1
|
Presa M, Bailey RM, Ray S, Bailey L, Tata S, Murphy T, Piec PA, Combs H, Gray SJ, Lutz C. Preclinical use of a clinically-relevant scAAV9/SUMF1 vector for the treatment of multiple sulfatase deficiency. COMMUNICATIONS MEDICINE 2025; 5:29. [PMID: 39870870 PMCID: PMC11772666 DOI: 10.1038/s43856-025-00734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Multiple Sulfatase Deficiency (MSD) is a rare inherited lysosomal storage disorder characterized by loss of function mutations in the SUMF1 gene that manifests as a severe pediatric neurological disease. There are no available targeted therapies for MSD. METHODS We engineered a viral vector (AAV9/SUMF1) to deliver working copies of the SUMF1 gene and tested the vector in Sumf1 knock out mice that generally display a median lifespan of 10 days. Mice were injected as pre-symptomatic neonates via intracerebroventricular administration, or as post-symptomatic juveniles via intrathecal alone or combination intrathecal and intravenous delivery. Cohorts were assessed for survival, behavioral outcomes, and post-mortem for sulfatase activity. RESULTS We show that treatment of neonates extends survival up to 1-year post-injection. Importantly, delivery of SUMF1 through cerebral spinal fluid at 7 days of age alleviates MSD symptoms. The treated mice show wide distribution of the SUMF1 gene, no signs of toxicity or neuropathy, improved vision and cardiac function, and no behavioral deficits. One-year post treatment, tissues show increased sulfatase activity, indicating functional SUMF1. Further, a GLP toxicology study conducted in rats demonstrates favorable overall safety of this approach. CONCLUSIONS These preclinical studies highlight the potential of our AAV9/SUMF1 vector, the design of which is directly translatable for clinical use, as a gene replacement therapy for MSD patients.
Collapse
Affiliation(s)
- Maximiliano Presa
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Rachel M Bailey
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Somdatta Ray
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Lauren Bailey
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Saurabh Tata
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Tara Murphy
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | | | - Harold Combs
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Steven J Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Cathleen Lutz
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA.
| |
Collapse
|
2
|
Beard H, Winner L, Shoubridge A, Parkinson‐Lawrence E, Lau AA, Mubarokah SN, Lance T, King B, Scott W, Snel MF, Trim PJ, Hemsley KM. Evaluation of neuroretina following i.v. or intra-CSF AAV9 gene replacement in mice with MPS IIIA, a childhood dementia. CNS Neurosci Ther 2024; 30:e14919. [PMID: 39123298 PMCID: PMC11315678 DOI: 10.1111/cns.14919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Sanfilippo syndrome (mucopolysaccharidosis type IIIA; MPS IIIA) is a childhood dementia caused by inherited mutations in the sulfamidase gene. At present, there is no treatment and children with classical disease generally die in their late teens. Intravenous or intra-cerebrospinal fluid (CSF) injection of AAV9-gene replacement is being examined in human clinical trials; evaluation of the impact on brain disease is an intense focus; however, MPS IIIA patients also experience profound, progressive photoreceptor loss, leading to night blindness. AIM To compare the relative efficacy of the two therapeutic approaches on retinal degeneration in MPS IIIA mice. METHODS Neonatal mice received i.v. or intra-CSF AAV9-sulfamidase or vehicle and after 20 weeks, biochemical and histological evaluation of neuroretina integrity was carried out. RESULTS Both treatments improved central retinal thickness; however, in peripheral retina, outer nuclear layer thickness and photoreceptor cell length were only significantly improved by i.v. gene replacement. Further, normalization of endo-lysosomal compartment size and microglial morphology was only observed following intravenous gene delivery. CONCLUSIONS Confirmatory studies are needed in adult mice; however, these data indicate that i.v. AAV9-sulfamidase infusion leads to superior outcomes in neuroretina, and cerebrospinal fluid-delivered AAV9 may need to be supplemented with another therapeutic approach for optimal patient quality of life.
