotr Kulinowski
- Institute of Technology, University of the National Education Commission, Krakow, ul. Podchora̧żych 2, Kraków 30-084, Poland
| |
Collapse
|
15
|
Huang T, Zeng Y, Li C, Zhou Z, Xu J, Wang L, Yu DG, Wang K. Application and Development of Electrospun Nanofiber Scaffolds for Bone Tissue Engineering. ACS Biomater Sci Eng 2024; 10:4114-4144. [PMID: 38830819 DOI: 10.1021/acsbiomaterials.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nanofiber scaffolds have gained significant attention in the field of bone tissue engineering. Electrospinning, a straightforward and efficient technique for producing nanofibers, has been extensively researched. When used in bone tissue engineering scaffolds, electrospun nanofibers with suitable surface properties promote new bone tissue growth and enhance cell adhesion. Recent advancements in electrospinning technology have provided innovative approaches for scaffold fabrication in bone tissue engineering. This review comprehensively examines the utilization of electrospun nanofibers in bone tissue engineering scaffolds and evaluates the relevant literature. The review begins by presenting the fundamental principles and methodologies of electrospinning. It then discusses various materials used in the production of electrospun nanofiber scaffolds for bone tissue engineering, including natural and synthetic polymers, as well as certain inorganic materials. The challenges associated with these materials are also described. The review focuses on novel electrospinning techniques for scaffold construction in bone tissue engineering, such as multilayer nanofibers, multifluid electrospinning, and the integration of electrospinning with other methods. Recent advancements in electrospinning technology have enabled the fabrication of precisely aligned nanofiber scaffolds with nanoscale architectures. These innovative methods also facilitate the fabrication of biomimetic structures, wherein bioactive substances can be incorporated and released in a controlled manner for drug delivery purposes. Moreover, they address issues encountered with traditional electrospun nanofibers, such as mechanical characteristics and biocompatibility. Consequently, the development and implementation of novel electrospinning technologies have revolutionized scaffold fabrication for bone tissue engineering.
Collapse
Affiliation(s)
- Tianyue Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - YuE Zeng
- Department of Neurology, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chaofei Li
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengqing Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - Jie Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - Lean Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
16
|
Zhang Z, Liu H, Yu DG, Bligh SWA. Alginate-Based Electrospun Nanofibers and the Enabled Drug Controlled Release Profiles: A Review. Biomolecules 2024; 14:789. [PMID: 39062503 PMCID: PMC11274620 DOI: 10.3390/biom14070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Alginate is a natural polymer with good biocompatible properties and is a potential polymeric material for the sustainable development and replacement of petroleum derivatives. However, the non-spinnability of pure alginate solutions has hindered the expansion of alginate applications. With the continuous development of electrospinning technology, synthetic polymers, such as PEO and PVA, are used as co-spinning agents to increase the spinnability of alginate. Moreover, the coaxial, parallel Janus, tertiary and other diverse and novel electrospun fiber structures prepared by multi-fluid electrospinning have found a new breakthrough for the problem of poor spinning of natural polymers. Meanwhile, the diverse electrospun fiber structures effectively achieve multiple release modes of drugs. The powerful combination of alginate and electrostatic spinning is widely used in many biomedical fields, such as tissue engineering, regenerative engineering, bioscaffolds, and drug delivery, and the research fever continues to climb. This is particularly true for the controlled delivery aspect of drugs. This review provides a brief overview of alginate, introduces new advances in electrostatic spinning, and highlights the research progress of alginate-based electrospun nanofibers in achieving various controlled release modes, such as pulsed release, sustained release, biphasic release, responsive release, and targeted release.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Hui Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Sim-Wan Annie Bligh
