1
|
Lyu X, Yi Z, He Y, Zhang C, Zhu P, Liu C. Astragaloside IV induces endothelial progenitor cell angiogenesis in deep venous thrombosis through inactivation of PI3K/AKT signaling. Histol Histopathol 2024; 39:1149-1157. [PMID: 38275076 DOI: 10.14670/hh-18-704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
BACKGROUND Deep vein thrombosis (DVT), referred to as venous thromboembolism, is the third most frequent cardiovascular disease. Endothelial progenitor cells (EPCs) contribute to the recanalization of DVT. Astragaloside IV (AS-IV) has been suggested to have angiogenesis-enhancing effects. Here, we investigate the roles and mechanisms of AS-IV in EPCs and DVT. METHODS The experimental DVT model was established by inferior vena cava stenosis in rats. EPCs were collected from patients with DVT. Transwell assays were performed to detect cell migration. Tube formation was determined using Matrigel basement membrane matrix and ImageJ software. The thrombus weight and length were measured. Pathological changes were examined by hematoxylin-eosin staining. The production of proinflammatory cytokines was estimated by ELISA. The level of PI3K/AKT-related proteins was measured by western blotting. RESULTS AS-IV administration facilitated the migrative and angiogenic functions of human EPCs in vitro. Additionally, AS-IV inhibited thrombosis and repressed the infiltration of leukocytes into the thrombus and the production of proinflammatory cytokines in rats. Mechanistically, AS-IV inactivated PI3K/AKT signaling in rats. CONCLUSION AS-IV prevents thrombus in an experimental DVT model by facilitating EPC angiogenesis and decreasing inflammation through inactivation of PI3K/AKT signaling.
Collapse
Affiliation(s)
- Xiaojiang Lyu
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhigang Yi
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yun He
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chunfeng Zhang
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ping Zhu
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chonghai Liu
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
2
|
Zhou JW, Zhang YB, Huang ZY, Yuan YP, Jin J. Identification of differentially expressed mRNAs as novel predictive biomarkers for gastric cancer diagnosis and prognosis. World J Gastrointest Oncol 2024; 16:1947-1964. [PMID: 38764850 PMCID: PMC11099425 DOI: 10.4251/wjgo.v16.i5.1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 03/14/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) has a high mortality rate worldwide. Despite significant progress in GC diagnosis and treatment, the prognosis for affected patients still remains unfavorable. AIM To identify important candidate genes related to the development of GC and identify potential pathogenic mechanisms through comprehensive bioinformatics analysis. METHODS The Gene Expression Omnibus database was used to obtain the GSE183136 dataset, which includes a total of 135 GC samples. The limma package in R software was employed to identify differentially expressed genes (DEGs). Thereafter, enrichment analyses of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed for the gene modules using the clusterProfile package in R software. The protein-protein interaction (PPI) networks of target genes were constructed using STRING and visualized by Cytoscape software. The common hub genes that emerged in the cohort of DEGs that was retrieved from the GEPIA database were then screened using a Venn Diagram. The expression levels of these overlapping genes in stomach adenocarcinoma samples and non-tumor samples and their association with prognosis in GC patients were also obtained from the GEPIA database and Kaplan-Meier curves. Moreover, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting were performed to determine the mRNA and protein levels of glutamic-pyruvic transaminase (GPT) in GC and normal immortalized cell lines. In addition, cell viability, cell cycle distribution, migration and invasion were evaluated by cell counting kit-8, flow cytometry and transwell assays. Furthermore, we also conducted a retrospective analysis on 70 GC patients diagnosed and surgically treated in Wenzhou Central Hospital, Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University between January 2017 to December 2020. The tumor and adjacent normal samples were collected from the patients to determine the potential association between the expression level of GPT and the clinical as well as pathological features of GC patients. RESULTS We selected 19214 genes from the GSE183136 dataset, among which there were 250 downregulated genes and 401 upregulated genes in the tumor samples of stage III-IV in comparison to those in tumor samples of stage I-II with a P-value < 0.05. In addition, GO and KEGG results revealed that the various upregulated DEGs were mainly enriched in plasma membrane and neuroactive ligand-receptor interaction, whereas the downregulated DEGs were primarily enriched in cytosol and pancreatic secretion, vascular smooth muscle contraction and biosynthesis of the different cofactors. Furthermore, PPI networks were constructed based on the various upregulated and downregulated genes, and there were a total 15 upregulated and 10 downregulated hub genes. After a comprehensive analysis, several hub genes, including runt-related transcription factor 2 (RUNX2), salmonella pathogenicity island 1 (SPI1), lysyl oxidase (LOX), fibrillin 1 (FBN1) and GPT, displayed prognostic values. Interestingly, it was observed that GPT was downregulated in GC cells and its upregulation could suppress the malignant phenotypes of GC cells. Furthermore, the expression level of GPT was found to be associated with age, lymph node metastasis, pathological staging and distant metastasis (P < 0.05). CONCLUSION RUNX2, SPI1, LOX, FBN1 and GPT were identified key hub genes in GC by bioinformatics analysis. GPT was significantly associated with the prognosis of GC, and its upregulation can effectively inhibit the proliferative, migrative and invasive capabilities of GC cells.
