1
|
Tsujimoto K, Takamatsu H, Kumanogoh A. The Ragulator complex: delving its multifunctional impact on metabolism and beyond. Inflamm Regen 2023; 43:28. [PMID: 37173755 PMCID: PMC10175929 DOI: 10.1186/s41232-023-00278-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Our understanding of lysosomes has undergone a significant transformation in recent years, from the view that they are static organelles primarily responsible for the disposal and recycling of cellular waste to their recognition as highly dynamic structures. Current research posits that lysosomes function as a signaling hub that integrates both extracellular and intracellular stimuli, thereby regulating cellular homeostasis. The dysregulation of lysosomal function has been linked to a wide range of diseases. Of note, lysosomes contribute to the activation of mammalian target of rapamycin complex 1 (mTORC1), a key regulator of cellular metabolism. The Ragulator complex, a protein complex anchored on the lysosomal membrane, was initially shown to tether the mTORC1 complex to lysosomes. Recent research has substantially expanded our understanding of the roles of the Ragulator complex in lysosomes, including roles in the regulation of metabolism, inflammation, cell death, cell migration, and the maintenance of homeostasis, via interactions with various proteins. This review summarizes our current knowledge on the diverse functions of the Ragulator complex, highlighting important protein interactions.
Collapse
Affiliation(s)
- Kohei Tsujimoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
- Department of Immunopathology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Center for Infectious Diseases Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Akagawa R, Nabeshima YI, Kawauchi T. Alternative Functions of Cell Cycle-Related and DNA Repair Proteins in Post-mitotic Neurons. Front Cell Dev Biol 2021; 9:753175. [PMID: 34746147 PMCID: PMC8564117 DOI: 10.3389/fcell.2021.753175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Proper regulation of neuronal morphological changes is essential for neuronal migration, maturation, synapse formation, and high-order function. Many cytoplasmic proteins involved in the regulation of neuronal microtubules and the actin cytoskeleton have been identified. In addition, some nuclear proteins have alternative functions in neurons. While cell cycle-related proteins basically control the progression of the cell cycle in the nucleus, some of them have an extra-cell cycle-regulatory function (EXCERF), such as regulating cytoskeletal organization, after exit from the cell cycle. Our expression analyses showed that not only cell cycle regulators, including cyclin A1, cyclin D2, Cdk4/6, p21cip1, p27kip1, Ink4 family, and RAD21, but also DNA repair proteins, including BRCA2, p53, ATM, ATR, RAD17, MRE11, RAD9, and Hus1, were expressed after neurogenesis, suggesting that these proteins have alternative functions in post-mitotic neurons. In this perspective paper, we discuss the alternative functions of the nuclear proteins in neuronal development, focusing on possible cytoplasmic roles.
Collapse
Affiliation(s)
- Remi Akagawa
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
| | - Yo-ichi Nabeshima
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
| | - Takeshi Kawauchi
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Afanasyeva EA, Gartlgruber M, Ryl T, Decaesteker B, Denecker G, Mönke G, Toprak UH, Florez A, Torkov A, Dreidax D, Herrmann C, Okonechnikov K, Ek S, Sharma AK, Sagulenko V, Speleman F, Henrich KO, Westermann F. Kalirin-RAC controls nucleokinetic migration in ADRN-type neuroblastoma. Life Sci Alliance 2021; 4:e201900332. [PMID: 33658318 PMCID: PMC8017594 DOI: 10.26508/lsa.201900332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The migrational propensity of neuroblastoma is affected by cell identity, but the mechanisms behind the divergence remain unknown. Using RNAi and time-lapse imaging, we show that ADRN-type NB cells exhibit RAC1- and kalirin-dependent nucleokinetic (NUC) migration that relies on several integral components of neuronal migration. Inhibition of NUC migration by RAC1 and kalirin-GEF1 inhibitors occurs without hampering cell proliferation and ADRN identity. Using three clinically relevant expression dichotomies, we reveal that most of up-regulated mRNAs in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells are associated with low-risk characteristics. The computational analysis shows that, in a context of overall gene set poverty, the upregulomes in RAC1- and kalirin-GEF1-suppressed ADRN-type cells are a batch of AU-rich element-containing mRNAs, which suggests a link between NUC migration and mRNA stability. Gene set enrichment analysis-based search for vulnerabilities reveals prospective weak points in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells, including activities of H3K27- and DNA methyltransferases. Altogether, these data support the introduction of NUC inhibitors into cancer treatment research.