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| |
Collapse
|
17
|
Mao H, Zhou J, Yan L, Zhang S, Yu DG. Hybrid films loaded with 5-fluorouracil and Reglan for synergistic treatment of colon cancer via asynchronous dual-drug delivery. Front Bioeng Biotechnol 2024; 12:1398730. [PMID: 38938981 PMCID: PMC11208691 DOI: 10.3389/fbioe.2024.1398730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/07/2024] [Indexed: 06/29/2024] Open
Abstract
Combination therapy with oral administration of several active ingredients is a popular clinical treatment for cancer. However, the traditional method has poor convenience, less safety, and low efficiency for patients. The combination of traditional pharmaceutical techniques and advanced material conversion methods can provide new solutions to this issue. In this research, a new kind of hybrid film was created via coaxial electrospraying, followed by a casting process. The films were composed of Reglan and 5-fluorouracil (5-FU)-loaded cellulose acetate (CA) core-shell particles in a polyvinylpyrrolidone (PVP) film matrix. Microscopic observations of these films demonstrated a solid cross section loaded with core-shell particles. X-ray diffraction and Fourier-transform infrared tests verified that the Reglan and 5-FU loaded in the films showed amorphous states and fine compatibilities with the polymeric matrices, i.e., PVP and CA, respectively. In vitro dissolution tests indicated that the films were able to provide the desired asynchronous dual-drug delivery, fast release of Reglan, and sustained release of 5-FU. The controlled release mechanisms were shown to be an erosion mechanism for Reglan and a typical Fickian diffusion mechanism for 5-FU. The protocols reported herein pioneer a new approach for fabricating biomaterials loaded with multiple drugs, each with its own controlled release behavior, for synergistic cancer treatment.
Collapse
Affiliation(s)
- Hairong Mao
- College of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou, Henan, China
| | - Jianfeng Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Liang Yan
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shuping Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
18
|
Sun Y, Zhou J, Zhang Z, Yu DG, Bligh SWA. Integrated Janus nanofibers enabled by a co-shell solvent for enhancing icariin delivery efficiency. Int J Pharm 2024; 658:124180. [PMID: 38705246 DOI: 10.1016/j.ijpharm.2024.124180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/09/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
During the past several decades, nanostructures have played their increasing influences on the developments of novel nano drug delivery systems, among which, double-chamber Janus nanostructure is a popular one. In this study, a new tri-channel spinneret was developed, in which two parallel metal capillaries were nested into another metal capillary in a core-shell manner. A tri-fluid electrospinning was conducted with a solvent mixture as the shell working fluid for ensuring the formation of an integrated Janus nanostructure. The scanning electronic microscopic results demonstrated that the resultant nanofibers had a linear morphology and two distinct compartments within them, as indicated by the image of a cross-section. Fourier Transformation Infra-Red spectra and X-Ray Diffraction patterns verified that the loaded poorly water-soluble drug, i.e. icariin, presented in the Janus medicated nanofibers in an amorphous state, which should be attributed to the favorable secondary interactions between icariin and the two soluble polymeric matrices, i.e. hydroxypropyl methyl cellulose (HPMC) and polyvinylpyrrolidone (PVP). The in vitro dissolution tests revealed that icariin, when encapsulated within the Janus nanofibers, exhibited complete release within a duration of 5 min, which was over 11 times faster compared to the raw drug particles. Furthermore, the ex vivo permeation tests demonstrated that the permeation rate of icariin was 16.2 times higher than that of the drug powders. This improvement was attributed to both the rapid dissolution of the drug and the pre-release of the trans-membrane enhancer sodium lauryl sulfate from the PVP side of the nanofibers. Mechanisms for microformation, drug release, and permeation were proposed. Based on the methodologies outlined in this study, numerous novel Janus nanostructure-based nano drug delivery systems can be developed for poorly water-soluble drugs in the future.