Collapse
Affiliation(s)
- Jian-Wei Zhou
- Department of Gastroenterology, Wenzhou Central Hospital, Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou 325000, Zhejiang Province, China
| | - Yi-Bing Zhang
- Department of Gastroenterology, Wenzhou Central Hospital, Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou 325000, Zhejiang Province, China
| | - Zhi-Yang Huang
- Department of Gastroenterology, Wenzhou Central Hospital, Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou 325000, Zhejiang Province, China
| | - Yu-Ping Yuan
- Department of Gastroenterology, Wenzhou Central Hospital, Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou 325000, Zhejiang Province, China
| | - Jie Jin
- Department of Gastroenterology, Wenzhou Central Hospital, Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
3
|
Perdomo S, Brugnini A, Trias N, Menyou A, Silveira G, Ranero S, Lens D, Díaz L, Grille S. Mobilized and apheresis-collected endothelial progenitor cells with plerixafor. J Clin Apher 2022; 37:245-252. [PMID: 35114004 DOI: 10.1002/jca.21967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) are immature cells able to proliferate and contribute to endothelial repair, vascular homeostasis, neovascularization, and angiogenesis. It therefore seems likely that circulating EPCs have therapeutic potential in ischemic and vascular diseases. In this study we evaluated the efficiency of EPC mobilization and collection by large volume leukapheresis in subjects with hematological diseases, treated with plerixafor in association with G-CSF. METHODS Twenty-two patients with lymphoid malignancies underwent rHuG-CSF and plerixafor treatment followed by leukapheresis. Blood samples before and after treatment and apheresis liquid sample were taken and analyzed by flow cytometry in order to quantified EPC. RESULTS The percentage of CD34+ cells and EPCs among circulating total nuclear cells (TNCs) increased significantly by approximately 2-fold and 3-fold, respectively, after plerixafor treatment. Consequently, the absolute number of CD34+ cells and EPCs were increased 4-fold after plerixafor treatment. The median PB concentration of EPCs before and after treatment were 0.77/μL (0.31-2.15) and 3.41/μL (1.78-4.54), respectively, P < .0001. The total EPCs collected per patient were 3.3×107 (0.8×107 -6.8×107 ). CONCLUSION We have shown that plerixafor in combination with G-CSF allows the mobilization and collection of large amounts of EPCs along with CD34+ cells in lymphoid neoplasm patients. The possibility to collect and to store these cells could represent a promising therapeutic tool for the treatment of ischemic complications without the need of in vitro expansion.
