1
|
Ciambella C, Witt H, Dickinson CM, Smith ML, Coburn N, Messina N, Heffernan DS, Kim M, Reichner JS. INHIBITION OF INTEGRIN VLA-3 AND TETRASPANIN CD151 PROTECTS AGAINST NEUTROPHIL-MEDIATED ENDOTHELIAL DAMAGE. Shock 2024; 62:165-172. [PMID: 38813923 PMCID: PMC11254560 DOI: 10.1097/shk.0000000000002397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT Background: The recruitment of neutrophils to sites of localized injury or infection is initiated by changes on the surface of endothelial cells located in proximity to tissue damage. Inflammatory mediators, such as TNF-α, increase surface expression of adhesive ligands and receptors on the endothelial surface to which neutrophils tether and adhere. Neutrophils then transit through the activated endothelium to reach sites of tissue injury with little lasting vascular injury. However, in cases of sepsis, the interaction of endothelial cells with highly activated neutrophils can cause damage vascular damage. The identification of molecules that are essential for neutrophil diapedesis may reveal targets of therapeutic opportunity for preservation of endothelial function in the presence of critical illness. We tested the hypothesis that inhibition of neutrophil β1 integrin very late antigen-3 (VLA-3; α3β1) and/or inhibition of the tetraspanin (TM4) family member CD151 would protect against neutrophil-mediated loss of endothelial function. Methods: Blood was obtained from septic patients or healthy donors. Neutrophils were purified, and aliquots were treated with/without proinflammatory molecules. Confluent human umbilical vascular endothelial cells were activated with TNF-α. Electric cell impedance sensing was used to determine monolayer resistance over time after the addition of neutrophils that were treated with blocking antibodies against VLA-3 and/or CD151 or isotype controls. Groups (depending on relevancy) were analyzed by Mann-Whitney U test, Wilcoxon test, or repeated-measures one-way ANOVA. Results: Neutrophils from septic patients and neutrophils activated ex vivo reduced endothelial monolayer resistance to a greater extent than neutrophils from healthy donors. Antibody blockade of VLA-3 and/or CD151 significantly reduced activation-associated endothelial damage. Similar findings were demonstrated on fibronectin, collagen I, collagen IV, and laminin, suggesting that neutrophil surface VLA-3 and CD151 are responsible for endothelial damage regardless of substrata and are likely to be operative in all bodily tissues. Conclusion: This report identifies VLA-3 and CD151 on the activated human neutrophil, which are responsible for damage to endothelial function. Targeting these molecules in vivo may demonstrate preservation of organ function during critical illness.
Collapse
Affiliation(s)
- Chelsey Ciambella
- Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island
| | | | - Catherine M Dickinson
- Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Madison L Smith
- Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Nicholas Coburn
- Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Nicholas Messina
- Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Daithi S Heffernan
- Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York
| | - Jonathan S Reichner
- Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|