1
|
Liu H, Tsai H, Yang M, Li G, Bian Q, Ding G, Wu D, Dai J. Three-dimensional genome structure and function. MedComm (Beijing) 2023; 4:e326. [PMID: 37426677 PMCID: PMC10329473 DOI: 10.1002/mco2.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Linear DNA undergoes a series of compression and folding events, forming various three-dimensional (3D) structural units in mammalian cells, including chromosomal territory, compartment, topologically associating domain, and chromatin loop. These structures play crucial roles in regulating gene expression, cell differentiation, and disease progression. Deciphering the principles underlying 3D genome folding and the molecular mechanisms governing cell fate determination remains a challenge. With advancements in high-throughput sequencing and imaging techniques, the hierarchical organization and functional roles of higher-order chromatin structures have been gradually illuminated. This review systematically discussed the structural hierarchy of the 3D genome, the effects and mechanisms of cis-regulatory elements interaction in the 3D genome for regulating spatiotemporally specific gene expression, the roles and mechanisms of dynamic changes in 3D chromatin conformation during embryonic development, and the pathological mechanisms of diseases such as congenital developmental abnormalities and cancer, which are attributed to alterations in 3D genome organization and aberrations in key structural proteins. Finally, prospects were made for the research about 3D genome structure, function, and genetic intervention, and the roles in disease development, prevention, and treatment, which may offer some clues for precise diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Hao Liu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Hsiangyu Tsai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Maoquan Yang
- School of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Guozhi Li
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Qian Bian
- Shanghai Institute of Precision MedicineShanghaiChina
| | - Gang Ding
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Dandan Wu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Jiewen Dai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| |
Collapse
|
2
|
Quon S, Yu B, Russ BE, Tsyganov K, Nguyen H, Toma C, Heeg M, Hocker JD, Milner JJ, Crotty S, Pipkin ME, Turner SJ, Goldrath AW. DNA architectural protein CTCF facilitates subset-specific chromatin interactions to limit the formation of memory CD8 + T cells. Immunity 2023; 56:959-978.e10. [PMID: 37040762 PMCID: PMC10265493 DOI: 10.1016/j.immuni.2023.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/14/2022] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
Although the importance of genome organization for transcriptional regulation of cell-fate decisions and function is clear, the changes in chromatin architecture and how these impact effector and memory CD8+ T cell differentiation remain unknown. Using Hi-C, we studied how genome configuration is integrated with CD8+ T cell differentiation during infection and investigated the role of CTCF, a key chromatin remodeler, in modulating CD8+ T cell fates through CTCF knockdown approaches and perturbation of specific CTCF-binding sites. We observed subset-specific changes in chromatin organization and CTCF binding and revealed that weak-affinity CTCF binding promotes terminal differentiation of CD8+ T cells through the regulation of transcriptional programs. Further, patients with de novo CTCF mutations had reduced expression of the terminal-effector genes in peripheral blood lymphocytes. Therefore, in addition to establishing genome architecture, CTCF regulates effector CD8+ T cell heterogeneity through altering interactions that regulate the transcription factor landscape and transcriptome.
Collapse
Affiliation(s)
- Sara Quon
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bingfei Yu
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brendan E Russ
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kirill Tsyganov
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hongtuyet Nguyen
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Clara Toma
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maximilian Heeg
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - James D Hocker
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - J Justin Milner
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Stephen J Turner
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Ananda W Goldrath
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Barutcu AR, Elizalde G, Gonzalez AE, Soni K, Rinn JL, Wagers AJ, Almada AE. Prolonged FOS activity disrupts a global myogenic transcriptional program by altering 3D chromatin architecture in primary muscle progenitor cells. Skelet Muscle 2022; 12:20. [PMID: 35971133 PMCID: PMC9377060 DOI: 10.1186/s13395-022-00303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The AP-1 transcription factor, FBJ osteosarcoma oncogene (FOS), is induced in adult muscle satellite cells (SCs) within hours following muscle damage and is required for effective stem cell activation and muscle repair. However, why FOS is rapidly downregulated before SCs enter cell cycle as progenitor cells (i.e., transiently expressed) remains unclear. Further, whether boosting FOS levels in the proliferating progeny of SCs can enhance their myogenic properties needs further evaluation. METHODS We established an inducible, FOS expression system to evaluate the impact of persistent FOS activity in muscle progenitor cells ex vivo. We performed various assays to measure cellular proliferation and differentiation, as well as uncover changes in RNA levels and three-dimensional (3D) chromatin interactions. RESULTS Persistent FOS activity in primary muscle progenitor cells severely antagonizes their ability to differentiate and form myotubes within the first 2 weeks in culture. RNA-seq analysis revealed that ectopic FOS activity in muscle progenitor cells suppressed a global pro-myogenic transcriptional program, while activating a stress-induced, mitogen-activated protein kinase (MAPK) transcriptional signature. Additionally, we observed various FOS-dependent, chromosomal re-organization events in A/B compartments, topologically associated domains (TADs), and genomic loops near FOS-regulated genes. CONCLUSIONS Our results suggest that elevated FOS activity in recently activated muscle progenitor cells perturbs cellular differentiation by altering the 3D chromosome organization near critical pro-myogenic genes. This work highlights the crucial importance of tightly controlling FOS expression in the muscle lineage and suggests that in states of chronic stress or disease, persistent FOS activity in muscle precursor cells may disrupt the muscle-forming process.
