1
|
Kalita B, Sahu S, Bharadwaj A, Panneerselvam L, Martinez-Cebrian G, Agarwal M, Mathew SJ. The Wnt-pathway corepressor TLE3 interacts with the histone methyltransferase KMT1A to inhibit differentiation in Rhabdomyosarcoma. Oncogene 2024; 43:524-538. [PMID: 38177411 DOI: 10.1038/s41388-023-02911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Rhabdomyosarcoma tumor cells resemble differentiating skeletal muscle cells, which unlike normal muscle cells, fail to undergo terminal differentiation, underlying their proliferative and metastatic properties. We identify the corepressor TLE3 as a key regulator of rhabdomyosarcoma tumorigenesis by inhibiting the Wnt-pathway. Loss of TLE3 function leads to Wnt-pathway activation, reduced proliferation, decreased migration, and enhanced differentiation in rhabdomyosarcoma cells. Muscle-specific TLE3-knockout results in enhanced expression of terminal myogenic differentiation markers during normal mouse development. TLE3-knockout rhabdomyosarcoma cell xenografts result in significantly smaller tumors characterized by reduced proliferation, increased apoptosis and enhanced differentiation. We demonstrate that TLE3 interacts with and recruits the histone methyltransferase KMT1A, leading to repression of target gene activation and inhibition of differentiation in rhabdomyosarcoma. A combination drug therapy regime to promote Wnt-pathway activation by the small molecule BIO and inhibit KMT1A by the drug chaetocin led to significantly reduced tumor volume, decreased proliferation, increased expression of differentiation markers and increased survival in rhabdomyosarcoma tumor-bearing mice. Thus, TLE3, the Wnt-pathway and KMT1A are excellent drug targets which can be exploited for treating rhabdomyosarcoma tumors.
Collapse
Affiliation(s)
- Bhargab Kalita
- Developmental Genetics Laboratory Regional Centre for Biotechnology (RCB) NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Subhashni Sahu
- Developmental Genetics Laboratory Regional Centre for Biotechnology (RCB) NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Anushree Bharadwaj
- Developmental Genetics Laboratory Regional Centre for Biotechnology (RCB) NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Lakshmikanthan Panneerselvam
- Developmental Genetics Laboratory Regional Centre for Biotechnology (RCB) NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | | | - Megha Agarwal
- Developmental Genetics Laboratory Regional Centre for Biotechnology (RCB) NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Affiliated to Manipal University, Manipal, Karnataka, 576104, India
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sam J Mathew
- Developmental Genetics Laboratory Regional Centre for Biotechnology (RCB) NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
- Affiliated to Manipal University, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Li L, Jiang H, Li Y, Xiang X, Chu Y, Tang J, Liu K, Huo D, Zhang X. Chaetocin exhibits anticancer effects in esophageal squamous cell carcinoma via activation of Hippo pathway. Aging (Albany NY) 2023; 15:5426-5444. [PMID: 37319316 PMCID: PMC10333076 DOI: 10.18632/aging.204801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
Dysfunction of the Hippo pathway is common in esophageal squamous carcinoma (ESCC). Chaetocin, a small molecular compound isolated from the marine fungus, exhibits potent anticancer effects. However, the anticancer effects of chaetocin on ESCC and its potential relationship to Hippo pathway remain unclear. Here, we demonstrated that chaetocin dramatically inhibited the proliferation in ESCC cells by causing cycle arrest in the M phase and activating the caspase-dependent apoptosis signaling pathway in vitro, and we also found that chaetocin induced the accumulation cellular reactive oxygen species (ROS). The RNA-seq analysis indicated that the Hippo pathway is one of the most enriched pathways after chaetocin treatment. We further revealed that chaetocin triggered the activation of Hippo pathway in ESCC cells, which is characterized by elevated phosphorylation levels of almost all core proteins in Hippo pathway, such as MST1 (Thr183), MST2 (Thr180), MOB1 (Thr35), LAST1 (Thr1079 and Ser909) and YAP (Ser127), ultimately leading to decreased nuclear translocation of YAP. Moreover, the MST1/2 inhibitor XMU-MP-1 not only partially rescued the inhibitory effect chaetocin-induced proliferation, but also rescued the chaetocin-induced apoptosis in ESCC cells. Furthermore, in vivo results confirmed the antitumor effect of chaetocin and its relationship with Hippo pathway. Taken together, our study demonstrates that chaetocin exhibits anticancer effects in ESCC via activation of Hippo pathway. These results provide an important basis for further research of chaetocin as a potential candidate for ESCC treatment.