Collapse
Affiliation(s)
- Helen Beard
- Childhood Dementia Research GroupFlinders Health and Medical Research Institute College of Medicine and Public Health Flinders UniversityBedford ParkSouth AustraliaAustralia
| | - Leanne Winner
- Childhood Dementia Research GroupFlinders Health and Medical Research Institute College of Medicine and Public Health Flinders UniversityBedford ParkSouth AustraliaAustralia
| | - Andrew Shoubridge
- Healthy Microbiome and Chronic Disease, Lifelong Health ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideSouth AustraliaAustralia
| | - Emma Parkinson‐Lawrence
- Mechanisms in Cell Biology and Disease Research Group, Clinical Health SciencesUniSAAdelaideSouth AustraliaAustralia
| | - Adeline A. Lau
- Childhood Dementia Research GroupFlinders Health and Medical Research Institute College of Medicine and Public Health Flinders UniversityBedford ParkSouth AustraliaAustralia
| | - Siti N. Mubarokah
- Childhood Dementia Research GroupFlinders Health and Medical Research Institute College of Medicine and Public Health Flinders UniversityBedford ParkSouth AustraliaAustralia
| | - Tabitha‐Rose Lance
- Childhood Dementia Research GroupFlinders Health and Medical Research Institute College of Medicine and Public Health Flinders UniversityBedford ParkSouth AustraliaAustralia
| | - Barbara King
- Childhood Dementia Research GroupFlinders Health and Medical Research Institute College of Medicine and Public Health Flinders UniversityBedford ParkSouth AustraliaAustralia
| | - William Scott
- Childhood Dementia Research GroupFlinders Health and Medical Research Institute College of Medicine and Public Health Flinders UniversityBedford ParkSouth AustraliaAustralia
| | - Marten F. Snel
- Proteomics, Metabolomics and MS‐Imaging FacilitySouth Australian Health and Medical Research Institute (SAHMRI)AdelaideSouth AustraliaAustralia
| | - Paul J. Trim
- Proteomics, Metabolomics and MS‐Imaging FacilitySouth Australian Health and Medical Research Institute (SAHMRI)AdelaideSouth AustraliaAustralia
| | - Kim M. Hemsley
- Childhood Dementia Research GroupFlinders Health and Medical Research Institute College of Medicine and Public Health Flinders UniversityBedford ParkSouth AustraliaAustralia
| |
Collapse
|
3
|
De Falco A, Karali M, Criscuolo C, Testa F, Barillari MR, Scarpato M, Gaudieri V, Cuocolo A, Russo A, Nigro V, Simonelli F, Banfi S, Brunetti-Pierri N. Late-onset mucopolysaccharidosis type IIIA mimicking Usher syndrome. Am J Med Genet A 2024; 194:e63517. [PMID: 38149346 DOI: 10.1002/ajmg.a.63517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA or Sanfilippo syndrome type A) is an autosomal recessive lysosomal storage disorder caused by pathogenic variants in the SGSH gene encoding N-sulfoglucosamine sulfohydrolase, an enzyme involved in the degradation of heparan sulfate. MPS IIIA is typically characterized by neurocognitive decline and hepatosplenomegaly with childhood onset. Here, we report on a 53-year-old male subject initially diagnosed with Usher syndrome for the concurrence of retinitis pigmentosa and sensorineural hearing loss. Clinical exome sequencing identified biallelic missense variants in SGSH, and biochemical assays showed complete deficiency of sulfamidase activity and increased urinary glycosaminoglycan excretion. Reverse phenotyping revealed left ventricle pseudo-hypertrophy, hepatosplenomegaly, bilateral deep white matter hyperintensities upon brain MRI, and decreased cortical metabolic activity by PET-CT. On neuropsychological testing, the proband presented only partial and isolated verbal memory deficits. This case illustrates the power of unbiased, comprehensive genetic testing for the diagnosis of challenging mild or atypical forms of MPS IIIA.
Collapse
Affiliation(s)
- Alessandro De Falco
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Marianthi Karali
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Chiara Criscuolo
- Department of Neuroscience, Reproductive, and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Rosaria Barillari
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Margherita Scarpato
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Anna Russo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sandro Banfi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Jiang B, Hong N, Zhang L, Xu B, He Q, Qian X, Li F, Dong F. MiR-181a-5p may regulate cell proliferation and autophagy in myopia and the associated retinopathy. Exp Eye Res 2024; 241:109829. [PMID: 38354943 DOI: 10.1016/j.exer.2024.109829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/01/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The mechanism of myopia and the associated retinopathy remains unclear, and dysregulated microRNAs (miRNAs) are implicated in this disease. In this research, we purposed to find out the regulatory function that miRNAs play in myopia and the associated retinopathy. We first performed miRNA microarray analysis in a lens-induced myopia mouse model and found that miR-9-5p, miR-96-5p, miR-182-5p, miR-183-5p, and miR-181a-5p were elevated in the myopic retina. Then, we examined the functions and regulatory mechanisms of miR-181a-5p utilizing the human retinal pigment epithelium (RPE) cell line ARPE-19 by overexpressing miR-181a-5p. RNA sequencing (RNA-Seq) and qRT-PCR analysis were employed to identify differentially expressed genes after transfection. The qRT‒PCR outcomes, immunoblotting, and immunofluorescence indicated that the SGSH expression was significantly hindered through miR-181a-5p overexpression. MiR-181a-5p overexpression has the ability to elevate RPE cell proliferation and induce autophagy by targeting SGSH. We validated the negative influence of miR-181a-5p on the SGSH expression through luciferase reporter assays, which demonstrated its ability to target the 3' untranslated region of SGSH. The reversal of implications of miR-181a-5p overexpression was achieved through SGSH upregulation. We provided novel perspectives into the miR-181a-5p function in regulating myopia development and may serve as a target for therapy and molecular biomarker for myopia.