1
|
de Castro RCF, Buranello TW, Recchia K, de Souza AF, Pieri NCG, Bressan FF. Emerging Contributions of Pluripotent Stem Cells to Reproductive Technologies in Veterinary Medicine. J Dev Biol 2024; 12:14. [PMID: 38804434 PMCID: PMC11130827 DOI: 10.3390/jdb12020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
The generation of mature gametes and competent embryos in vitro from pluripotent stem cells has been successfully achieved in a few species, mainly in mice, with recent advances in humans and scarce preliminary reports in other domestic species. These biotechnologies are very attractive as they facilitate the understanding of developmental mechanisms and stages that are generally inaccessible during early embryogenesis, thus enabling advanced reproductive technologies and contributing to the generation of animals of high genetic merit in a short period. Studies on the production of in vitro embryos in pigs and cattle are currently used as study models for humans since they present more similar characteristics when compared to rodents in both the initial embryo development and adult life. This review discusses the most relevant biotechnologies used in veterinary medicine, focusing on the generation of germ-cell-like cells in vitro through the acquisition of totipotent status and the production of embryos in vitro from pluripotent stem cells, thus highlighting the main uses of pluripotent stem cells in livestock species and reproductive medicine.
Collapse
Affiliation(s)
- Raiane Cristina Fratini de Castro
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Tiago William Buranello
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| |
Collapse
|
2
|
Fang F, Li Z, Zhang X, Huang Q, Lu S, Wang X. Divergent Roles of KLF4 During Primordial Germ Cell Fate Induction from Human Embryonic Stem Cells. Reprod Sci 2024; 31:727-735. [PMID: 37884729 DOI: 10.1007/s43032-023-01360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023]
Abstract
As a core transcriptional factor regulating pluripotency, Krüppel-like factor 4 (KLF4) has gained much attention in the field of stem cells during the past decades. However, few research have focused on the function of KLF4 during human primordial germ cell (PGC) specification. Here, we induced human PGC-like cells (hPGCLCs) from human embryonic stem cells (hESCs) and the derived hPGCLCs upregulated PGC-related genes, like SOX17, BLIMP1, TFAP2C, NANOS3, and the naïve pluripotency gene KLF4. The KLF4-knockout hESCs formed typical multicellular colonies with clear borders, expressed pluripotency genes, such as NANOG, OCT4, and SOX2, and exhibited no differences in proliferation capacity compared with wild type hESCs. Notably, KLF4 deletion in hESCs did not influence the induction of PGCLCs in vitro. In contrast, overexpression of KLF4 during PGC induction process inhibited the efficiency of PGCLC formation from hESCs in vitro. Overexpression of KLF4 may regenerate the naïve ground state in hESCs and results in repression for PGC specification. Thus, KLF4 could be a downstream target of human PGC program and the upregulation of KLF4 is prepared for late stage of germline development.
Collapse
Affiliation(s)
- Fang Fang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zili Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaoke Zhang
- Department of Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qi Huang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical Collage, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shi Lu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Xiao Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical Collage, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Romualdez-Tan MV. Modelling in vitro gametogenesis using induced pluripotent stem cells: a review. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:33. [PMID: 37843621 PMCID: PMC10579208 DOI: 10.1186/s13619-023-00176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
In vitro gametogenesis (IVG) has been a topic of great interest in recent years not only because it allows for further exploration of mechanisms of germ cell development, but also because of its prospect for innovative medical applications especially for the treatment of infertility. Elucidation of the mechanisms underlying gamete development in vivo has inspired scientists to attempt to recapitulate the entire process of gametogenesis in vitro. While earlier studies have established IVG methods largely using pluripotent stem cells of embryonic origin, the scarcity of sources for these cells and the ethical issues involved in their use are serious limitations to the progress of IVG research especially in humans. However, with the emergence of induced pluripotent stem cells (iPSCs) due to the revolutionary discovery of dedifferentiation and reprogramming factors, IVG research has progressed remarkably in the last decade. This paper extensively reviews developments in IVG using iPSCs. First, the paper presents key concepts from groundwork studies on IVG including earlier researches demonstrating that IVG methods using embryonic stem cells (ESCs) also apply when using iPSCs. Techniques for the derivation of iPSCs are briefly discussed, highlighting the importance of generating transgene-free iPSCs with a high capacity for germline transmission to improve efficacy when used for IVG. The main part of the paper discusses recent advances in IVG research using iPSCs in various stages of gametogenesis. In addition, current clinical applications of IVG are presented, and potential future applications are discussed. Although IVG is still faced with many challenges in terms of technical issues, as well as efficacy and safety, novel IVG methodologies are emerging, and IVG using iPSCs may usher in the next era of reproductive medicine sooner than expected. This raises both ethical and social concerns and calls for the scientific community to cautiously develop IVG technology to ensure it is not only efficacious but also safe and adheres to social and ethical norms.