Collapse
Affiliation(s)
- A Rasim Barutcu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Present address: Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Gabriel Elizalde
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alfredo E Gonzalez
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Kartik Soni
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Present address: BioFrontiers and Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Albert E Almada
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, USA.
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Antoszewski M, Fournier N, Ruiz Buendía GA, Lourenco J, Liu Y, Sugrue T, Dubey C, Nkosi M, Pritchard CE, Huijbers IJ, Segat GC, Alonso-Moreno S, Serracanta E, Belver L, Ferrando AA, Ciriello G, Weng AP, Koch U, Radtke F. Tcf1 is essential for initiation of oncogenic Notch1-driven chromatin topology in T-ALL. Blood 2022; 139:2483-2498. [PMID: 35020836 PMCID: PMC9710489 DOI: 10.1182/blood.2021012077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/22/2021] [Indexed: 01/16/2023] Open
Abstract
NOTCH1 is a well-established lineage specifier for T cells and among the most frequently mutated genes throughout all subclasses of T cell acute lymphoblastic leukemia (T-ALL). How oncogenic NOTCH1 signaling launches a leukemia-prone chromatin landscape during T-ALL initiation is unknown. Here we demonstrate an essential role for the high-mobility-group transcription factor Tcf1 in orchestrating chromatin accessibility and topology, allowing aberrant Notch1 signaling to convey its oncogenic function. Although essential, Tcf1 is not sufficient to initiate leukemia. The formation of a leukemia-prone epigenetic landscape at the distal Notch1-regulated Myc enhancer, which is fundamental to this disease, is Tcf1-dependent and occurs within the earliest progenitor stage even before cells adopt a T lymphocyte or leukemic fate. Moreover, we discovered a unique evolutionarily conserved Tcf1-regulated enhancer element in the distal Myc-enhancer, which is important for the transition of preleukemic cells to full-blown disease.
Collapse
Affiliation(s)
- Mateusz Antoszewski
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Nadine Fournier
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Gustavo A. Ruiz Buendía
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Joao Lourenco
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Yuanlong Liu
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Tara Sugrue
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Botnar Research Centre for Child Health, University of Basel & ETH Zürich, Basel, Switzerland
| | - Christelle Dubey
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- INSELSPITAL, Universitätsspital Bern, Universitätsklinik für Thoraxchirurgie, Forschungsabteilung Thoraxchirurgie, Bern, Switzerland
| | - Marianne Nkosi
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Colin E.J. Pritchard
- Mouse Clinic for Cancer & Aging (MCCA)/Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ivo J. Huijbers
- Mouse Clinic for Cancer & Aging (MCCA)/Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Laura Belver
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Catalan Institute of Oncology-Immuno Procure, Barcelona, Spain
| | - Adolfo A. Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
| | - Giovanni Ciriello
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Andrew P. Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | - Ute Koch
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| |
Collapse
|
5
|
Freeman BC. Genome Organization and Dynamics Specialty Grand Challenge. Front Mol Biosci 2022; 8:818707. [PMID: 35036413 PMCID: PMC8758561 DOI: 10.3389/fmolb.2021.818707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
|
6
|
Bridger JM, Pereira RT, Pina C, Tosi S, Lewis A. Alterations to Genome Organisation in Stem Cells, Their Differentiation and Associated Diseases. Results Probl Cell Differ 2022; 70:71-102. [PMID: 36348105 DOI: 10.1007/978-3-031-06573-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The organisation of the genome in its home, the cell nucleus, is reliant on a number of different aspects to establish, maintain and alter its functional non-random positioning. The genome is dispersed throughout a cell nucleus in specific chromosome territories which are further divided into topologically associated domains (TADs), where regions of the genome from different and the same chromosomes come together. This organisation is both controlled by DNA and chromatin epigenetic modification and the association of the genome with nuclear structures such as the nuclear lamina, the nucleolus and nuclear bodies and speckles. Indeed, sequences that are associated with the first two structures mentioned are termed lamina-associated domains (LADs) and nucleolar-associated domains (NADs), respectively. The modifications and nuclear structures that regulate genome function are altered through a cell's life from stem cell to differentiated cell through to reversible quiescence and irreversible senescence, and hence impacting on genome organisation, altering it to silence specific genes and permit others to be expressed in a controlled way in different cell types and cell cycle statuses. The structures and enzymes and thus the organisation of the genome can also be deleteriously affected, leading to disease and/or premature ageing.