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Nan Hong
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Liyue Zhang
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Baisheng Xu
- Department of Ophthalmology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Qin He
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xilin Qian
- Department of Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Feidi Li
- Department of Ophthalmology, Beilun People's Hospital of Ningbo City, Ningbo, 315826, Zhejiang, China
| | - Feng Dong
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
5
|
Hemsley KM, Beard H, Chidlow G, Mammone T, Winner LK, Neumann D, King B, Snel MF, Trim PJ, Casson RJ. Repetitive, non-invasive imaging of neurodegeneration, and prevention of it with gene replacement, in mice with Sanfilippo syndrome. Exp Neurol 2024; 371:114610. [PMID: 37944880 DOI: 10.1016/j.expneurol.2023.114610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Hampering assessment of treatment outcomes in gene therapy and other clinical trials in patients with childhood dementia is the lack of an objective, non-invasive measure of neurodegeneration. Optical coherence tomography (OCT) is a widely available, rapid, non-invasive, and quantitative method for examining the integrity of the neuroretina. Profound brain and retinal dysfunction occur in patients and animal models of childhood dementia, including Sanfilippo syndrome and we recently revealed a correlation between the age of onset and rate of progression of retinal and brain degeneration in sulfamidase-deficient Sanfilippo mice. The aim of the current study was to use OCT to visualise the discrete changes in retinal structure that occur during disease progression. A progressive decline in retinal thickness was readily observable in Sanfilippo mice using OCT, with differences seen in affected animals from 10-weeks of age. OCT applied to i.v. AAV9-sulfamidase-treated Sanfilippo mice enabled visualisation of improved retinal anatomy in living animals, an outcome confirmed via histology. Importantly, brain disease lesions were also ameliorated in treated Sanfilippo mice. The findings highlight the sensitivity, ease of repetitive use and quantitative capacity of OCT for detection of discrete changes in retinal structure and their prevention with a therapeutic. Combined with the knowledge that retinal and brain degeneration are correlated in Sanfilippo syndrome, OCT provides a window to the brain in this and potentially other childhood dementias.
Collapse
Affiliation(s)
- Kim M Hemsley
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| | - Helen Beard
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Glyn Chidlow
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Teresa Mammone
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Leanne K Winner
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Daniel Neumann
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Barbara King
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Marten F Snel
- Proteomics, Metabolomics and MS-Imaging Facility, South Australian Health, and Medical Research Institute, Adelaide, SA, Australia
| | - Paul J Trim
- Proteomics, Metabolomics and MS-Imaging Facility, South Australian Health, and Medical Research Institute, Adelaide, SA, Australia
| | - Robert J Casson
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
Boya P, Kaarniranta K, Handa JT, Sinha D. Lysosomes in retinal health and disease. Trends Neurosci 2023; 46:1067-1082. [PMID: 37848361 PMCID: PMC10842632 DOI: 10.1016/j.tins.2023.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 10/19/2023]
Abstract
Lysosomes play crucial roles in various cellular processes - including endocytosis, phagocytosis, and autophagy - which are vital for maintaining retinal health. Moreover, these organelles serve as environmental sensors and act as central hubs for multiple signaling pathways. Through communication with other cellular components, such as mitochondria, lysosomes orchestrate the cytoprotective response essential for preserving cellular homeostasis. This coordination is particularly critical in the retina, given its high metabolic rate and susceptibility to photo-oxidative stress. Consequently, impaired lysosomal function and dysregulated communication between lysosomes and other organelles contribute significantly to the pathobiology of major retinal degenerative diseases. This review explores the pivotal role of lysosomes in retinal cells and their involvement in retinal degenerative diseases.