Collapse
Affiliation(s)
- Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jianfeng Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhiyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Sim Wan Annie Bligh
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China.
| |
Collapse
|
19
|
Zhou J, Chen Y, Liu Y, Huang T, Xing J, Ge R, Yu DG. Electrospun medicated gelatin/polycaprolactone Janus fibers for photothermal-chem combined therapy of liver cancer. Int J Biol Macromol 2024; 269:132113. [PMID: 38719010 DOI: 10.1016/j.ijbiomac.2024.132113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
Liver cancer is a common cancer in the world, and core-shell nanoparticles as a commonly used combination therapy for local tumor ablation, have many shortcomings. In this study, photothermal Janus nanofibers were prepared using a electrospinning technology for tumor treatment, and the products were characterized and in vitro photothermal performance investigated. The micromorphology analysis showed that the photothermic agent CuS and electrospun fibers (loaded with CuS and anticancer drug dihydromyricetin) were successfully prepared, with diameters of 11.58 ± 0.27 μm and 1.19 ± 0.01 μm, respectively. Water contact angle and tensile test indicated that the fiber membranes has a certain hydrophilic adhesion and excellent mechanical strength. The fiber membranes has 808 nm near-infrared laser photothermal heating performance and photothermal stability, and it also has a strong response to the laser that penetrates biological tissue. In addition, in vitro cell culture and in vivo implantation study showed that the fiber membranes could kill HepG2 hepatocellular carcinoma cells combined with photothermal-chem and could be enriched in the implantation area, respectively. Hence, the Janus membranes may be a potential cancer treatment material.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yaoning Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yang Liu
- Department of Biliary Tract Surgery IV, Eastern Hepatobiliary Hospital, Naval Medical University, Shanghai 200433, China
| | - Tianyue Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jia Xing
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruiliang Ge
- Department of Biliary Tract Surgery IV, Eastern Hepatobiliary Hospital, Naval Medical University, Shanghai 200433, China.
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
20
|
Zhou J, Pan H, Gong W, Yu DG, Sun Y. Electrosprayed Eudragit RL100 nanoparticles with Janus polyvinylpyrrolidone patches for multiphase release of paracetamol. NANOSCALE 2024; 16:8573-8582. [PMID: 38602025 DOI: 10.1039/d4nr00893f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Advanced nanotechniques and the corresponding complex nanostructures they produce represent some of the most powerful tools for developing novel drug delivery systems (DDSs). In this study, a side-by-side electrospraying process was developed for creating double-chamber nanoparticles in which Janus soluble polyvinylpyrrolidone (PVP) patches were added to the sides of Eudragit RL100 (RL100) particles. Both sides were loaded with the poorly water-soluble drug paracetamol (PAR). Scanning electron microscope results demonstrated that the electrosprayed nanoparticles had an integrated Janus nanostructure. Combined with observations of the working processes, the microformation mechanism for creating the Janus PVP patches was proposed. XRD, DSC, and ATR-FTIR experiments verified that the PAR drug was present in the Janus particles in an amorphous state due to its fine compatibility with the polymeric matrices. In vitro dissolution tests verified that the Janus nanoparticles were able to provide a typical biphasic drug release profile, with the PVP patches providing 43.8 ± 5.4% drug release in the first phase in a pulsatile manner. In vivo animal experiments indicated that the Janus particles, on one hand, could provide a faster therapeutic effect than the electrosprayed sustained-release RL100 nanoparticles. On the other hand, they could maintain a therapeutic blood drug concentration for a longer period. The controlled release mechanism of the drug was proposed. The protocols reported here pioneer a new process-structure-performance relationship for developing Janus-structure-based advanced nano-DDSs.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hao Pan
- School of Pharmacy, Liaoning University, 66 Chongshanzhong Road, Shenyang 110036, China.
