1
|
Liu S, Huang J, Luo J, Gao X, Song S, Bian Q, Weng Y, Chen J. LOX-1-Based Assembly Layer on Devices Surface to Promote Endothelial Repair and Reduce Complications for In Situ Interventional Plaque. Adv Healthc Mater 2025; 14:e2403060. [PMID: 39692170 DOI: 10.1002/adhm.202403060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/05/2024] [Indexed: 12/19/2024]
Abstract
Rapid endothelialization and functional recovery are considered as promising methods to extend the long-term effectiveness of cardiovascular implant materials. LOX-1 participates in the initiation and development of atherosclerosis and is highly expressed in a variety of cells involved in atherosclerosis, hence it is feasible to accelerate the recovery of endothelial function and inhibit the development of existing plaques by regulating LOX-1. Herein, the surface is modified with Poly I, a LOX-1 inhibitor, using rich amino dendritic macromolecules (PAMAM) as the linker coating, to against the pathological microenvironment. Poly I modified surface resisted endothelial damage caused by oxidative stress through the LOX-1-NADPH signaling pathway and inhibited endothelial inflammation via the LOX-1-NF-κB signaling pathway. It also promoted endothelial cell migration and inhibited platelet adhesion. Moreover, the Poly I modified surface can inhibit oxLDL-induced macrophage foam cell formation and alleviate inflammation by modulating macrophage phenotypes. Poly I modified surface significantly reduced plaque burden after treatment of atherosclerotic model rats, most importantly, it significantly inhibited post-implantation-induced restenosis and thrombosis. In vivo and in vitro evaluations confirmed its safety and therapeutic efficacy against atherosclerosis. Overall, the multifunctional Poly I with pathological microenvironment regulation exhibits potential application value in the surface engineering of cardiovascular devices.
Collapse
Affiliation(s)
- Sainan Liu
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jinquan Huang
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jiayan Luo
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiaowa Gao
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Siqi Song
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qihao Bian
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yajun Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Junying Chen
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
2
|
Kong LZ, Jang IH, Wang C, Lee SY, Kim SM, Oh SC, Lee S, Jo S, Kim JH, Kim KK, Kim TD. Transcriptomic landscapes of STING-mediated DNA-sensing reveal cellular response heterogeneity. Int J Biol Macromol 2025; 288:138752. [PMID: 39674484 DOI: 10.1016/j.ijbiomac.2024.138752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Transfection of plasmid DNA (pDNA) encoding target genes is a routine tool in gene function studies and therapeutic applications. However, nucleic acid-sensing-mediated innate immune responses influence multiple intracellular signaling pathways. The stimulator of interferon genes (STING) is a crucial adapter protein for DNA sensors in mammalian cells. In this study, we explored the molecular mechanisms underlying DNA sensing by investigating the relationship between mRNA and protein expression levels and the STING pathway using single-cell analysis. We observed that reporter gene expression was dose-nonlinear after transfection of pDNA in cells with intact DNA-sensing pathways. Moreover, blocking the STING pathway in THP-1 cells significantly downregulated innate immune responses, upregulated exogenous gene expression, and mitigated the effects of innate immune responses on cell and gene function, but did not affect the proportion of reporter protein-positive cells. We elucidated the mechanisms of DNA sensing-induced innate immune response and cell death by analyzing heterozygous cellular responses to DNA transfection and transcriptome changes in positive cells. These findings suggest that the regulation of STING-mediated nucleic acid-sensing pathways is crucial for the accuracy of gene function studies and could enhance the efficacy of gene therapy.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - In-Hwan Jang
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Chunli Wang
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Soo Yun Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seok-Min Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Se-Chan Oh
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sunyoung Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seona Jo
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ji Hyun Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae-Don Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Biomedical Mathematics Group, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
3
|
Lyu P, Liu J, Ouyang X, Wang Y, Liu W, Zhong J. Nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing protein 5 affects the progression of periodontitis by regulating the function of periodontal membrane cells. J Dent Sci 2025; 20:325-334. [PMID: 39873066 PMCID: PMC11762624 DOI: 10.1016/j.jds.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/08/2024] [Indexed: 01/30/2025] Open
Abstract