Collapse
Affiliation(s)
- Patricia Boya
- Department of Neuroscience, University of Fribourg, Fribourg, Switzerland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - James T Handa
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debasish Sinha
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Imakiire A, Morimoto H, Suzuki H, Masuda T, Yoden E, Inoue A, Morioka H, Konaka T, Mori A, Shirasaka R, Kato R, Hirato T, Sonoda H, Minami K. Transferrin Receptor-Targeted Iduronate-2-sulfatase Penetrates the Blood-Retinal Barrier and Improves Retinopathy in Mucopolysaccharidosis II Mice. Mol Pharm 2023; 20:5901-5909. [PMID: 37860991 PMCID: PMC10630942 DOI: 10.1021/acs.molpharmaceut.3c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Mucopolysaccharidoses (MPSs) make up a group of lysosomal storage diseases characterized by the aberrant accumulation of glycosaminoglycans throughout the body. Patients with MPSs display various signs and symptoms, such as retinopathy, which is also observed in patients with MPS II. Unfortunately, retinal disorders in MPS II are resistant to conventional intravenous enzyme-replacement therapy because the blood-retinal barrier (BRB) impedes drug penetration. In this study, we show that a fusion protein, designated pabinafusp alfa, consisting of an antihuman transferrin receptor antibody and iduronate-2-sulfatase (IDS), crosses the BRB and reaches the retina in a murine model of MPS II. We found that retinal function, as assessed by electroretinography (ERG) in MPS II mice, deteriorated with age. Early intervention with repeated intravenous treatment of pabinafusp alfa decreased heparan sulfate deposition in the retina, optic nerve, and visual cortex, thus preserving or even improving the ERG response in MPS II mice. Histological analysis further revealed that pabinafusp alfa mitigated the loss of the photoreceptor layer observed in diseased mice. In contrast, recombinant nonfused IDS failed to reach the retina and hardly affected the retinal disease. These results support the hypothesis that transferrin receptor-targeted IDS can penetrate the BRB, thereby ameliorating retinal dysfunction in MPS II.
Collapse
Affiliation(s)
- Atsushi Imakiire
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Hideto Morimoto
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Hidehiko Suzuki
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Tomomi Masuda
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Eiji Yoden
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Asuka Inoue
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Hiroki Morioka
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Takashi Konaka
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Ayaka Mori
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Ryoji Shirasaka
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Ryo Kato
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Tohru Hirato
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Hiroyuki Sonoda
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Kohtaro Minami
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| |
Collapse
|
8
|
Pericleous K, McIntyre C, Fuller M. Neurocognitive testing in a murine model of mucopolysaccharidosis type IIIA. Mol Genet Metab Rep 2023; 36:100985. [PMID: 37332488 PMCID: PMC10276283 DOI: 10.1016/j.ymgmr.2023.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA) is an inherited metabolic disorder caused by a lysosomal enzyme deficiency resulting in heparan sulphate (HS) accumulation and manifests with a progressive neurodegenerative phenotype. A naturally occurring MPS IIIA mouse model is invaluable for preclinical evaluation of potential treatments but the ability to effectively assess neurological function has proved challenging. Here, the aim was to evaluate a set of behaviour tests for their reliability in assessing disease progression in the MPS IIIA mouse model. Compared to wild-type (WT) mice, MPS IIIA mice displayed memory and learning deficits in the water crossmaze from mid-stage disease and locomotor impairment in the hind-limb gait assessment at late-stage disease, supporting previous findings. Declined wellbeing was also observed in the MPS IIIA mice via burrowing and nest building evaluation at late-stage disease compared to WT mice, mirroring the progressive nature of neurological disease. Excessive HS accumulation observed in the MPS IIIA mouse brain from 1 month of age did not appear to manifest as abnormal behaviours until at least 6 months of age suggesting there may be a threshold of HS accumulation before measurable neurocognitive decline. Results obtained from the open field and three-chamber sociability test are inconsistent with previous studies and do not reflect MPS IIIA patient disease progression, suggesting these assessments are not reliable. In conclusion, water cross-maze, hind-limb gait, nest building and burrowing, are promising assessments in the MPS IIIA mouse model, which produce consistent results that mimic the human disease.
Collapse
Affiliation(s)
- Kleopatra Pericleous
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, 72 King William Road, North Adelaide 5006, Australia
- School of Biological Sciences, University of Adelaide, Adelaide 5000, Australia
| | - Chantelle McIntyre
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, 72 King William Road, North Adelaide 5006, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, 72 King William Road, North Adelaide 5006, Australia
- School of Biological Sciences, University of Adelaide, Adelaide 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide 5000, Australia
| |
Collapse
|
9
|
Ludwig J, Sawant OB, Wood J, Singamsetty S, Pan X, Bonilha VL, Rao S, Pshezhetsky AV. Histological characterization of retinal degeneration in mucopolysaccharidosis type IIIC. Exp Eye Res 2023; 229:109433. [PMID: 36858249 PMCID: PMC10103010 DOI: 10.1016/j.exer.2023.109433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
Heparan-α-glucosaminide N-acetyltransferase (HGSNAT) participates in lysosomal degradation of heparan sulfate. Mutations in the gene encoding this enzyme cause mucopolysaccharidosis IIIC (MPS IIIC) or Sanfilippo syndrome type C. MPS IIIC patients exhibit progressive neurodegeneration, leading to dementia and death in early adulthood. Currently there is no approved treatment for MPS IIIC. Incidences of non-syndromic retinitis pigmentosa and early signs of night blindness are reported in some MPS IIIC patients, however the majority of ocular phenotypes are not well characterized. The goal of this study was to investigate retinal degeneration phenotype in the Hgsnat knockout mouse model of MPS IIIC and a cadaveric human MPS IIIC eye. Cone and rod photoreceptors in the eyes of homozygous 6-month-old Hgsnat knockout mice and their wild-type counterparts were analyzed using cone arrestin, S-opsin, M-opsin and rhodopsin antibodies. Histological observation was performed on the eye from a 35-year-old MPS IIIC donor. We observed a nearly 50% reduction in the rod photoreceptors density in the Hgsnat knockout mice compared to the littermate wild-type controls. Cone photoreceptor density was unaltered at this age. Severe retinal degeneration was also observed in the MPS IIIC donor eye. To our knowledge, this is the first report characterizing ocular phenotypes arising from deleterious variants in the Hgsnat gene associated with MPS IIIC clinical phenotype. Our findings indicate retinal manifestations may be present even before behavioral manifestations. Thus, we speculate that ophthalmological evaluations could be used as diagnostic indicators of early disease, progression, and end-point evaluation for future MPS IIIC therapies.