| | - Wenjian Gong
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuhao Sun
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
21
|
Yu DG, Gong W, Zhou J, Liu Y, Zhu Y, Lu X. Engineered shapes using electrohydrodynamic atomization for an improved drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1964. [PMID: 38702912 DOI: 10.1002/wnan.1964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
The shapes of micro- and nano-products have profound influences on their functional performances, which has not received sufficient attention during the past several decades. Electrohydrodynamic atomization (EHDA) techniques, mainly include electrospinning and electrospraying, are facile in manipulate their products' shapes. In this review, the shapes generated using EHDA for modifying drug release profiles are reviewed. These shapes include linear nanofibers, round micro-/nano-particles, and beads-on-a-string hybrids. They can be further divided into different kinds of sub-shapes, and can be explored for providing the desired pulsatile release, sustained release, biphasic release, delayed release, and pH-sensitive release. Additionally, the shapes resulted from the organizations of electrospun nanofibers are discussed for drug delivery, and the shapes and inner structures can be considered together for developing novel drug delivery systems. In future, the shapes and the related shape-performance relationships at nanoscale, besides the size, inner structure and the related structure-performance relationships, would further play their important roles in promoting the further developments of drug delivery field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenjian Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianfeng Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yanan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yunajie Zhu
- Department of Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai, China
| | - Xuhua Lu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
22
|
Huang T, Zeng Y, Li C, Zhou Z, Liu Y, Xu J, Wang L, Yu DG, Wang K. Preparation and Investigation of Cellulose Acetate/Gelatin Janus Nanofiber Wound Dressings Loaded with Zinc Oxide or Curcumin for Enhanced Antimicrobial Activity. MEMBRANES 2024; 14:95. [PMID: 38786930 PMCID: PMC11123119 DOI: 10.3390/membranes14050095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The skin, as the largest organ, serves as a protective barrier against external stimuli. However, when the skin is injured, wound healing becomes a complex process influenced by physiological conditions, bacterial infections, and inflammation. To improve the process of wound healing, a variety of wound dressings with antibacterial qualities have been created. Electrospun nanofibers have gained significant attention in wound dressing research due to their large specific surface area and unique structure. One interesting method for creating Janus-structured nanofibers is side-by-side electrospinning. This work used side-by-side electrospinning to make cellulose acetate/gelatin Janus nanofibers. Curcumin and zinc oxide nanoparticles were added to these nanofibers. We studied Janus nanofibers' physicochemical characteristics and abilities to regulate small-molecule medication release. Janus nanofibers coated with zinc oxide nanoparticles and curcumin were also tested for antibacterial activity. The Janus nanofibers with specified physicochemical characteristics were successfully fabricated. Nanofibers released small-molecule medicines in a controlled manner. Additionally, the Janus nanofibers loaded with curcumin exhibited excellent antibacterial capabilities. This research contributes to the development of advanced wound dressings for promoting wound healing and combating bacterial infections.
Collapse
Affiliation(s)
- Tianyue Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (T.H.); (Z.Z.); (Y.L.); (J.X.); (L.W.)
| | - YuE Zeng
- Department of Neurology, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Zhengqing Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (T.H.); (Z.Z.); (Y.L.); (J.X.); (L.W.)
| | - Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (T.H.); (Z.Z.); (Y.L.); (J.X.); (L.W.)
| | - Jie Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (T.H.); (Z.Z.); (Y.L.); (J.X.); (L.W.)
| | - Lean Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (T.H.); (Z.Z.); (Y.L.); (J.X.); (L.W.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (T.H.); (Z.Z.); (Y.L.); (J.X.); (L.W.)
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (T.H.); (Z.Z.); (Y.L.); (J.X.); (L.W.)