Collapse
Affiliation(s)
- Joanna M Bridger
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.
| | - Rita Torres Pereira
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Cristina Pina
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Sabrina Tosi
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Annabelle Lewis
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
7
|
Mehta IS, Riyahi K, Pereira RT, Meaburn KJ, Figgitt M, Kill IR, Eskiw CH, Bridger JM. Interphase Chromosomes in Replicative Senescence: Chromosome Positioning as a Senescence Biomarker and the Lack of Nuclear Motor-Driven Chromosome Repositioning in Senescent Cells. Front Cell Dev Biol 2021; 9:640200. [PMID: 34113611 PMCID: PMC8185894 DOI: 10.3389/fcell.2021.640200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/25/2021] [Indexed: 01/10/2023] Open
Abstract
This study demonstrates, and confirms, that chromosome territory positioning is altered in primary senescent human dermal fibroblasts (HDFs). The chromosome territory positioning pattern is very similar to that found in HDFs made quiescent either by serum starvation or confluence; but not completely. A few chromosomes are found in different locations. One chromosome in particular stands out, chromosome 10, which is located in an intermediate location in young proliferating HDFs, but is found at the nuclear periphery in quiescent cells and in an opposing location of the nuclear interior in senescent HDFs. We have previously demonstrated that individual chromosome territories can be actively and rapidly relocated, with 15 min, after removal of serum from the culture media. These chromosome relocations require nuclear motor activity through the presence of nuclear myosin 1β (NM1β). We now also demonstrate rapid chromosome movement in HDFs after heat-shock at 42°C. Others have shown that heat shock genes are actively relocated using nuclear motor protein activity via actin or NM1β (Khanna et al., 2014; Pradhan et al., 2020). However, this current study reveals, that in senescent HDFs, chromosomes can no longer be relocated to expected nuclear locations upon these two types of stimuli. This coincides with a entirely different organisation and distribution of NM1β within senescent HDFs.
Collapse
Affiliation(s)
- Ishita S Mehta
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom.,Tata Institute of Fundamental Research, Mumbai, India
| | - Kumars Riyahi
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Rita Torres Pereira
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Karen J Meaburn
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Martin Figgitt
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom.,Department of Life Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Ian R Kill
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Christopher H Eskiw
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joanna M Bridger
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
8
|
Qiu GH, Zheng X, Fu M, Huang C, Yang X. The decreased exclusion of nuclear eccDNA: From molecular and subcellular levels to human aging and age-related diseases. Ageing Res Rev 2021; 67:101306. [PMID: 33610814 DOI: 10.1016/j.arr.2021.101306] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Extrachromosomal circular DNA (eccDNA) accumulates within the nucleus of eukaryotic cells during physiological aging and in age-related diseases (ARDs) and the accumulation could be caused by the declined exclusion of nuclear eccDNA in these states. This review focuses on the formation of eccDNA and the roles of some main factors, such as nuclear pore complexes (NPCs), nucleoplasmic reticulum (NR), and nuclear actin, in eccDNA exclusion. eccDNAs are mostly formed from non-coding DNA during DNA damage repair. They move to NPCs along nuclear actin and are excluded out of the nucleus through functional NPCs in young and healthy cells. However, it has been demonstrated that defective NPCs, abnormal NPC components and nuclear actin rods are increased in aged cells, various cancers and certain other ARDs such as cardiovascular diseases, premature aging, neurodegenerative diseases and myopathies. Therefore, mainly resulting from the increase of dysfunctional NPCs, the exclusion of nuclear eccDNAs may be reduced and eccDNAs thus accumulate within the nucleus in aging and the aforementioned ARDs. In addition, the protective function of non-coding DNA in tumorigenesis is further discussed.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, College of Life Sciences, Longyan University, Longyan 364012, People's Republic of China.