Collapse
Affiliation(s)
- Jessica Ludwig
- Center for Vision and Eye Banking Research, Eversight, Cleveland, OH, 44103, USA
| | - Onkar B Sawant
- Center for Vision and Eye Banking Research, Eversight, Cleveland, OH, 44103, USA.
| | | | | | - Xuefang Pan
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Vera L Bonilha
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sujata Rao
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alexey V Pshezhetsky
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Sorrentino NC, Presa M, Attanasio S, Cacace V, Sofia M, Zuberi A, Ryan J, Ray S, Petkovic I, Radhakrishnan K, Schlotawa L, Ballabio A, Lutz C, Brunetti-Pierri N. New mouse models with hypomorphic SUMF1 variants mimic attenuated forms of multiple sulfatase deficiency. J Inherit Metab Dis 2023; 46:335-347. [PMID: 36433920 PMCID: PMC10832386 DOI: 10.1002/jimd.12577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 11/28/2022]
Abstract
Multiple sulfatase deficiency (MSD) is an ultrarare lysosomal storage disorder due to deficiency of all known sulfatases. MSD is caused by mutations in the Sulfatase Modifying Factor 1 (SUMF1) gene encoding the enzyme responsible for the post-translational modification and activation of all sulfatases. Most MSD patients carry hypomorph SUMF1 variants resulting in variable degrees of residual sulfatase activities. In contrast, Sumf1 null mice with complete deficiency in all sulfatase enzyme activities, have very short lifespan with significant pre-wean lethality, owing to a challenging preclinical model. To overcome this limitation, we genetically engineered and characterized in mice two commonly identified patient-based SUMF1 pathogenic variants, namely p.Ser153Pro and p.Ala277Val. These pathogenic missense variants correspond to variants detected in patients with attenuated MSD presenting with partial-enzyme deficiency and relatively less severe disease. These novel MSD mouse models have a longer lifespan and show biochemical and pathological abnormalities observed in humans. In conclusion, mice harboring the p.Ser153Pro or the p.Ala277Val variant mimic the attenuated MSD and are attractive preclinical models for investigation of pathogenesis and treatments for MSD.
Collapse
Affiliation(s)
- Nicolina Cristina Sorrentino
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - Sergio Attanasio
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Vincenzo Cacace
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Martina Sofia
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | | | | | | | - Igor Petkovic
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | | | - Lars Schlotawa
- Department of Paediatrics and Adolescent Medicine, University Medical Centre Göttingen, Göttingen, Germany
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA
- Department of Translational Medicine, Federico II University, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | | | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Schultheis N, Becker R, Berhanu G, Kapral A, Roseman M, Shah S, Connell A, Selleck S. Regulation of autophagy, lipid metabolism, and neurodegenerative pathology by heparan sulfate proteoglycans. Front Genet 2023; 13:1012706. [PMID: 36699460 PMCID: PMC9870329 DOI: 10.3389/fgene.2022.1012706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Heparan sulfate modified proteins or proteoglycans (HSPGs) are an abundant class of cell surface and extracellular matrix molecules. They serve important co-receptor functions in the regulation of signaling as well as membrane trafficking. Many of these activities directly affect processes associated with neurodegeneration including uptake and export of Tau protein, disposition of Amyloid Precursor Protein-derived peptides, and regulation of autophagy. In this review we focus on the impact of HSPGs on autophagy, membrane trafficking, mitochondrial quality control and biogenesis, and lipid metabolism. Disruption of these processes are a hallmark of Alzheimer's disease (AD) and there is evidence that altering heparan sulfate structure and function could counter AD-associated pathological processes. Compromising presenilin function in several systems has provided instructive models for understanding the molecular and cellular underpinnings of AD. Disrupting presenilin function produces a constellation of cellular deficits including accumulation of lipid, disruption of autophagosome to lysosome traffic and reduction in mitochondrial size and number. Inhibition of heparan sulfate biosynthesis has opposing effects on all these cellular phenotypes, increasing mitochondrial size, stimulating autophagy flux to lysosomes, and reducing the level of intracellular lipid. These findings suggest a potential mechanism for countering pathology found in AD and related disorders by altering heparan sulfate structure and influencing cellular processes disrupted broadly in neurodegenerative disease. Vertebrate and invertebrate model systems, where the cellular machinery of autophagy and lipid metabolism are conserved, continue to provide important translational guideposts for designing interventions that address the root cause of neurodegenerative pathology.