| |
Collapse
|
23
|
Qosim N, Majd H, Huo S, Edirisinghe M, Williams GR. Hydrophilic and hydrophobic drug release from core (polyvinylpyrrolidone)-sheath (ethyl cellulose) pressure-spun fibers. Int J Pharm 2024; 654:123972. [PMID: 38458404 DOI: 10.1016/j.ijpharm.2024.123972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
A core-sheath structure is one of the methods developed to overcome the challenges often faced when using monolithic fibers for drug delivery. In this study, fibers based on polyvinylpyrrolidone (core) and ethyl cellulose (sheath) were successfully produced using a novel core-sheath pressure-spinning process. For comparison, these two polymers were also processed into as blend fibers. All samples were then investigated for their performances in releasing water-soluble ampicillin (AMP) and poorly water-soluble ibuprofen (IBU) model drugs. Scanning electron,digital and confocal microscopy confirmed that fibers with a core-sheath structure were successfully made. Fourier transform infrared spectroscopy showed the success of the pressure-spinning technique in encapsulating AMP/IBU in all fiber samples. Compared to blend fibers, the core-sheath fibers had better performance in encapsulating both water-soluble and poorly water-soluble drugs. Moreover, the core-sheath structure was able to reduce the initial burst release and provided a better sustained release profile than the blend fiber analog. In conclusion, the pressure-spinning method was capable of producing core-sheath and blend fibers that could be used for the loading of either hydrophilic or hydrophobic drugs for controlled drug delivery systems.
Collapse
Affiliation(s)
- Nanang Qosim
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK; UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Department of Mechanical Engineering, Politeknik Negeri Malang, Jl. Soekarno Hatta No.9, Malang 65141, Jawa Timur, Indonesia
| | - Hamta Majd
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Suguo Huo
- London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
24
|
Huang C, Wang M, Yu S, Yu DG, Bligh SWA. Electrospun Fenoprofen/Polycaprolactone @ Tranexamic Acid/Hydroxyapatite Nanofibers as Orthopedic Hemostasis Dressings. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:646. [PMID: 38607180 PMCID: PMC11013851 DOI: 10.3390/nano14070646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Dressings with multiple functional performances (such as hemostasis, promoting regeneration, analgesia, and anti-inflammatory effects) are highly desired in orthopedic surgery. Herein, several new kinds of medicated nanofibers loaded with several active ingredients for providing multiple functions were prepared using the modified coaxial electrospinning processes. With an electrospinnable solution composed of polycaprolactone and fenoprofen as the core working fluid, several different types of unspinnable fluids (including pure solvent, nanosuspension containing tranexamic acid and hydroxyapatite, and dilute polymeric solution comprising tranexamic acid, hydroxyapatite, and polyvinylpyrrolidone) were explored to implement the modified coaxial processes for creating the multifunctional nanofibers. Their morphologies and inner structures were assessed through scanning and transmission electron microscopes, which all showed a linear format without the discerned beads or spindles and a diameter smaller than 1.0 μm, and some of them had incomplete core-shell nanostructures, represented by the symbol @. Additionally, strange details about the sheaths' topographies were observed, which included cracks, adhesions, and embedded nanoparticles. XRD and FTIR verified that the drugs tranexamic acid and fenoprofen presented in the nanofibers in an amorphous state, which resulted from the fine compatibility among the involved components. All the prepared samples were demonstrated to have a fine hydrophilic property and exhibited a lower water contact angle smaller than 40° in 300 ms. In vitro dissolution tests indicated that fenoprofen was released in a sustained manner over 6 h through a typical Fickian diffusion mechanism. Hemostatic tests verified that the intentional distribution of tranexamic acid on the shell sections was able to endow a rapid hemostatic effect within 60 s.
Collapse
Affiliation(s)
- Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (C.H.); (M.W.); (S.Y.)
| | - Menglong Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (C.H.); (M.W.); (S.Y.)
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| | - Siyou Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (C.H.); (M.W.); (S.Y.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (C.H.); (M.W.); (S.Y.)