Collapse
Affiliation(s)
- Lin Li
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Hangyu Jiang
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yuqi Li
- Department of Pharmacy, Nanchong Traditional Chinese Medicine Hospital, Nanchong, China
| | - Xiaochong Xiang
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Yueming Chu
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Jie Tang
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, China
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Xiaofen Zhang
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
3
|
Lin TC. Perturbation Analysis of a Prognostic DDX3X-Mediated Gene Expression Signature Identifies the Antimetastatic Potential of Chaetocin in Hepatocellular Carcinoma. Cells 2023; 12:1628. [PMID: 37371098 DOI: 10.3390/cells12121628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
ATP-dependent RNA helicase DDX3X, also known as DEAD (Asp-Glu-Ala-Asp) Box Polypeptide 3, X-Linked (DDX3X), is critical for RNA metabolism, and emerging evidence implicates ATP-dependent RNA helicase DDX3X's participation in various cellular processes to modulate cancer progression. In this study, the clinical significance of DDX3X was addressed, and DDX3X was identified as a biomarker for poor prognosis. An exploration of transcriptomic data from 373 liver cancer patients from The Cancer Genome Atlas (TCGA) using Ingenuity Pathway Analysis (IPA) suggested an association between DDX3X expression and cancer metastasis. Lentiviral-based silencing of DDX3X in a hepatocellular carcinoma (HCC) cell line resulted in the suppression of cell migration and invasion. The molecular mechanism regarding ATP-dependent RNA helicase DDX3X in liver cancer progression had been addressed in many studies. I focused on the biological application of the DDX3X-mediated gene expression signature in cancer therapeutics. An investigation of the DDX3X-correlated expression signature via the L1000 platform of Connectivity Map (BROAD Institute) first identified a histone methyltransferase inhibitor, chaetocin, as a novel compound for alleviating metastasis in HCC. In this study, the prognostic value of DDX3X and the antimetastatic property of chaetocin are presented to shed light on the development of anti-liver cancer strategies.
Collapse
Affiliation(s)
- Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taoyuan City 333, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan City 333, Taiwan
| |
Collapse
|
4
|
Wang L, Jiang Q, Chen S, Wang S, Lu J, Gao X, Zhang D, Jin X. Natural epidithiodiketopiperazine alkaloids as potential anticancer agents: Recent mechanisms of action, structural modification, and synthetic strategies. Bioorg Chem 2023; 137:106642. [PMID: 37276722 DOI: 10.1016/j.bioorg.2023.106642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023]
Abstract
Cancer has become a grave health crisis that threatens the lives of millions of people worldwide. Because of the drawbacks of the available anticancer drugs, the development of novel and efficient anticancer agents should be encouraged. Epidithiodiketopiperazine (ETP) alkaloids with a 2,5-diketopiperazine (DKP) ring equipped with transannular disulfide or polysulfide bridges or S-methyl moieties constitute a special subclass of fungal natural products. Owing to their privileged sulfur units and intriguing architectural structures, ETP alkaloids exhibit excellent anticancer activities by regulating multiple cancer proteins/signaling pathways, including HIF-1, NF-κB, NOTCH, Wnt, and PI3K/AKT/mTOR, or by inducing cell-cycle arrest, apoptosis, and autophagy. Furthermore, a series of ETP alkaloid derivatives obtained via structural modification showed more potent anticancer activity than natural ETP alkaloids. To solve supply difficulties from natural resources, the total synthetic routes for several ETP alkaloids have been designed. In this review, we summarized several ETP alkaloids with anticancer properties with particular emphasis on their underlying mechanisms of action, structural modifications, and synthetic strategies, which will offer guidance to design and innovate potential anticancer drugs.