Collapse
Affiliation(s)
- Nicholas Schultheis
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Robert Becker
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Gelila Berhanu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Alexander Kapral
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Matthew Roseman
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Shalini Shah
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Alyssa Connell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Scott Selleck
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
12
|
Intartaglia D, Giamundo G, Conte I. Autophagy in the retinal pigment epithelium: a new vision and future challenges. FEBS J 2022; 289:7199-7212. [PMID: 33993621 PMCID: PMC9786786 DOI: 10.1111/febs.16018] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 01/13/2023]
Abstract
The retinal pigment epithelium (RPE) is a highly specialized monolayer of polarized, pigmented epithelial cells that resides between the vessels of the choriocapillaris and the neural retina. The RPE is essential for the maintenance and survival of overlying light-sensitive photoreceptors, as it participates in the formation of the outer blood-retinal barrier, phagocytosis, degradation of photoreceptor outer segment (POS) tips, maintenance of the retinoid cycle, and protection against light and oxidative stress. Autophagy is an evolutionarily conserved 'self-eating' process, designed to maintain cellular homeostasis. The daily autophagy demands in the RPE require precise gene regulation for the digestion and recycling of intracellular and POS components in lysosomes in response to light and stress conditions. In this review, we discuss selective autophagy and focus on the recent advances in our understanding of the mechanism of cell clearance in the RPE for visual function. Understanding how this catabolic process is regulated by both transcriptional and post-transcriptional mechanisms in the RPE will promote the recognition of pathological pathways in genetic disease and shed light on potential therapeutic strategies to treat visual impairments in patients with retinal disorders associated with lysosomal dysfunction.
Collapse
Affiliation(s)
| | | | - Ivan Conte
- Telethon Institute of Genetics and MedicinePozzuoli (Naples)Italy,Department of BiologyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
13
|
Hanna J, David LA, Touahri Y, Fleming T, Screaton RA, Schuurmans C. Beyond Genetics: The Role of Metabolism in Photoreceptor Survival, Development and Repair. Front Cell Dev Biol 2022; 10:887764. [PMID: 35663397 PMCID: PMC9157592 DOI: 10.3389/fcell.2022.887764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
Vision commences in the retina with rod and cone photoreceptors that detect and convert light to electrical signals. The irreversible loss of photoreceptors due to neurodegenerative disease leads to visual impairment and blindness. Interventions now in development include transplanting photoreceptors, committed photoreceptor precursors, or retinal pigment epithelial (RPE) cells, with the latter protecting photoreceptors from dying. However, introducing exogenous human cells in a clinical setting faces both regulatory and supply chain hurdles. Recent work has shown that abnormalities in central cell metabolism pathways are an underlying feature of most neurodegenerative disorders, including those in the retina. Reversal of key metabolic alterations to drive retinal repair thus represents a novel strategy to treat vision loss based on cell regeneration. Here, we review the connection between photoreceptor degeneration and alterations in cell metabolism, along with new insights into how metabolic reprogramming drives both retinal development and repair following damage. The potential impact of metabolic reprogramming on retinal regeneration is also discussed, specifically in the context of how metabolic switches drive both retinal development and the activation of retinal glial cells known as Müller glia. Müller glia display latent regenerative properties in teleost fish, however, their capacity to regenerate new photoreceptors has been lost in mammals. Thus, re-activating the regenerative properties of Müller glia in mammals represents an exciting new area that integrates research into developmental cues, central metabolism, disease mechanisms, and glial cell biology. In addition, we discuss this work in relation to the latest insights gleaned from other tissues (brain, muscle) and regenerative species (zebrafish).