| | - Xintian Zheng
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, College of Life Sciences, Longyan University, Longyan 364012, People's Republic of China
| | - Mingjun Fu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, College of Life Sciences, Longyan University, Longyan 364012, People's Republic of China
| | - Cuiqin Huang
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, College of Life Sciences, Longyan University, Longyan 364012, People's Republic of China
| | - Xiaoyan Yang
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, College of Life Sciences, Longyan University, Longyan 364012, People's Republic of China
| |
Collapse
|
9
|
Abstract
Cancers and developmental disorders are associated with alterations in the 3D genome architecture in space and time (the fourth dimension). Mammalian 3D genome organization is complex and dynamic and plays an essential role in regulating gene expression and cellular function. To study the causal relationship between genome function and its spatio-temporal organization in the nucleus, new technologies for engineering and manipulating the 3D organization of the genome have been developed. In particular, CRISPR-Cas technologies allow programmable manipulation at specific genomic loci, enabling unparalleled opportunities in this emerging field of 3D genome engineering. We review advances in mammalian 3D genome engineering with a focus on recent manipulative technologies using CRISPR-Cas and related technologies.
Collapse
|
10
|
Ohsawa S, Umemura T, Terada T, Muto Y. Network and Evolutionary Analysis of Human Epigenetic Regulators to Unravel Disease Associations. Genes (Basel) 2020; 11:genes11121457. [PMID: 33291839 PMCID: PMC7761991 DOI: 10.3390/genes11121457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
We carried out a system-level analysis of epigenetic regulators (ERs) and detailed the protein–protein interaction (PPI) network characteristics of disease-associated ERs. We found that most diseases associated with ERs can be clustered into two large groups, cancer diseases and developmental diseases. ER genes formed a highly interconnected PPI subnetwork, indicating a high tendency to interact and agglomerate with one another. We used the disease module detection (DIAMOnD) algorithm to expand the PPI subnetworks into a comprehensive cancer disease ER network (CDEN) and developmental disease ER network (DDEN). Using the transcriptome from early mouse developmental stages, we identified the gene co-expression modules significantly enriched for the CDEN and DDEN gene sets, which indicated the stage-dependent roles of ER-related disease genes during early embryonic development. The evolutionary rate and phylogenetic age distribution analysis indicated that the evolution of CDEN and DDEN genes was mostly constrained, and these genes exhibited older evolutionary age. Our analysis of human polymorphism data revealed that genes belonging to DDEN and Seed-DDEN were more likely to show signs of recent positive selection in human history. This finding suggests a potential association between positive selection of ERs and risk of developmental diseases through the mechanism of antagonistic pleiotropy.
Collapse
Affiliation(s)
- Shinji Ohsawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan; (S.O.); (T.T.)
- Department of Nursing, Ogaki Women’s College, 1-109, Nishinokawa-cho, Ogaki 503-8554, Japan
| | - Toshiaki Umemura
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630, Sugitani, Toyama 930-0194, Japan;
| | - Tomoyoshi Terada
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan; (S.O.); (T.T.)
- Department of Functional Bioscience, Gifu University School of Medicine, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Yoshinori Muto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan; (S.O.); (T.T.)