Collapse
Affiliation(s)
- Susana Perdomo
- Servicio Médico Integral, Centro de Trasplante de Médula Ósea, Montevideo, Uruguay
| | - Andreina Brugnini
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Natalia Trias
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Alba Menyou
- Servicio Médico Integral, Centro de Trasplante de Médula Ósea, Montevideo, Uruguay
| | - Gonzalo Silveira
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sabrina Ranero
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.,Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Daniela Lens
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lilián Díaz
- Servicio Médico Integral, Centro de Trasplante de Médula Ósea, Montevideo, Uruguay
| | - Sofía Grille
- Servicio Médico Integral, Centro de Trasplante de Médula Ósea, Montevideo, Uruguay.,Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.,Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
4
|
Karnati S, Seimetz M, Kleefeldt F, Sonawane A, Madhusudhan T, Bachhuka A, Kosanovic D, Weissmann N, Krüger K, Ergün S. Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target. Front Cardiovasc Med 2021; 8:649512. [PMID: 33912600 PMCID: PMC8072123 DOI: 10.3389/fcvm.2021.649512] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide and encompasses chronic bronchitis and emphysema. It has been shown that vascular wall remodeling and pulmonary hypertension (PH) can occur not only in patients with COPD but also in smokers with normal lung function, suggesting a causal role for vascular alterations in the development of emphysema. Mechanistically, abnormalities in the vasculature, such as inflammation, endothelial dysfunction, imbalances in cellular apoptosis/proliferation, and increased oxidative/nitrosative stress promote development of PH, cor pulmonale, and most probably pulmonary emphysema. Hypoxemia in the pulmonary chamber modulates the activation of key transcription factors and signaling cascades, which propagates inflammation and infiltration of neutrophils, resulting in vascular remodeling. Endothelial progenitor cells have angiogenesis capabilities, resulting in transdifferentiation of the smooth muscle cells via aberrant activation of several cytokines, growth factors, and chemokines. The vascular endothelium influences the balance between vaso-constriction and -dilation in the heart. Targeting key players affecting the vasculature might help in the development of new treatment strategies for both PH and COPD. The present review aims to summarize current knowledge about vascular alterations and production of reactive oxygen species in COPD. The present review emphasizes on the importance of the vasculature for the usually parenchyma-focused view of the pathobiology of COPD.
Collapse
Affiliation(s)
- Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Akash Bachhuka
- UniSA Science, Technology, Engineering and Mathematics, University of South Australia, Mawson Lakes Campus, Adelaide, SA, Australia
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Hassanpour M, Aghamohamadzade N, Cheraghi O, Heidarzadeh M, Nouri M. Current status of cardiac regenerative medicine; An update on point of view to cell therapy application. J Cardiovasc Thorac Res 2021; 12:256-268. [PMID: 33510874 PMCID: PMC7828760 DOI: 10.34172/jcvtr.2020.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally. Because of the economic and social burden of acute myocardial infarction and its chronic consequences in surviving patients, understanding the pathophysiology of myocardial infarction injury is a major priority for cardiovascular research. MI is defined as cardiomyocytes death caused by an ischemic that resulted from the apoptosis, necrosis, necroptosis, and autophagy. The phases of normal repair following MI including inflammatory, proliferation, and maturation. Normal repair is slow and inefficient generally so that other treatments are required. Because of difficulties, outcomes, and backwashes of traditional therapies including coronary artery bypass grafting, balloon angioplasty, heart transplantation, and artificial heart operations, the novel strategy in the treatment of MI, cell therapy, was newly emerged. In cell therapy, a new population of cells has created that substitute with damaged cells. Different types of stem cell and progenitor cells have been shown to improve cardiac function through various mechanisms, including the formation of new myocytes, endothelial cells, and vascular smooth muscle cells. Bone marrow- and/or adipose tissue-derived mesenchymal stem cells, embryonic stem cells, autologous skeletal myoblasts, induced pluripotent stem cells, endothelial progenitor cells, cardiac progenitor cells and cardiac pericytes considered as a source for cell therapy. In this study, we focused on the point of view of the cell sources.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Omid Cheraghi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | | | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Dergilev KV, Shevchenko EK, Tsokolaeva ZI, Beloglazova IB, Zubkova ES, Boldyreva MA, Menshikov MY, Ratner EI, Penkov D, Parfyonova YV. Cell Sheet Comprised of Mesenchymal Stromal Cells Overexpressing Stem Cell Factor Promotes Epicardium Activation and Heart Function Improvement in a Rat Model of Myocardium Infarction. Int J Mol Sci 2020; 21:ijms21249603. [PMID: 33339427 PMCID: PMC7766731 DOI: 10.3390/ijms21249603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cell therapy of the post-infarcted myocardium is still far from clinical use. Poor survival of transplanted cells, insufficient regeneration, and replacement of the damaged tissue limit the potential of currently available cell-based techniques. In this study, we generated a multilayered construct from adipose-derived mesenchymal stromal cells (MSCs) modified to secrete stem cell factor, SCF. In a rat model of myocardium infarction, we show that transplantation of SCF producing cell sheet induced activation of the epicardium and promoted the accumulation of c-kit positive cells in ischemic muscle. Morphometry showed the reduction of infarct size (16%) and a left ventricle expansion index (0.12) in the treatment group compared to controls (24-28%; 0.17-0.32). The ratio of viable myocardium was more than 1.5-fold higher, reaching 49% compared to the control (28%) or unmodified cell sheet group (30%). Finally, by day 30 after myocardium infarction, SCF-producing cell sheet transplantation increased left ventricle ejection fraction from 37% in the control sham-operated group to 53%. Our results suggest that, combining the genetic modification of MSCs and their assembly into a multilayered construct, we can provide prolonged pleiotropic effects to the damaged heart, induce endogenous regenerative processes, and improve cardiac function.