Collapse
Affiliation(s)
- Lin Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qinghua Jiang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Siyu Chen
- China Medical University-Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Siyi Wang
- The 1st Clinical Department, China Medical University, Shenyang 110122, China
| | - Jingyi Lu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xun Gao
- Jiangsu Institute Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China
| | - Dongfang Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xin Jin
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
5
|
Yang Z, Bi Y, Xu W, Guo R, Hao M, Liang Y, Shen Z, Yin L, Yu C, Wang S, Wang J, Li J, Zhang J, Cheng R, Zhai Q, Wang H. Glabridin inhibits urothelial bladder carcinoma cell growth in vitro and in vivo by inducing cell apoptosis and cell cycle arrest. Chem Biol Drug Des 2023; 101:581-592. [PMID: 36098706 DOI: 10.1111/cbdd.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/20/2022] [Accepted: 09/11/2022] [Indexed: 11/28/2022]
Abstract
Glabridin (GLA) has a variety of biological activities and therapeutic effects in cancers. Whereas the effect of GLA on urothelial bladder carcinoma (UBC) cells and its underlying mechanisms remain unknown. The study revealed the effect of GLA on UBC and the potential mechanism of inducing cell apoptosis in vivo and in vitro. After treated with different concentrations of GLA, the cell activity decreased in a time- and dose-dependent manner. The IC50 values of BIU-87 and EJ cells at 48 h were 6.02 μg/ml (18.6 μm) and 4.36 μg/ml (13.4 μm), respectively. Additionally, GLA-induced apoptosis and cycle arrest of BIU-87 and EJ cells in G2 phase. Furthermore, wound healing experiments showed that GLA significantly reduced the migration activities of BIU-87 and EJ cells. Mechanically, GLA obviously increased the expression of BIM, BAK1, and CYCS in both mRNA and protein levels, which led to the activation of the endogenous apoptotic pathway. Finally, GLA remarkably inhibited the growth of UBC tumors in vivo. In summary, GLA inhibited UBC cells growth in vitro and in vivo by inducing cell apoptosis and cell cycle arrest, highlighting that GLA could be utilized as a component to design a novel anti-UBC drug.
Collapse
Affiliation(s)
- Zhao Yang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China.,College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, Xinjiang, China
| | - Ying Bi
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Wenkai Xu
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China.,Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rui Guo
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Mingxuan Hao
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Youfeng Liang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Zongyi Shen
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Liqi Yin
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Shihui Wang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Jiansong Wang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Jinmei Li
- Department of Pathology, Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, First Central Hospital of Baoding City, Baoding, Hebei, China
| | - Jinku Zhang
- Department of Pathology, Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, First Central Hospital of Baoding City, Baoding, Hebei, China
| | - Runfen Cheng
- Department of Pathology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiongli Zhai
- Department of Pathology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
Sheerin D, Abhimanyu, Peton N, Vo W, Allison CC, Wang X, Johnson WE, Coussens AK. Immunopathogenic overlap between COVID-19 and tuberculosis identified from transcriptomic meta-analysis and human macrophage infection. iScience 2022; 25:104464. [PMID: 35634577 PMCID: PMC9130411 DOI: 10.1016/j.isci.2022.104464] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 01/14/2022] [Accepted: 05/18/2022] [Indexed: 12/25/2022] Open
Abstract
Current and previous tuberculosis (TB) increase the risk of COVID-19 mortality and severe disease. To identify mechanisms of immunopathogenic interaction between COVID-19 and TB, we performed a systematic review and patient-level meta-analysis of COVID-19 transcriptomic signatures, spanning disease severity, from whole blood, PBMCs, and BALF. 35 eligible signatures were profiled on 1181 RNA-seq samples from 853 individuals across the spectrum of TB infection. Thirteen COVID-19 gene-signatures had significantly higher "COVID-19 risk scores" in active TB and latent TB progressors compared with non-progressors and uninfected controls (p<0·005), in three independent cohorts. Integrative single-cell-RNAseq analysis identified FCN1- and SPP1-expressing macrophages enriched in severe COVID-19 BALF and active TB blood. Gene ontology and protein-protein interaction networks identified 12-gene disease-exacerbation hot spots between COVID-19 and TB. Finally, we in vitro validated that SARS-CoV-2 infection is increased in human macrophages cultured in the inflammatory milieu of Mtb-infected macrophages, correlating with TMPRSS2, IFNA1, IFNB1, IFNG, TNF, and IL1B induction.