- Department of Functional Bioscience, Gifu University School of Medicine, 1-1, Yanagido, Gifu 501-1193, Japan
- Correspondence: ; Tel.: +81-58-293-3241
| |
Collapse
|
11
|
Korsholm LM, Gál Z, Nieto B, Quevedo O, Boukoura S, Lund CC, Larsen DH. Recent advances in the nucleolar responses to DNA double-strand breaks. Nucleic Acids Res 2020; 48:9449-9461. [PMID: 32857853 PMCID: PMC7515731 DOI: 10.1093/nar/gkaa713] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
DNA damage poses a serious threat to human health and cells therefore continuously monitor and repair DNA lesions across the genome. Ribosomal DNA is a genomic domain that represents a particular challenge due to repetitive sequences, high transcriptional activity and its localization in the nucleolus, where the accessibility of DNA repair factors is limited. Recent discoveries have significantly extended our understanding of how cells respond to DNA double-strand breaks (DSBs) in the nucleolus, and new kinases and multiple down-stream targets have been identified. Restructuring of the nucleolus can occur as a consequence of DSBs and new data point to an active regulation of this process, challenging previous views. Furthermore, new insights into coordination of cell cycle phases and ribosomal DNA repair argue against existing concepts. In addition, the importance of nucleolar-DNA damage response (n-DDR) mechanisms for maintenance of genome stability and the potential of such factors as anti-cancer targets is becoming apparent. This review will provide a detailed discussion of recent findings and their implications for our understanding of the n-DDR. The n-DDR shares features with the DNA damage response (DDR) elsewhere in the genome but is also emerging as an independent response unique to ribosomal DNA and the nucleolus.
Collapse
Affiliation(s)
| | | | - Blanca Nieto
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Oliver Quevedo
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Stavroula Boukoura
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Casper Carstens Lund
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | | |
Collapse
|
12
|
Magaña-Acosta M, Valadez-Graham V. Chromatin Remodelers in the 3D Nuclear Compartment. Front Genet 2020; 11:600615. [PMID: 33329746 PMCID: PMC7673392 DOI: 10.3389/fgene.2020.600615] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Chromatin remodeling complexes (CRCs) use ATP hydrolysis to maintain correct expression profiles, chromatin stability, and inherited epigenetic states. More than 20 CRCs have been described to date, which encompass four large families defined by their ATPase subunits. These complexes and their subunits are conserved from yeast to humans through evolution. Their activities depend on their catalytic subunits which through ATP hydrolysis provide the energy necessary to fulfill cellular functions such as gene transcription, DNA repair, and transposon silencing. These activities take place at the first levels of chromatin compaction, and CRCs have been recognized as essential elements of chromatin dynamics. Recent studies have demonstrated an important role for these complexes in the maintenance of higher order chromatin structure. In this review, we present an overview of the organization of the genome within the cell nucleus, the different levels of chromatin compaction, and importance of the architectural proteins, and discuss the role of CRCs and how their functions contribute to the dynamics of the 3D genome organization.
Collapse
Affiliation(s)
- Mauro Magaña-Acosta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
13
|
Behrends M, Engmann O. Linker histone H1.5 is an underestimated factor in differentiation and carcinogenesis. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa013. [PMID: 33214908 PMCID: PMC7660118 DOI: 10.1093/eep/dvaa013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Human histone H1.5, in mice called H1b, belongs to the family of linker histones (H1), which are key players in chromatin organization. These proteins sit on top of nucleosomes, in part to stabilize them, and recruit core histone modifying enzymes. Through subtype-specific deposition patterns and numerous post-translational modifications, they fine-tune gene expression and chromatin architecture, and help to control cell fate and homeostasis. However, even though it is increasingly implicated in mammalian development, H1.5 has not received as much research attention as its relatives. Recent studies have focused on its prognostic value in cancer patients and its contribution to tumorigenesis through specific molecular mechanisms. However, many functions of H1.5 are still poorly understood. In this review, we will summarize what is currently known about H1.5 and its function in cell differentiation and carcinogenesis. We will suggest key experiments that are required to understand the molecular network, in which H1.5 is embedded. These experiments will advance our understanding of the epigenetic reprogramming occurring in developmental and carcinogenic processes.