Collapse
Affiliation(s)
- Konstantin V. Dergilev
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Evgeny K. Shevchenko
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
- Correspondence:
| | - Zoya I. Tsokolaeva
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
- Research Institute of General Reanimatology, Russian Academy of Medical Sciences, Moscow 107031, Russia
| | - Irina B. Beloglazova
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Ekaterina S. Zubkova
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Maria A. Boldyreva
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Mikhail Yu. Menshikov
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Elizaveta I. Ratner
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Dmitry Penkov
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Yelena V. Parfyonova
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
- Faculty of Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
7
|
Ding X, Xiang W, He X. IFN-I Mediates Dysfunction of Endothelial Progenitor Cells in Atherosclerosis of Systemic Lupus Erythematosus. Front Immunol 2020; 11:581385. [PMID: 33262760 PMCID: PMC7686511 DOI: 10.3389/fimmu.2020.581385] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease including the cardiovascular system. Atherosclerosis is the most common cardiovascular complication of SLE and a significant risk factor for morbidity and mortality. Vascular damage/protection mechanism in SLE patients is out of balance, caused by the cascade reaction among oxidative stress, proinflammatory cytokines, Neutrophil Extracellular Traps, activation of B cells and autoantibodies and abnormal T cells. As a precursor cell repairing vascular endothelium, endothelial progenitor cells (EPCs) belong to the protective mechanism and show the reduced number and impaired function in SLE. However, the pathological mechanism of EPCs dysfunction in SLE remains ill-defined. This paper reviews the latest SLE epidemiology and pathogenesis, discusses the changes in the number and function of EPCs in SLE, expounds the role of EPCs in SLE atherosclerosis, and provides new guidance and theoretical basis for exploring novel targets for SLE treatment.
Collapse
Affiliation(s)
- Xuewei Ding
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, NHC Key Laboratory of Control of Tropical diseases (Hainan Medical University), Haikou, China
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Zhou W, Zheng X, Cheng C, Guo G, Zhong Y, Liu W, Liu K, Chen Y, Liu S, Liu S. Rab27a deletion impairs the therapeutic potential of endothelial progenitor cells for myocardial infarction. Mol Cell Biochem 2020; 476:797-807. [PMID: 33095380 DOI: 10.1007/s11010-020-03945-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
Endothelial progenitor cell (EPC) transplantation has shown advantages in the treatment of myocardial infarction (MI) in animal models and clinical trials through mechanisms of direct intercellular contacts, autocrine, and paracrine. However, the effects of EPC transplantation for MI treatment remain controversial and the underlying mechanisms have not been fully elucidated. Here, we explored the role of Rab27a in the therapeutic potential of EPC transplantation in MI. We found that Rab27a knockout impaired the viability, and reduced the proliferation and tube formation function of ECPs. The recovery of cardiac function and improvement of ventricular remodeling from EPCs transplantation were significantly damaged by Rab27a deletion in vivo. Rab27a deletion inhibited the protein expression of phosphoinositide 3-kinase (PI3K) and cyclin D1 and the phosphorylation levels of Akt and FoxO3a. Therefore, Rab27a knockout suppressed the PI3K-Akt-FoxO3a/cyclin D1 signaling pathway. Furthermore, Rab27a ablation dramatically reduced exosome release in EPCs. These results demonstrated that Rab27a plays an essential role in EPC functions. The elucidation of this mechanism provides novel insights into EPC transplantation as a promising treatment for post-MI injuries.