Collapse
Affiliation(s)
- Dylan Sheerin
- Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research, Parkville 3279, VIC, Australia
| | - Abhimanyu
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Observatory, 7925 Western Cape, South Africa
| | - Nashied Peton
- Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research, Parkville 3279, VIC, Australia
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Observatory, 7925 Western Cape, South Africa
| | - William Vo
- Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research, Parkville 3279, VIC, Australia
| | - Cody Charles Allison
- Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research, Parkville 3279, VIC, Australia
| | - Xutao Wang
- Division of Computational Biomedicine and Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - W. Evan Johnson
- Division of Computational Biomedicine and Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - Anna Kathleen Coussens
- Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research, Parkville 3279, VIC, Australia
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Observatory, 7925 Western Cape, South Africa
- Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| |
Collapse
|
7
|
Yang D, Fan L, Song Z, Fang S, Huang M, Chen P. The KMT1A/TIMP3/PI3K/AKT circuit regulates tumor growth in cervical cancer. Reprod Biol 2022; 22:100644. [PMID: 35661980 DOI: 10.1016/j.repbio.2022.100644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/15/2022] [Accepted: 04/15/2022] [Indexed: 12/27/2022]
Abstract
The epigenetic mechanism of tissue inhibitor of metalloproteinase 3 (TIMP3), a well-known tumor suppressor, in cervical cancer (CC) is still unclear. Integrated GEO database, protein interaction network, and a pan-cancer analysis revealed a KMT1A/TIMP3 axis in CC. KMT1A was highly expressed, and TIMP3 was poorly expressed in CC tissues and cells. KMT1A inhibited the activity of TIMP3. Silencing of KMT1A hampered the proliferation, migration, invasion, tumorigenesis and metastases of CC cells in vivo, and increased the apoptosis of cells. TIMP3 downregulation promoted the malignant phenotype and in vivo tumorigenesis and metastasis of CC cells. KMT1A downregulation impaired PI3K/AKT pathway in cells, while TIMP3 silencing promoted PI3K/AKT pathway activity. We propose a novel perspective that KMT1A involves in the growth and metastases via the TIMP3/PI3K/AKT axis in CC. In summary, our study identified a vital role played by KMT1A in the development of CC and the epigenetic mechanism, indicating that targeting KMT1A-related pathways could be conducive to the therapies for CC.
Collapse
Affiliation(s)
- Degui Yang
- Department of Gynecology, Shenzhen People's Hospital, Shenzhen 518100, Guangdong, PR China
| | - Leilei Fan
- Department of Gynecology, Shenzhen People's Hospital, Shenzhen 518100, Guangdong, PR China
| | - Zhenkun Song
- Department of Gynecology, Shenzhen People's Hospital, Shenzhen 518100, Guangdong, PR China
| | - Su Fang
- Department of Gynecology, Shenzhen People's Hospital, Shenzhen 518100, Guangdong, PR China
| | - Miaoyu Huang
- Department of Gynecology, Shenzhen People's Hospital, Shenzhen 518100, Guangdong, PR China
| | - Piji Chen
- Department of Clinical Laboratory, Yantian People's Hospital of Southern University of Science and Technology, Shenzhen 518083, Guangdong, PR China.
| |
Collapse
|
8
|
Jiang H, Li Y, Xiang X, Tang Z, Liu K, Su Q, Zhang X, Li L. Chaetocin: A review of its anticancer potentials and mechanisms. Eur J Pharmacol 2021; 910:174459. [PMID: 34464601 DOI: 10.1016/j.ejphar.2021.174459] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Chaetocin is a natural metabolite product with various biological activities and pharmacological functions isolated from Chaetomium species fungi belonging to the thiodiketopyrazines. Numerous studies have demonstrated a wide range of antitumor activities of chaetocin in vitro and in vivo. Several studies have demonstrated that chaetocin suppresses the growth and proliferation of various tumour cells by regulating multiple signalling pathways related to tumour initiation and progression, inducing cancer cell apoptosis (intrinsic and extrinsic), enhancing autophagy, inducing cell cycle arrest, and inhibiting tumour angiogenesis, invasion, and migration. The antitumor effects and molecular mechanisms of chaetocin are reviewed and analysed in this paper, and the prospective applications of chaetocin in cancer prevention and therapy are also discussed. This review aimed to summarize the recent advances in the antitumor activity of chaetocin and to provide a rationale for further exploring the potential application of chaetocin in overcoming cancer in the future.