Collapse
Affiliation(s)
- Marthe Behrends
- Faculty of Medicine, Friedrich Schiller Universität, Jena, Thüringen 07747, Germany
| | - Olivia Engmann
- Institute for Human Genetics, Jena University Hospital, Am Klinikum 1, Thüringen 07747, Germany
| |
Collapse
|
14
|
Konkova MS, Ershova ES, Savinova EA, Malinovskaya EM, Shmarina GV, Martynov AV, Veiko RV, Zakharova NV, Umriukhin P, Kostyuk GP, Izhevskaya VL, Kutsev SI, Veiko NN, Kostyuk SV. 1Q12 Loci Movement in the Interphase Nucleus Under the Action of ROS Is an Important Component of the Mechanism That Determines Copy Number Variation of Satellite III (1q12) in Health and Schizophrenia. Front Cell Dev Biol 2020; 8:386. [PMID: 32714923 PMCID: PMC7346584 DOI: 10.3389/fcell.2020.00386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/29/2020] [Indexed: 12/30/2022] Open
Abstract
Introduction: Genome repeat cluster sizes can affect the chromatin spatial configuration and function. Low-dose ionizing radiation (IR) induces an adaptive response (AR) in human cells. AR includes the change in chromatin spatial configuration that is necessary to change the expression profile of the genome in response to stress. The 1q12 heterochromatin loci movement from the periphery to the center of the nucleus is a marker of the chromatin configuration change. We hypothesized that a large 1q12 domain could affect chromatin movement, thereby inhibiting the AR. Materials and Methods: 2D fluorescent in situ hybridization (FISH) method was used for the satellite III fragment from the 1q12 region (f-SatIII) localization analysis in the interphase nuclei of healthy control (HC) lymphocytes, schizophrenia (SZ) patients, and in cultured mesenchymal stem cells (MSCs). The localization of the nucleolus was analyzed by the nucleolus Ag staining. The non-radioactive quantitative hybridization (NQH) technique was used for the f-SatIII fragment content in DNA analysis. Satellite III fragments transcription was analyzed by reverse transcriptase quantitative PCR (RT-qPCR). Results: Low-dose IR induces the small-area 1q12 domains movement from the periphery to the central regions of the nucleus in HC lymphocytes and MSCs. Simultaneously, nucleolus moves from the nucleus center toward the nuclear envelope. The nucleolus in that period increases. The distance between the 1q12 domain and the nucleolus in irradiated cells is significantly reduced. The large-area 1q12 domains do not move in response to stress. During prolonged cultivation, the irradiated cells with a large f-SatIII amount die, and the population is enriched with the cells with low f-SatIII content. IR induces satellite III transcription in HC lymphocytes. Intact SZ patients' lymphocytes have the same signs of nuclei activation as irradiated HC cells. Conclusion: When a cell population responds to stress, cells are selected according to the size of the 1q12 domain (the f-SatIII content). The low content of the f-SatIII repeat in SZ patients may be a consequence of the chronic oxidative stress and of a large copies number of the ribosomal repeats.
Collapse
Affiliation(s)
- Marina Sergeevna Konkova
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, Moscow, Russia
| | | | | | | | | | | | - Roman Vladimirovich Veiko
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, Moscow, Russia
| | | | - Pavel Umriukhin
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
- P.K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | | | | | - Sergey Ivanovich Kutsev
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, Moscow, Russia
| | - Natalia Nikolaevna Veiko
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, Moscow, Russia
| | | |
Collapse
|
15
|
Nuclear mechanotransduction in stem cells. Curr Opin Cell Biol 2020; 64:97-104. [DOI: 10.1016/j.ceb.2020.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022]
|
16
|
Rice SJ, Beier F, Young DA, Loughlin J. Interplay between genetics and epigenetics in osteoarthritis. Nat Rev Rheumatol 2020; 16:268-281. [PMID: 32273577 DOI: 10.1038/s41584-020-0407-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
Research into the molecular genetics of osteoarthritis (OA) has been substantially bolstered in the past few years by the implementation of powerful genome-wide scans that have revealed a large number of novel risk loci associated with the disease. This refreshing wave of discovery has occurred concurrently with epigenetic studies of joint tissues that have examined DNA methylation, histone modifications and regulatory RNAs. These epigenetic analyses have involved investigations of joint development, homeostasis and disease and have used both human samples and animal models. What has become apparent from a comparison of these two complementary approaches is that many OA genetic risk signals interact with, map to or correlate with epigenetic mediators. This discovery implies that epigenetic mechanisms, and their effect on gene expression, are a major conduit through which OA genetic risk polymorphisms exert their functional effects. This observation is particularly exciting as it provides mechanistic insight into OA susceptibility. Furthermore, this knowledge reveals avenues for attenuating the negative effect of risk-conferring alleles by exposing the epigenome as an exploitable target for therapeutic intervention in OA.