Collapse
Affiliation(s)
- Wenyi Zhou
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, People's Republic of China
| | - Xuefei Zheng
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, People's Republic of China
| | - Chuanfang Cheng
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, People's Republic of China
| | - Guixian Guo
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, People's Republic of China
| | - Yun Zhong
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, People's Republic of China
| | - Weihua Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, People's Republic of China
| | - Kefeng Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Xiangnan University, Chenzhou, Hunan, 423000, People's Republic of China
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Shiming Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, People's Republic of China.
| | - Shaojun Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, People's Republic of China.
| |
Collapse
|
9
|
Jadczyk T, Caluori G, Wojakowski W, Starek Z. Nanotechnology and stem cells in vascular biology. VASCULAR BIOLOGY 2020; 1:H103-H109. [PMID: 32923961 PMCID: PMC7439937 DOI: 10.1530/vb-19-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/03/2022]
Abstract
Nanotechnology and stem cells are one of the most promising strategies for clinical medicine applications. The article provides an up-to-date view on advances in the field of regenerative and targeted vascular therapies describing a molecular design (propulsion mechanism, composition, target identification) and applications of nanorobots. Stem cell paragraph presents current clinical application of various cell types involved in vascular biology including mesenchymal stem cells, very small embryonic-like stem cells, induced pluripotent stem cells, mononuclear stem cells, amniotic fluid-derived stem cells and endothelial progenitor cells. A possible bridging between the two fields is also envisioned, where bio-inspired, safe, long-lasting nanorobots can fully target the cellular specific cues and even drive vascular process in a timely manner.
Collapse
Affiliation(s)
- Tomasz Jadczyk
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland.,Interventional Cardiac Electrophysiology Group, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Guido Caluori
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland.,Nanobiotechnology, CEITEC-MU, Brno, Czech Republic
| | - Wojciech Wojakowski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Zdenek Starek
- Interventional Cardiac Electrophysiology Group, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,First Department of Internal Medicine, Cardioangiology, St. Anne's University Hospital Brno, Masaryk University, Brno, Czech Republic
| |
Collapse
|
10
|
Yigman Z, Ozdemir ED, Turan NN, Ulus AT, Can A. Umbilical cord mesenchymal stromal cells engraft and transdifferentiate into cardiomyocyte-like cells following acute myocardial ischemia⋆. Acta Histochem 2020; 122:151578. [PMID: 32778240 DOI: 10.1016/j.acthis.2020.151578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs) gained importance in acute/chronic ischemic cardiomyopathy because of their outstanding regenerative potential in various pathologic conditions. The present study was designed to determine to what extent hUC-MSCs contribute to myocardial regeneration in acute experimental myocardial infarction (MI) in rats. METHODS Animals were assigned into two groups; the control group received intramyocardial PBS injections, while the hUC-MSC group received calcein-AM-labeled 8.8 × 106/kg hUC-MSCs. Three weeks following the acute MI induction, rats were sacrificed after assessing the left ventricular (LV) function using echocardiography. For the assessment of infarct size, the triphenyl tetrazolium chloride (TTC) test was used in isolated hearts. Collagen-rich scar tissue was demonstrated using Masson's trichrome staining, followed by the detection of cardiac troponin I (cTnI), α-sarcomeric actin (α-SA), von Willebrand factor (vWF), CD68 and CD206 expressions in control and cell-injected sections. RESULTS Echocardiography revealed a significant difference (P = 0.037) in the LV ejection fraction between groups. TTC assays demonstrated a significant difference (P = 0.006) between the groups regarding the ratio of the infarcted LV area. Calcein-AM-loaded cells were identified mostly in ischemic myocardium. Transplanted cells also expressed human-specific cTnI, providing concrete proof of transdifferentiation into cardiomyocytes, and α-SA. vWF+ cells verified the neovascularization in the ischemic myocardium. Finally, a slight shift from pro-inflammatory to anti-inflammatory macrophages (CD68+/CD206+) was noted in both groups. CONCLUSIONS We found that the intramyocardial transplanted hUC-MSCs engrafted and partially transdifferentiated into cardiomyocytes, reduced scar formation, and induced angiogenesis through the association of pro/anti-inflammatory macrophages.