Collapse
Affiliation(s)
- Maria Victoria Romualdez-Tan
- Present Address: Repro Optima Center for Reproductive Health, Inc., Ground Floor JRDC Bldg. Osmena Blvd. Capitol Site, Cebu City, 6000, Philippines.
- Cebu Doctors University Hospital, Cebu City, Philippines.
| |
Collapse
|
4
|
Tarzaali D, Khaldoun H, Settar A, Boumahdi Merad Z, Mohamed Said R, Djennane N, Makhlouf C, Oularbi Y, Lahmar A, Kaidi R. Ascorbic acid modulates testicular toxicity of Ampligo® 150 ZC insecticide in male rabbit (Oryctolagus cuniculus). Reprod Toxicol 2023; 121:108455. [PMID: 37557928 DOI: 10.1016/j.reprotox.2023.108455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
The present study was designed to evaluate the protective effects of ascorbic acid (AA) against lambda cyhalothrin insecticide formulation Ampligo® (AP)-induced testicular toxicity in rabbit laboratory strain ITELV2006 (Oryctolagus cuniculus). Twenty rabbits were randomly divided into four equal groups and treated by oral gavage for 21 consecutive days: Group 1 served as a control and received 1 ml of distilled water, group 2 was supplemented with1ml of ascorbic acid (AA) dilution (200 mg/kg b.w), Group 3 was treated with a dose of AP at 20 mg/kg bw (1 µl/1 ml of distilled water/animal), whereas group 4 was co-administered AA and AP as the same dose of group 2 and 3, respectively. Hormonal, histomorphometrical, and immunohistochemical methods were performed at the end of the study to detect testes damage. The results showed that AP exposure significantly reduced body weight, absolute and relative testicular weights, and testosterone levels. AP caused changes in testes tissue, namely incomplete spermatogenic series and necrosis of the spermatogonial cells lining in the seminiferous tubules of rabbits. Co-administrating AA clearly modulated body and testes weights, hormonal parameters, and histopathological damage. Furthermore, the findings revealed a significant increase in alpha-fetoprotein (AFP) level expression in the testes of the AP group. However, supplementation of the AP rabbits with AA modulated the observed result. Taken together, these data suggest that AA may protect against Ampligo-induced testicular damage.
Collapse
Affiliation(s)
- Dalila Tarzaali
- Laboratory of Biotechnologies Related to Animal Reproduction (LBRA), Institute of Veterinary Sciences, University of Blida 1, Route de Soumaa, BP270 Blida, Algeria.
| | - Hassina Khaldoun
- Department of Biology, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270 Blida, Algeria
| | - Amina Settar
- Department of Agri-food, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270 Blida, Algeria
| | - Zoubeïda Boumahdi Merad
- Laboratory of Biotechnologies Related to Animal Reproduction (LBRA), Institute of Veterinary Sciences, University of Blida 1, Route de Soumaa, BP270 Blida, Algeria
| | - Ramdane Mohamed Said
- Department of Biology, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270 Blida, Algeria
| | - Nacima Djennane
- Department of Pathological Anatomy, Centre Hospitalo-Universitaire Bab El Oued, Algiers, Algeria
| | - Chahrazed Makhlouf
- Department of Biology, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270 Blida, Algeria
| | | | - Assala Lahmar
- Department of Biology, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270 Blida, Algeria
| | - Rachid Kaidi
- Laboratory of Biotechnologies Related to Animal Reproduction (LBRA), Institute of Veterinary Sciences, University of Blida 1, Route de Soumaa, BP270 Blida, Algeria
| |
Collapse
|
5
|
Adriansyah RF, Margiana R, Supardi S, Narulita P. Current Progress in Stem Cell Therapy for Male Infertility. Stem Cell Rev Rep 2023; 19:2073-2093. [PMID: 37440145 DOI: 10.1007/s12015-023-10577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Infertility has become one of the most common issues worldwide, which has negatively affected society and infertile couples. Meanwhile, male infertility is responsible for about 50% of infertility. Accordingly, a great number of researchers have focused on its treatment during the last few years; however, current therapies such as assisted reproductive technology (ART) are not effective enough in treating male infertility. Because of their self-renewal and differentiation capabilities and unlimited sources, stem cells have recently raised great hope in the treatment of reproductive system disorders. Stem cells are undifferentiated cells that can induce different numbers of specific cells, such as male and female gametes, demonstrating their potential application in the treatment of infertility. The present review aimed at identifying the causes and potential factors that influence male fertility. Besides, we highlighted the recent studies that investigated the efficiency of stem cells such as spermatogonial stem cells (SSCs), embryonic stem cells (ESCs), very small embryonic-like stem cells (VSELs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs) in the treatment of various types of male infertility.