Collapse
Affiliation(s)
- Joseph Hanna
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Luke Ajay David
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Yacine Touahri
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Taylor Fleming
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
| | - Robert A. Screaton
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- *Correspondence: Carol Schuurmans,
| |
Collapse
|
14
|
Emerging Lysosomal Functions for Photoreceptor Cell Homeostasis and Survival. Cells 2021; 11:cells11010060. [PMID: 35011622 PMCID: PMC8750961 DOI: 10.3390/cells11010060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Lysosomes are membrane-bound cell organelles that respond to nutrient changes and are implicated in cell homeostasis and clearance mechanisms, allowing effective adaptation to specific cellular needs. The relevance of the lysosome has been elucidated in a number of different contexts. Of these, the retina represents an interesting scenario to appreciate the various functions of this organelle in both physiological and pathological conditions. Growing evidence suggests a role for lysosome-related mechanisms in retinal degeneration. Abnormal lysosomal activation or inhibition has dramatic consequences on photoreceptor cell homeostasis and impacts extensive cellular function, which in turn affects vision. Based on these findings, a series of therapeutic methods targeting lysosomal processes could offer treatment for blindness conditions. Here, we review the recent findings on membrane trafficking, subcellular organization, mechanisms by which lysosome/autophagy pathway impairment affects photoreceptor cell homeostasis and the recent advances on developing efficient lysosomal-based therapies for retinal disorders.
Collapse
|
15
|
Keilhoff G, Titze M, Ebmeyer U. Immuno-histological detection of resistant columnar units and vulnerable networks in the rat retina after asphyxia-induced transient cardiac arrest. Restor Neurol Neurosci 2021; 39:267-289. [PMID: 34334436 DOI: 10.3233/rnn-211174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Stroke-related loss of vision is one of the residual impairments, restricting the quality of life. However, studies of the ocular manifestations of asphyxia cardiac arrest/resuscitation (ACA/R) have reported very heterogeneous results. OBJECTIVE We aimed to evaluate the ACA/R-induced degeneration pattern of the different retinal cell populations in rats using different immuno-histological stainings. METHODS The staining pattern of toluidine blue and the ganglion cell markers β-III-tubulin and NeuN; the calcium-binding protein parvalbumin, indicating ganglion, amacrine, and horizontal cells; calretinin D28k, indicating ganglion and amacrine cells; calbindin, indicating horizontal cells; Chx 10, indicating cone bipolar cells; PKCα, indicating ON-type rod bipolar cells; arrestin, indicating cones; and rhodopsin, a marker of rods, as well as the glial cell markers GFAP (indicating astroglia and Müller cells) and IBA1 (indicating microglia), were evaluated after survival times of 7 and 21 days in an ACA/R rat model. Moreover, quantitative morphological analysis of the optic nerve was performed. The ACA/R specimens were compared with those from sham-operated and completely naïve rats. RESULTS ACA/R-induced effects were: (i) a significant reduction of retinal thickness after long-term survival; (ii) ganglion cell degeneration, including their fiber network in the inner plexiform layer; (iii) degeneration of amacrine and cone bipolar cells; (iv) degeneration of cone photoreceptors; (v) enhanced resistance to ACA/R by rod photoreceptors, ON-type rod bipolar and horizontal cells, possibly caused by the strong upregulation of the calcium-binding proteins calretinin, parvalbumin, and calbindin, counteracting the detrimental calcium overload; (vi) significant activation of Müller cells as further element of retinal anti-stress self-defense mechanisms; and (vii) morphological alterations of the optic nerve in form of deformed fibers. CONCLUSIONS Regardless of the many defects, the surviving neuronal structures seemed to be able to maintain retinal functionality, which can be additionally improved by regenerative processes true to the "use it or lose it" dogma.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| | - Maximilian Titze
- Institute of Biochemistry and Cell Biology, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| | - Uwe Ebmeyer
- Department of Anesthesiology, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
16
|
Tonazzini I, Cerri C, Del Grosso A, Antonini S, Allegra M, Caleo M, Cecchini M. Visual System Impairment in a Mouse Model of Krabbe Disease: The Twitcher Mouse. Biomolecules 2020; 11:biom11010007. [PMID: 33374753 PMCID: PMC7824544 DOI: 10.3390/biom11010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022] Open
Abstract
Krabbe disease (KD, or globoid cell leukodystrophy; OMIM #245200) is an inherited neurodegenerative condition belonging to the class of the lysosomal storage disorders. It is caused by genetic alterations in the gene encoding for the enzyme galactosylceramidase, which is responsible for cleaving the glycosydic linkage of galatosylsphingosine (psychosine or PSY), a highly cytotoxic molecule. Here, we describe morphological and functional alterations in the visual system of the Twitcher (TWI) mouse, the most used animal model of Krabbe disease. We report in vivo electrophysiological recordings showing defective basic functional properties of the TWI primary visual cortex. In particular, we demonstrate a reduced visual acuity and contrast sensitivity, and a delayed visual response. Specific neuropathological alterations are present in the TWI visual cortex, with reduced myelination, increased astrogliosis and microglia activation, and around the whole brain. Finally, we quantify PSY content in the brain and optic nerves by high-pressure liquid chromatography-mass spectrometry methods. An increasing PSY accumulation with time, the characteristic hallmark of KD, is found in both districts. These results represent the first complete characterization of the TWI visual system. Our data set a baseline for an easy testing of potential therapies for this district, which is also dramatically affected in KD patients.