Collapse
Affiliation(s)
- Zeynep Yigman
- Gazi University Faculty of Medicine, Department of Histology and Embryology, Yenimahalle, Ankara, 06560, Turkey.
| | - Elif Derya Ozdemir
- Gazi University Faculty of Pharmacy, Department of Pharmacology, Yenimahalle, Ankara, 06560, Turkey.
| | - Nilufer N Turan
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert School of Brown University, Providence, RI, 02903, USA.
| | - A Tulga Ulus
- Hacettepe University Faculty of Medicine, Department of Cardiovascular and Thoracic Surgery, Sihhiye, Ankara, 06100, Turkey.
| | - Alp Can
- Ankara University School of Medicine, Department of Histology and Embryology, Laboratories for Stem Cells and Reproductive Medicine, Sihhiye, Ankara, 06100, Turkey.
| |
Collapse
|
11
|
Fan X, Li K, Zhu L, Deng X, Feng Z, Xu C, Liu S, Wu J. Prolonged therapeutic effects of photoactivated adipose-derived stem cells following ischaemic injury. Acta Physiol (Oxf) 2020; 230:e13475. [PMID: 32306486 DOI: 10.1111/apha.13475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
AIM Adipose-derived stem cells (ASCs) therapies are emerging as a promising approach to therapeutic angiogenesis. Therapeutic persistence and reduced primitive stem cell function following cell delivery remains a critical hurdle for the clinical translation of stem cells in current approaches. METHODS Cultured ASCs were derived from subcutaneous white adipose tissue isolated from mice fed a normal diet (ND). Unilateral hindlimb ischaemia model was induced in high-fat diet (HFD)-fed mice by femoral artery interruption, after which photoactivated and non-light-treated ASCs were injected into the tail vein of mice. Laser Doppler imaging was conducted to measure the blood flow reperfusion. Capillary density was measured in the ischaemic gastrocnemius muscle. mRNA levels of angiogenic factors were determined by reverse-transcription polymerase chain reaction. Flow cytometry was used to determine the characterization of ASCs and endothelial progenitor cell (EPC). Human ASCs secretomes were analysed by liquid chromatography tandem mass spectrometry. RESULTS Our study demonstrated that photoactivated ND-ASCs prolonged functional blood flow perfusion and increased ASCs-derived EPC and neovascularization 38 days after ligation, when compared with saline-treated controls. Profiling analysis in ischaemic muscles showed upregulation of genes associated with pro-angiogenic factors after injection of photoactivated ND-ASCs when compared with the non-light-treated ASCs or saline treated HFD mice. Mass spectrometry revealed that light-treated ASCs conditioned medium retained a more complete pro-angiogenic activity with significant upregulation of angiogenesis related proteins. CONCLUSION Our data demonstrates that photoactivated ND-ASCs improve blood flow recovery and their injection may prove to be a useful strategy for the prevention and treatment of diabetic peripheral arterial disease.
Collapse
Affiliation(s)
- Xin Fan
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Kai Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Luochen Zhu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Xin Deng
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Ziqian Feng
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Chunrong Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Sijing Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| |
Collapse
|
12
|
Gao Y, Cui X, Wang M, Zhang Y, He Y, Li L, Li H, Zhang X, Cheng M. Oscillatory shear stress induces the transition of EPCs into mesenchymal cells through ROS/PKCζ/p53 pathway. Life Sci 2020; 253:117728. [PMID: 32353430 DOI: 10.1016/j.lfs.2020.117728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/14/2023]
Abstract
AIMS Studies indicate that the pattern of shear stress determines the direction of endothelial progenitor cells (EPCs) differentiation. However, the mechanism remains largely unknown. Herein, we try to identify the role of oscillatory shear stress (OSS) in the transdifferentiation of EPCs into mesenchymal cells and the mechanism involved. MATERIALS AND METHODS OSS was applied to EPCs using the flow chamber system in vitro. Matrigel, Boyden chamber, and healing assay were used to observe the changes in EPCs function. Further, 2',7'-dichlorofluorescein diacetate (DCFH-DA) probe and/or western blot were performed to detect the expression of reactive oxygen species (ROS), p53 and PKCζ in EPCs. EPCs transduced with Lentivirus carrying Tp53 were implanted into the arterial vessel in the balloon injured rat model, and neointimal thickening was verified by HE staining. KEY FINDINGS OSS enhanced the expression of mesenchymal cell markers alpha-smooth muscle actin (α-SMA) and smooth muscle 22 alpha (SM22α) on EPCs. In the meantime, OSS time-dependently decreased p53 expression in EPCs, which was partially abolished by treatment with ROS scavenger N-acetylcysteine (NAC) or protein kinase C zeta (PKCζ) inhibitor Go6983. Moreover, the p53 agonist tenovin-1 attenuated the changes of OSS-mediated the mesenchymal cell markers and EPCs function. Besides, we also found that transplanting EPCs transfected with LV-Tp53 significantly inhibited neointimal thickening and promoted reendothelialization in vivo. SIGNIFICANCE This study demonstrates OSS-induced EPC transdifferentiation into mesenchymal cells and ROS/PKCζ/p53 pathway play an essential role in it. It may serve as a promising therapeutic target for cardiovascular disease in the future.