Collapse
Affiliation(s)
| | - Ria Margiana
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Indonesia General Academic Hospital, Depok, Indonesia.
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia.
| | - Supardi Supardi
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Pety Narulita
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
6
|
Roshandel E, Mehravar M, Nikoonezhad M, Alizadeh AM, Majidi M, Salimi M, Hajifathali A. Cell-Based Therapy Approaches in Treatment of Non-obstructive Azoospermia. Reprod Sci 2022; 30:1482-1494. [PMID: 36380137 PMCID: PMC9666961 DOI: 10.1007/s43032-022-01115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
The rate of infertility has globally increased in recent years for a variety of reasons. One of the main causes of infertility in men is azoospermia that is defined by the absence of sperm in the ejaculate and classified into two categories: obstructive azoospermia and non-obstructive azoospermia. In non-obstructive azoospermia, genital ducts are not obstructed, but the testicles do not produce sperm at all, due to various reasons. Non-obstructive azoospermia in most cases has no therapeutic options other than assisted reproductive techniques, which in most cases require sperm donors. Here we discuss cell-based therapy approaches to restore fertility in men with non-obstructive azoospermia including cell-based therapies of non-obstructive azoospermia using regenerative medicine and cell-based therapies of non-obstructive azoospermia by paracrine and anti-inflammatory pathway, technical and ethical challenges for using different cell sources and alternative options will be described, and then the more effectual approaches will be mentioned as future trends.
Collapse
Affiliation(s)
- Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Maryam Mehravar
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Maryam Nikoonezhad
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Afshin Mohammad Alizadeh
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Majidi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| |
Collapse
|
7
|
Tahmasbpour Marzouni E, Stern C, Henrik Sinclair A, Tucker EJ. Stem Cells and Organs-on-chips: New Promising Technologies for Human Infertility Treatment. Endocr Rev 2022; 43:878-906. [PMID: 34967858 DOI: 10.1210/endrev/bnab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 11/19/2022]
Abstract
Having biological children remains an unattainable dream for most couples with reproductive failure or gonadal dysgenesis. The combination of stem cells with gene editing technology and organ-on-a-chip models provides a unique opportunity for infertile patients with impaired gametogenesis caused by congenital disorders in sex development or cancer survivors. But how will these technologies overcome human infertility? This review discusses the regenerative mechanisms, applications, and advantages of different types of stem cells for restoring gametogenesis in infertile patients, as well as major challenges that must be overcome before clinical application. The importance and limitations of in vitro generation of gametes from patient-specific human-induced pluripotent stem cells (hiPSCs) will be discussed in the context of human reproduction. The potential role of organ-on-a-chip models that can direct differentiation of hiPSC-derived primordial germ cell-like cells to gametes and other reproductive organoids is also explored. These rapidly evolving technologies provide prospects for improving fertility to individuals and couples who experience reproductive failure.