| | - Sim Wan Annie Bligh
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| |
Collapse
|
25
|
Hai G, Bai J, Liu Y, Li J, Liu A, Wang J, Liu Q, Liu W, Wan P, Fu X. Superior performance of biocomposite nanoparticles PLGA-RES in protecting oocytes against vitrification stimuli. Front Bioeng Biotechnol 2024; 12:1376205. [PMID: 38529403 PMCID: PMC10961424 DOI: 10.3389/fbioe.2024.1376205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/21/2024] [Indexed: 03/27/2024] Open
Abstract
Irreversible cryogenic damage caused by oocyte vitrification limits its widespread use in female fertility preservation. In recent years, nanoparticles (NPs) have gained great attention as potential alternatives in protecting oocytes against cryoinjuries. In this paper, a novel composite nanoparticle, poly (lactic-co-glycolic acid)-resveratrol (PLGA-RES) was designed to improve the biocompatibility and sustained release properties by encapsulating natural antioxidant RES into PLGA NPs. Firstly, biotoxicity and oxidation resistance of PLGA-RES were determined, and the results showed that PLGA-RES had nontoxic effect on oocyte survival during in vitro maturation (IVM) (97.08% ± 0.24% vs. 98.89% ± 1.11%, p > 0.05). Notably, PLGA-RES even increased maturation (65.10% ± 4.11% vs. 52.85% ± 2.87%, p < 0.05) and blastocyst rate (56.13% ± 1.36% vs. 40.91% ± 5.85%, p < 0.05). Moreover, the reduced reactive oxygen species (ROS) level (13.49 ± 2.30 vs. 34.07 ± 3.30, p < 0.01), increased glutathione (GSH) (44.13 ± 1.57 vs. 37.62 ± 1.79, p < 0.01) and elevated mitochondrial membrane potential (MMP) levels (43.10 ± 1.81 vs. 28.52 ± 1.25, p < 0.01) were observed in oocytes treated with PLGA-RES when compared with that of the control group. Subsequently, the role of PLGA-RES played in oocytes during vitrification was systematically evaluated. The results showed that the addition of PLGA-RES during vitrification and thawing significantly improved the survival rate (80.42% ± 1.97% vs. 75.37% ± 1.3%, p < 0.05). Meanwhile, increased GSH (15.09 ± 0.86 vs. 14.51 ± 0.78, p < 0.01) and mitochondrial membrane potential (22.56 ± 3.15 vs. 6.79 ± 0.60, p < 0.01), decreased reactive oxygen species levels (52.11 ± 2.95 vs. 75.41 ± 7.23, p < 0.05) and reduced mitochondrial abnormality distribution rate (25.00% ± 0.29% vs. 33.33% ± 1.15%, p < 0.01) were assessed in vitrified MII oocytes treated with PLGA-RES. Furthermore, transcriptomic analyses demonstrated that PLGA-RES participated in endocytosis and PI3K/AKT/mTOR pathway regulation, which was verified by the rescued expression of ARRB2 and ULK3 protein after PLGA-RES treatment. In conclusion, PLGA-RES exhibited potent antioxidant activity, and could be used as an efficacious strategy to improve the quality of vitrified oocytes.
Collapse
Affiliation(s)
- Guiping Hai
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Jiachen Bai
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yucheng Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Aiju Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingjing Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Qian Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Weijun Liu
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Liu Y, Chen X, Lin X, Yan J, Yu DG, Liu P, Yang H. Electrospun multi-chamber core-shell nanofibers and their controlled release behaviors: A review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1954. [PMID: 38479982 DOI: 10.1002/wnan.1954] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 06/06/2024]
Abstract
Core-shell structure is a concentric circle structure found in nature. The rapid development of electrospinning technology provides more approaches for the production of core-shell nanofibers. The nanoscale effects and expansive specific surface area of core-shell nanofibers can facilitate the dissolution of drugs. By employing ingenious structural designs and judicious polymer selection, specialized nanofiber drug delivery systems can be prepared to achieve controlled drug release. The synergistic combination of core-shell structure and materials exhibits a strong strategy for enhancing the drug utilization efficiency and customizing the release profile of drugs. Consequently, multi-chamber core-shell nanofibers hold great promise for highly efficient disease treatment. However, little attention concentration is focused on the effect of multi-chamber core-shell nanofibers on controlled release of drugs. In this review, we introduced different fabrication techniques for multi-chamber core-shell nanostructures, including advanced electrospinning technologies and surface functionalization. Subsequently, we reviewed the different controlled drug release behaviors of multi-chamber core-shell nanofibers and their potential needs for disease treatment. The comprehensive elucidation of controlled release behaviors based on electrospun multi-chamber core-shell nanostructures could inspire the exploration of novel controlled delivery systems. Furthermore, once these fibers with customizable drug release profiles move toward industrial mass production, they will potentially promote the development of pharmacy and the treatment of various diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yubo Liu