Collapse
Affiliation(s)
- Hangyu Jiang
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China; School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yuqi Li
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China; School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xiaocong Xiang
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Zhili Tang
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Qiang Su
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Xiaofen Zhang
- Department of Urology, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China.
| | - Lin Li
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China; College of Bioengineering, Chongqing University, Chongqing, China.
| |
Collapse
|
9
|
Mirzaei S, Gholami MH, Mahabady MK, Nabavi N, Zabolian A, Banihashemi SM, Haddadi A, Entezari M, Hushmandi K, Makvandi P, Samarghandian S, Zarrabi A, Ashrafizadeh M, Khan H. Pre-clinical investigation of STAT3 pathway in bladder cancer: Paving the way for clinical translation. Biomed Pharmacother 2020; 133:111077. [PMID: 33378975 DOI: 10.1016/j.biopha.2020.111077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Effective cancer therapy requires identification of signaling networks and investigating their potential role in proliferation and invasion of cancer cells. Among molecular pathways, signal transducer and activator of transcription 3 (STAT3) has been of importance due to its involvement in promoting proliferation, and invasion of cancer cells, and mediating chemoresistance. In the present review, our aim is to reveal role of STAT3 pathway in bladder cancer (BC), as one of the leading causes of death worldwide. In respect to its tumor-promoting role, STAT3 is able to enhance the growth of BC cells via inhibiting apoptosis and cell cycle arrest. STAT3 also contributes to metastasis of BC cells via upregulating of MMP-2 and MMP-9 as well as genes in the EMT pathway. BC cells obtain chemoresistance via STAT3 overexpression and its inhibition paves the way for increasing efficacy of chemotherapy. Different molecular pathways such as KMT1A, EZH2, DAB2IP and non-coding RNAs including microRNAs and long non-coding RNAs can function as upstream mediators of STAT3 that are discussed in this review article.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Noushin Nabavi
- Research Services, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amirabbas Haddadi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- IstitutoItaliano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, OrtaMahalle, ÜniversiteCaddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| |
Collapse
|
10
|
Chen M, Zhang R, Lu L, Du J, Chen C, Ding K, Wei X, Zhang G, Huang Y, Hou J. LncRNA PVT1 accelerates malignant phenotypes of bladder cancer cells by modulating miR-194-5p/BCLAF1 axis as a ceRNA. Aging (Albany NY) 2020; 12:22291-22312. [PMID: 33188158 PMCID: PMC7695393 DOI: 10.18632/aging.202203] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Numerous studies proved that long non-coding RNA (lncRNA) is involved in the progression of multifarious diseases, especially in some carcinomas. As a potential tumor biomarker, plasmacytoma variant translocation 1 gene (PVT1) is involved in the development and progression of multifarious cancers. Nevertheless, the intrinsic and concrete molecular mechanism of PVT1 in bladder cancer still remained unclear, which is also the dilemma faced in many non-coding RNA studies. RESULTS Our research revealed that PVT1 was significantly higher expression in bladder carcinoma specimens and cell lines. Further experiments indicated that knockdown or overexpression of PVT1 restrained or promoted the malignant phenotype and WNT/β-catenin signaling in bladder cancer cells. Meanwhile miR-194-5p was in contrast and miR-194-5p could partially reverse the function of PVT1 in malignant bladder tumor cells. As a microRNA sponge, PVT1 actively promotes the expression of b-cells lymphoma-2-associated transcription factor 1 (BCLAF1) to sponge miR-194-5p and subsequently increases malignant phenotypes of bladder cancer cells. Therefore, it performs a carcinogenic effect and miR-194-5p as the opposite function, and serves as an antioncogene in the bladder carcinomas pathogenesis. CONCLUSION PVT1-miR-194-5p-BCLAF1 axis is involved in the malignant progression and development of bladder carcinomas. Experiments revealed that PVT1 has a significant regulatory effect on bladder cancer (BC) and can be used as a clinical diagnostic marker and a therapeutic molecular marker for patients suffering from BC. METHODS In urothelial bladder carcinoma specimens and cell lines, the relative expression levels of PVT1 and miR-194-5p were detected by quantitative reverse transcription PCR (RT-qPCR). Through experiments such as loss-function and over-expression, the biological effects of PVT1 and miR-194-5p on the proliferation, migration, apoptosis and tumorigenicity were explored in bladder cancer cells. Co-immunoprecipitation, proteomics experiments, dual luciferase reporter gene analysis, western blot and other methods were adopted to investigate the PVT1 potential mechanism in bladder carcinomas.
Collapse
Affiliation(s)
- Mingwei Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
- Department of Urology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China
| | - Rongyuan Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Le Lu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Jian Du
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Chunyang Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Keke Ding
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Guangbo Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Suzhou 215006, Jiangsu Province, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|