Collapse
Affiliation(s)
- Eisa Tahmasbpour Marzouni
- Laboratory of Regenerative Medicine & Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Catharyn Stern
- Royal Women's Hospital, Parkville and Melbourne IVF, Melbourne, Australia
| | - Andrew Henrik Sinclair
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Elena Jane Tucker
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
Fayezi S, Fayyazpour P, Norouzi Z, Mehdizadeh A. Strategies for Mammalian Mesenchymal Stem Cells Differentiation into Primordial Germ Cell-Like Cells: A Review. CELL JOURNAL 2022; 24:434-441. [PMID: 36093802 PMCID: PMC9468722 DOI: 10.22074/cellj.2022.8087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 11/25/2022]
Abstract
Primordial germ cells develop into oocytes and sperm cells. These cells are useful resources in reproductive biology and regenerative medicine. The mesenchymal stem cells (MSCs) have been examined for in vitro production of primordial germ cell-like cells. This study aimed to summarize the existing protocols for MSCs differentiation into primordial germ cell-like cells (PGLCs). In the limited identified studies, various models of mesenchymal stem cells, including those derived from adipose tissue, bone marrow, and Wharton's jelly, have been successfully differentiated into primordial germ cell-like cells. Although the protocols of specification induction are basically very similar, they have been adjusted to the mesenchymal cell type and the species of origin. The availability of MSCs has made it possible to customize conditions for their differentiation into primordial germ cell-like cells in several models, including humans. Refining germ cell-related signaling pathways during induced differentiation of MSCs will help define extension to the protocols for primordial germ cell-like cells production.
Collapse
Affiliation(s)
- Shabnam Fayezi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg,
Heidelberg, Germany
| | - Parisa Fayyazpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Norouzi
- Student’s Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,P.O.Box: 5166614756Endocrine Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
9
|
Hong TK, Song JH, Lee SB, Do JT. Germ Cell Derivation from Pluripotent Stem Cells for Understanding In Vitro Gametogenesis. Cells 2021; 10:cells10081889. [PMID: 34440657 PMCID: PMC8394365 DOI: 10.3390/cells10081889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Assisted reproductive technologies (ARTs) have developed considerably in recent years; however, they cannot rectify germ cell aplasia, such as non-obstructive azoospermia (NOA) and oocyte maturation failure syndrome. In vitro gametogenesis is a promising technology to overcome infertility, particularly germ cell aplasia. Early germ cells, such as primordial germ cells, can be relatively easily derived from pluripotent stem cells (PSCs); however, further progression to post-meiotic germ cells usually requires a gonadal niche and signals from gonadal somatic cells. Here, we review the recent advances in in vitro male and female germ cell derivation from PSCs and discuss how this technique is used to understand the biological mechanism of gamete development and gain insight into its application in infertility.
Collapse
|
10
|
He H, Yu F, Shen W, Chen K, Zhang L, Lou S, Zhang Q, Chen S, Yuan X, Jia X, Zhou Y. The Novel Key Genes of Non-obstructive Azoospermia Affect Spermatogenesis: Transcriptomic Analysis Based on RNA-Seq and scRNA-Seq Data. Front Genet 2021; 12:608629. [PMID: 33732283 PMCID: PMC7959792 DOI: 10.3389/fgene.2021.608629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Non-obstructive azoospermia (NOA) is one of the most important causes of male infertility. It is mainly characterized by the absence of sperm in semen repeatedly or the number of sperm is small and not fully developed. At present, its pathogenesis remains largely unknown. The goal of this study is to identify hub genes that might affect biomarkers related to spermatogenesis. Using the clinically significant transcriptome and single-cell sequencing data sets on the Gene Expression Omnibus (GEO) database, we identified candidate hub genes related to spermatogenesis. Based on them, we performed Gene Ontology (GO) functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analyses, protein-protein interaction (PPI) network analysis, principal component analysis (PCA), cell cluster analysis, and pseudo-chronological analysis. We identified a total of 430 differentially expressed genes, of which three have not been reported related to spermatogenesis (C22orf23, TSACC, and TTC25), and the expression of these three hub genes was different in each type of sperm cells. The results of the pseudo-chronological analysis of the three hub genes indicated that TTC25 was in a low expression state during the whole process of sperm development, while the expression of C22orf23 had two fluctuations in the differentiating spermatogonia and late primary spermatocyte stages, and TSACC showed an upward trend from the spermatogonial stem cell stage to the spermatogenesis stage. Our research found that the three hub genes were different in the trajectory of sperm development, indicating that they might play important roles in different sperm cells. This result is of great significance for revealing the pathogenic mechanism of NOA and further research.
Collapse
Affiliation(s)
- Haihong He
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Fan Yu
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wang Shen
- Department of Clinical Laboratory, Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, China
| | - Keyan Chen
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lijun Zhang
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shuang Lou
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Qiaomin Zhang
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Siping Chen
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xinhua Yuan
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xingwang Jia
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yiwen Zhou
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|