Collapse
Affiliation(s)
- Sarah J Rice
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Frank Beier
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada.,Western Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| | - David A Young
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John Loughlin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
17
|
Schemczssen-Graeff Z, Barbosa P, Castro JP, Silva MD, Almeida MCD, Moreira-Filho O, Artoni RF. Dynamics of Replication and Nuclear Localization of the B Chromosome in Kidney Tissue Cells in Astyanax scabripinnis (Teleostei: Characidae). Zebrafish 2020; 17:147-152. [PMID: 32159463 DOI: 10.1089/zeb.2019.1756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
B chromosomes are extra genomic compounds found in different taxonomic groups, including plants and animals. Obtaining patterns of resolutive chromosomal bands is necessary to understand the nuclear organization, variability and nature of B chromosome chromatin and possible transcriptional regions. In this study, we analyzed 35 Astyanax scabripinnis specimens sampled from Fazenda Lavrinha, a stream in the Paraíba do Sul river basin, Brazil. Through the incorporation of the thymidine analog 5'-bromo-2'-deoxyuridine (5-BrdU) in vivo, it was possible to recognize the replicating regions of the B chromosome at the beginning of the S phase, differentially characterized in relationship to the regions of late replication. In this perspective, it is possible to suggest that the B chromosome of this species possesses a territory and the chromatin accessible for transcription, especially in the light (i.e., early replicating) bands (p1.1; p1.3; and p2.1 and q1.1, q1.3, q2.1, and q2.2). The late-replicating regions are corresponding to the blocks of constitutive heterochromatin. They show a preferential accumulation of satellite DNA As51. By the use of the fluorochrome chromomycin A3 (CMA3), it was possible to identify GC-rich chromosomal regions, corresponding to late-replicating parts of genome, confirming the revealed data by the replication banding and C-banding. In addition, the analysis by confocal microscopy in kidney cells indicates the location of a peripheral anchorage of this chromosome in the nuclear lamina, reinforcing the idea of downregulation of the associated regions.
Collapse
Affiliation(s)
- Zelinda Schemczssen-Graeff
- Programa de Pós-Graduação em Biologia Evolutiva, Laboratório de Genética Evolutiva, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Patrícia Barbosa
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Laboratório de Citogenética de Peixes, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Jonathan Pena Castro
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Laboratório de Citogenética de Peixes, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Maelin da Silva
- Programa de Pós-Graduação em Biologia Evolutiva, Laboratório de Genética Evolutiva, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Mara Cristina de Almeida
- Programa de Pós-Graduação em Biologia Evolutiva, Laboratório de Genética Evolutiva, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Orlando Moreira-Filho
- Programa de Pós-Graduação em Biologia Evolutiva, Laboratório de Genética Evolutiva, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil.,Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Laboratório de Citogenética de Peixes, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Roberto Ferreira Artoni
- Programa de Pós-Graduação em Biologia Evolutiva, Laboratório de Genética Evolutiva, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil.,Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Laboratório de Citogenética de Peixes, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
18
|
Shoaib M, Nair N, Sørensen CS. Chromatin Landscaping At Mitotic Exit Orchestrates Genome Function. Front Genet 2020; 11:103. [PMID: 32158468 PMCID: PMC7052122 DOI: 10.3389/fgene.2020.00103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/29/2020] [Indexed: 11/23/2022] Open
Abstract
Chromatin architecture is highly dynamic during different phases of cell cycle to accommodate DNA-based processes. This is particularly obvious during mitotic exit, where highly condensed rod-like chromatids need to be rapidly decondensed. Such chromatin structural transitions are tightly controlled and organized as any perturbance in this dynamic process can lead to genome dysfunction which may culminate in loss of cellular fitness. However, the mechanisms underlying cell cycle-dependent chromatin structural changes are not fully understood. In this mini review, we highlight our current knowledge of chromatin structural organization, focusing on mitotic exit. In this regard, we examine how nuclear processes are orchestrated during chromatin unfolding and compartmentalization and discuss the critical importance of cell cycle-controlled chromatin landscaping in maintaining genome integrity.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Biotech Research and Innovation Centre (BRIC), Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nidhi Nair
- Biotech Research and Innovation Centre (BRIC), Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Storgaard Sørensen
- Biotech Research and Innovation Centre (BRIC), Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Oshidari R, Mekhail K, Seeber A. Mobility and Repair of Damaged DNA: Random or Directed? Trends Cell Biol 2020; 30:144-156. [DOI: 10.1016/j.tcb.2019.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022]
|