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiaohong Chen
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Xiangde Lin
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jiayong Yan
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Ping Liu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Hui Yang
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
27
|
Yang Y, Zhang R, Liang Z, Guo J, Chen B, Zhou S, Yu D. Application of Electrospun Drug-Loaded Nanofibers in Cancer Therapy. Polymers (Basel) 2024; 16:504. [PMID: 38399882 PMCID: PMC10892891 DOI: 10.3390/polym16040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
In the 21st century, chemotherapy stands as a primary treatment method for prevalent diseases, yet drug resistance remains a pressing challenge. Utilizing electrospinning to support chemotherapy drugs offers sustained and controlled release methods in contrast to oral and implantable drug delivery modes, which enable localized treatment of distinct tumor types. Moreover, the core-sheath structure in electrospinning bears advantages in dual-drug loading: the core and sheath layers can carry different drugs, facilitating collaborative treatment to counter chemotherapy drug resistance. This approach minimizes patient discomfort associated with multiple-drug administration. Electrospun fibers not only transport drugs but can also integrate metal particles and targeted compounds, enabling combinations of chemotherapy with magnetic and heat therapies for comprehensive cancer treatment. This review delves into electrospinning preparation techniques and drug delivery methods tailored to various cancers, foreseeing their promising roles in cancer treatment.
Collapse
Affiliation(s)
- Yaoyao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (R.Z.); (Z.L.); (J.G.); (B.C.); (S.Z.)
| | | | | | | | | | | | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (R.Z.); (Z.L.); (J.G.); (B.C.); (S.Z.)
| |
Collapse
|
28
|
Jiang X, Zeng YE, Li C, Wang K, Yu DG. Enhancing diabetic wound healing: advances in electrospun scaffolds from pathogenesis to therapeutic applications. Front Bioeng Biotechnol 2024; 12:1354286. [PMID: 38375451 PMCID: PMC10875055 DOI: 10.3389/fbioe.2024.1354286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic wounds are a significant subset of chronic wounds characterized by elevated levels of inflammatory cytokines, matrix metalloproteinases (MMPs), and reactive oxygen species (ROS). They are also associated with impaired angiogenesis, persistent infection, and a high likelihood of hospitalization, leading to a substantial economic burden for patients. In severe cases, amputation or even mortality may occur. Diabetic foot ulcers (DFUs) are a common complication of diabetes, with up to 25% of diabetic patients being at risk of developing foot ulcers over their lifetime, and more than 70% ultimately requiring amputation. Electrospun scaffolds exhibit a structural similarity to the extracellular matrix (ECM), promoting the adhesion, growth, and migration of fibroblasts, thereby facilitating the formation of new skin tissue at the wound site. The composition and size of electrospun scaffolds can be easily adjusted, enabling controlled drug release through fiber structure modifications. The porous nature of these scaffolds facilitates gas exchange and the absorption of wound exudate. Furthermore, the fiber surface can be readily modified to impart specific functionalities, making electrospinning nanofiber scaffolds highly promising for the treatment of diabetic wounds. This article provides a concise overview of the healing process in normal wounds and the pathological mechanisms underlying diabetic wounds, including complications such as diabetic foot ulcers. It also explores the advantages of electrospinning nanofiber scaffolds in diabetic wound treatment. Additionally, it summarizes findings from various studies on the use of different types of nanofiber scaffolds for diabetic wounds and reviews methods of drug loading onto nanofiber scaffolds. These advancements broaden the horizon for effectively treating diabetic wounds.
Collapse
Affiliation(s)
- Xuewen Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yu-E Zeng
- Department of Neurology, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|