Collapse
Affiliation(s)
- Yu Gao
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Xiaodong Cui
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Meiyue Wang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Yaowen Zhang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Yanting He
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Lanlan Li
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Hong Li
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Xiaoyun Zhang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China.
| | - Min Cheng
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China.
| |
Collapse
|
13
|
Cappelletto A, Zacchigna S. Cardiac revascularization: state of the art and perspectives. VASCULAR BIOLOGY 2019; 1:H47-H51. [PMID: 32923953 PMCID: PMC7439924 DOI: 10.1530/vb-19-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 01/04/2023]
Abstract
Cardiac ischemia is the leading cause of morbidity and mortality in a worldwide epidemic. The progressive understanding of the mechanisms driving new blood vessel formation has led to numerous attempts to revascularize the ischemic heart in animal models and in humans. Here, we provide an overview of the current state of the art and discuss the major obstacles that have so far limited the clinical success of cardiac revascularization.
Collapse
Affiliation(s)
- Ambra Cappelletto
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
14
|
Yang H, Wei L, Liu C, Zhong W, Li B, Chen Y, Han R, Zhuang J, Qu J, Tao H, Chen H, Xu C, Liang Q, Lu C, Qian R, Chen S, Wang W, Sun N. Engineering human ventricular heart tissue based on macroporous iron oxide scaffolds. Acta Biomater 2019; 88:540-553. [PMID: 30779999 DOI: 10.1016/j.actbio.2019.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 02/07/2019] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Myocardial infarction (MI) is a primary cardiovascular disease threatening human health and quality of life worldwide. The development of engineered heart tissues (EHTs) as a transplantable artificial myocardium provides a promising therapy for MI. Since most MIs occur at the ventricle, engineering ventricular-specific myocardium is therefore more desirable for future applications. Here, by combining a new macroporous 3D iron oxide scaffold (IOS) with a fixed ratio of human pluripotent stem cell (hPSC)-derived ventricular-specific cardiomyocytes and human umbilical cord-derived mesenchymal stem cells, we constructed a new type of engineered human ventricular-specific heart tissue (EhVHT). The EhVHT promoted expression of cardiac-specific genes, ion exchange, and exhibited a better Ca2+ handling behaviors and normal electrophysiological activity in vitro. Furthermore, when patched on the infarcted area, the EhVHT effectively promoted repair of heart tissues in vivo and facilitated the restoration of damaged heart function of rats with acute MI. Our results show that it is feasible to generate functional human ventricular heart tissue based on hPSC-derived ventricular myocytes for the treatment of ventricular-specific myocardium damage. STATEMENT OF SIGNIFICANCE: We successfully generated highly purified homogenous human ventricular myocytes and developed a method to generate human ventricular-specific heart tissue (EhVHT) based on three-dimensional iron oxide scaffolds. The EhVHT promoted expression of cardiac-specific genes, ion exchange, and exhibited a better Ca2+ handling behaviors and normal electrophysiological activity in vitro. Patching the EhVHT on the infarct area significantly improved cardiac function in rat acute MI models. This EhVHT has a great potential to meet the specific requirements for ventricular damages in most MI cases and for screening drugs specifically targeting ventricular myocardium.
Collapse
Affiliation(s)
- Hui Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China; Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lai Wei
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chen Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weiyi Zhong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Bin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Yuncan Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Rui Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Jiexian Zhuang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Jianxun Qu
- GE Healthcare Applied Science Lab, United States
| | - Hongyue Tao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haiyan Chen
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Qianqian Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Chao Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Sifeng Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Wenshuo Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Ning Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|