Collapse
Affiliation(s)
- Elena A Afanasyeva
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Moritz Gartlgruber
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Tatsiana Ryl
- Department of Neurosurgery, University of Duisburg Essen, Essen, Germany
| | - Bieke Decaesteker
- Center for Medical Genetics, Ghent University, and Cancer Research Institute Ghent, Ghent, Belgium
| | - Geertrui Denecker
- Center for Medical Genetics, Ghent University, and Cancer Research Institute Ghent, Ghent, Belgium
| | - Gregor Mönke
- European Molecular Biology Laboratories, Heidelberg, Germany
| | - Umut H Toprak
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Andres Florez
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
- Center for Systems Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Alica Torkov
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Daniel Dreidax
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Carl Herrmann
- Group of Cancer Regulatory Genomics B086, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Department of Pediatric Neurooncology, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Sara Ek
- Department of Immunotechnology, CREATE Health, Faculty of Engineering, Lund University, Lund, Sweden
| | - Ashwini Kumar Sharma
- Institute for Pharmacy and Molecular Biotechnology and BioQuant, Heidelberg University, Heidelberg, Germany
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vitaliya Sagulenko
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, and Cancer Research Institute Ghent, Ghent, Belgium
| | - Kai-Oliver Henrich
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Frank Westermann
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| |
Collapse
|
4
|
Marlier Q, D'aes T, Verteneuil S, Vandenbosch R, Malgrange B. Core cell cycle machinery is crucially involved in both life and death of post-mitotic neurons. Cell Mol Life Sci 2020; 77:4553-4571. [PMID: 32476056 PMCID: PMC11105064 DOI: 10.1007/s00018-020-03548-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
A persistent dogma in neuroscience supported the idea that terminally differentiated neurons permanently withdraw from the cell cycle. However, since the late 1990s, several studies have shown that cell cycle proteins are expressed in post-mitotic neurons under physiological conditions, indicating that the cell cycle machinery is not restricted to proliferating cells. Moreover, many studies have highlighted a clear link between cell cycle-related proteins and neurological disorders, particularly relating to apoptosis-induced neuronal death. Indeed, cell cycle-related proteins can be upregulated or overactivated in post-mitotic neurons in case of acute or degenerative central nervous system disease. Given the considerable lack of effective treatments for age-related neurological disorders, new therapeutic approaches targeting the cell cycle machinery might thus be considered. This review aims at summarizing current knowledge about the role of the cell cycle machinery in post-mitotic neurons in healthy and pathological conditions.
Collapse
Affiliation(s)
- Quentin Marlier
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Tine D'aes
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Sébastien Verteneuil
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Renaud Vandenbosch
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium.
| |
Collapse
|
5
|
Jing T, Ma J, Zhao H, Zhang J, Jiang N, Ma D. MAST1 modulates neuronal differentiation and cell cycle exit via P27 in neuroblastoma cells. FEBS Open Bio 2020; 10:1104-1114. [PMID: 32291963 PMCID: PMC7262902 DOI: 10.1002/2211-5463.12860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Although 19p13.13 microdeletion syndrome has been consistently associated with intellectual disability, overgrowth, and macrocephaly, the underlying mechanisms remain unclear. MAST1, a member of the microtubule‐associated serine/threonine kinase family, has been suggested as a potential candidate gene responsible for neurologic abnormalities in 19p13.13 microdeletion syndrome, but its role in nervous system development remains to be elucidated. Here, we investigated how MAST1 contributes to neuronal development. We report that MAST1 is upregulated during neuronal differentiation of the human neuroblastoma cell line, SH‐SY5Y. Inhibition of MAST1 expression by RNA interference attenuated neuronal differentiation of SH‐SY5Y cells. Cell cycle analyses revealed that MAST1‐depleted cells did not undergo cell cycle arrest after RA treatment. Consistent with this observation, the number of EdU‐positive cells significantly increased in MAST1 knockdown cells. Intriguingly, levels of P27, a cyclin‐dependent kinase inhibitor, were also increased during neuronal differentiation, and MAST1 knockdown reduced the expression of P27. Moreover, reduced neuronal differentiation caused by MAST1 depletion was rescued partially by P27 overexpression in SH‐SY5Y cells. Collectively, these results suggest that MAST1 influences nervous system development by affecting neuronal differentiation through P27.
Collapse
Affiliation(s)
- Tianrui Jing
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Ma
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Huanqiang Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Children's Hospital, Fudan University, Shanghai, China
| |
Collapse
|