Collapse
Affiliation(s)
- Ilaria Tonazzini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (I.T.); (A.D.G.); (S.A.)
| | - Chiara Cerri
- Istituto Neuroscienze-CNR, Via G. Moruzzi 1, 56124 Pisa, Italy; (C.C.); (M.A.); (M.C.)
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Ambra Del Grosso
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (I.T.); (A.D.G.); (S.A.)
| | - Sara Antonini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (I.T.); (A.D.G.); (S.A.)
| | - Manuela Allegra
- Istituto Neuroscienze-CNR, Via G. Moruzzi 1, 56124 Pisa, Italy; (C.C.); (M.A.); (M.C.)
- Department of Neuroscience, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France
| | - Matteo Caleo
- Istituto Neuroscienze-CNR, Via G. Moruzzi 1, 56124 Pisa, Italy; (C.C.); (M.A.); (M.C.)
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131 Padua, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (I.T.); (A.D.G.); (S.A.)
- Correspondence:
| |
Collapse
|
17
|
Beard H, Chidlow G, Neumann D, Nazri N, Douglass M, Trim PJ, Snel MF, Casson RJ, Hemsley KM. Is the eye a window to the brain in Sanfilippo syndrome? Acta Neuropathol Commun 2020; 8:194. [PMID: 33203474 PMCID: PMC7672954 DOI: 10.1186/s40478-020-01070-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 11/10/2022] Open
Abstract
Sanfilippo syndrome is an untreatable form of childhood-onset dementia. Whilst several therapeutic strategies are being evaluated in human clinical trials including i.v. delivery of AAV9-based gene therapy, an urgent unmet need is the availability of non-invasive, quantitative measures of neurodegeneration. We hypothesise that as part of the central nervous system, the retina may provide a window through which to 'visualise' degenerative lesions in brain and amelioration of them following treatment. This is reliant on the age of onset and the rate of disease progression being equivalent in retina and brain. For the first time we have assessed in parallel, the nature, age of onset and rate of retinal and brain degeneration in a mouse model of Sanfilippo syndrome. Significant accumulation of heparan sulphate and expansion of the endo/lysosomal system was observed in both retina and brain pre-symptomatically (by 3 weeks of age). Robust and early activation of micro- and macroglia was also observed in both tissues. There was substantial thinning of retina and loss of rod and cone photoreceptors by ~ 12 weeks of age, a time at which cognitive symptoms are noted. Intravenous delivery of a clinically relevant AAV9-human sulphamidase vector to neonatal mice prevented disease lesion appearance in retina and most areas of brain when assessed 6 weeks later. Collectively, the findings highlight the previously unrecognised early and significant involvement of retina in the Sanfilippo disease process, lesions that are preventable by neonatal treatment with AAV9-sulphamidase. Critically, our data demonstrate for the first time that the advancement of retinal disease parallels that occurring in brain in Sanfilippo syndrome, thus retina may provide an easily accessible neural tissue via which brain disease development and its amelioration with treatment can be monitored.
Collapse
|
18
|
Lysosomal sulfatases: a growing family. Biochem J 2020; 477:3963-3983. [PMID: 33120425 DOI: 10.1042/bcj20200586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
Sulfatases constitute a family of enzymes that specifically act in the hydrolytic degradation of sulfated metabolites by removing sulfate monoesters from various substrates, particularly glycolipids and glycosaminoglycans. A common essential feature of all known eukaryotic sulfatases is the posttranslational modification of a critical cysteine residue in their active site by oxidation to formylglycine (FGly), which is mediated by the FGly-generating enzyme in the endoplasmic reticulum and is indispensable for catalytic activity. The majority of the so far described sulfatases localize intracellularly to lysosomes, where they act in different catabolic pathways. Mutations in genes coding for lysosomal sulfatases lead to an accumulation of the sulfated substrates in lysosomes, resulting in impaired cellular function and multisystemic disorders presenting as lysosomal storage diseases, which also cover the mucopolysaccharidoses and metachromatic leukodystrophy. Bioinformatics analysis of the eukaryotic genomes revealed, besides the well described and long known disease-associated sulfatases, additional genes coding for putative enzymes with sulfatases activity, including arylsulfatase G as well as the arylsulfatases H, I, J and K, respectively. In this article, we review current knowledge about lysosomal sulfatases with a special focus on the just recently characterized family members arylsulfatase G and arylsulfatase K.
Collapse
|