Background/purpose Nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing protein 5 (NLRC5) plays a regulatory role in innate and adaptive immunity. However, its role in periodontitis remains unclear. This study investigated the effects of NLRC5 on periodontitis and the underlying mechanism. Materials and methods Experimental periodontitis models of wild-type and Nlrc5 knockout mice were established to detect alveolar bone loss. The inflammatory environment was established with Porphyromonas. gingivalis lipopolysaccharide (P. gingivalis LPS). The expression of NLRC5 in periodontal ligament stem cells (PDLSCs) were detected with P. gingivalis LPS stimulated. After knocking-down or overexpressing the NLRC5 expression level, the inflammatory cytokine level and osteogenic ability of PDLSCs were detected. Results The Nlrc5 knockout mice exhibited greater alveolar bone loss in periodontitis. In the presence of P. gingivalis LPS, the expression of NLRC5 decreased. Downregulating NLRC5 increased the expression of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α). Upregulated NLRC5 inhibited nuclear factor kappa-B (NF-κB) signaling and inhibited the expression of those proinflammatory factors. NLRC5 had a positive regulatory effect on the osteogenic differentiation of PDLSCs. When NLRC5 was knocked down, the ALP activity and the number of mineralized nodules in PDLSCs decreased. Conversely, overexpression of NLRC5 enhanced the osteogenic differentiation ability of PDLSCs. Overexpression of NLRC5 increased the osteogenic differentiation of PDLSCs in inflammatory environments. Conclusion NLRC5 affects the progression of periodontitis by regulating the function of PDLSCs. NLRC5 reduced the expression of inflammatory factors by inhibiting NF-κB, and had a positive regulatory effect on the osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Peiying Lyu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jianru Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xiangying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yuanbo Wang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Wenyi Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jinsheng Zhong
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
4
|
Schulze-Späte U, Wurschi L, van der Vorst EPC, Hölzle F, Craveiro RB, Wolf M, Noels H. Crosstalk between periodontitis and cardiovascular risk. Front Immunol 2024; 15:1469077. [PMID: 39717783 PMCID: PMC11663742 DOI: 10.3389/fimmu.2024.1469077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/06/2024] [Indexed: 12/25/2024] Open
Abstract
Recent demographic developments resulted in an aged society with a rising disease burden of systemic and non-communicable diseases (NCDs). In cardiovascular disease (CVD), a NCD with high morbidity and mortality, recent preventive strategies include the investigation of comorbidities to reduce its significant economic burden. Periodontal disease, an oral bacterial-induced inflammatory disease of tooth-supporting tissue, is regulated in its prevalence and severity by the individual host response to a dysbiotic oral microbiota. Clinically, both NCDs are highly associated; however, shared risk factors such as smoking, obesity, type II diabetes mellitus and chronic stress represent only an insufficient explanation for the multifaceted interactions of both disease entities. Specifically, the crosstalk between both diseases is not yet fully understood. This review summarizes current knowledge on the clinical association of periodontitis and CVD, and elaborates on how periodontitis-induced pathophysiological mechanisms in patients may contribute to increased cardiovascular risk with focus on atherosclerosis. Clinical implications as well as current and future therapy considerations are discussed. Overall, this review supports novel scientific endeavors aiming at improving the quality of life with a comprehensive and integrated approach to improve well-being of the aging populations worldwide.
Collapse
Affiliation(s)
- Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Jena, Germany
| | - Ludwig Wurschi
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Jena, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), Uniklinik RWTH Aachen, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Research (AMICARE), Uniklinik RWTH Aachen, RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery, School of Medicine, Uniklinik RWTH Aachen, Aachen, Germany
| | - Rogerio B. Craveiro
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), Uniklinik RWTH Aachen, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Research (AMICARE), Uniklinik RWTH Aachen, RWTH Aachen University, Aachen, Germany
- Biochemistry Department, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
5
|
Truthe S, Klassert TE, Schmelz S, Jonigk D, Blankenfeldt W, Slevogt H. Role of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Inflammation and Pathogen-Associated Interactions. J Innate Immun 2024; 16:105-132. [PMID: 38232720 PMCID: PMC10866614 DOI: 10.1159/000535793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is known as a major receptor for oxidized low-density lipoproteins (oxLDL) and plays a significant role in the genesis of atherosclerosis. Recent research has shown its involvement in cancer, ischemic stroke, and diabetes. LOX-1 is a C-type lectin receptor and is involved in the activation of immune cells and inflammatory processes. It may further interact with pathogens, suggesting a role in infections or the host's response. SUMMARY This review compiles the current knowledge of potential implications of LOX-1 in inflammatory processes and in host-pathogen interactions with a particular emphasis on its regulatory role in immune responses. Also discussed are genomic and structural variations found in LOX-1 homologs across different species as well as potential involvements of LOX-1 in inflammatory processes from the angle of different cell types and organ-specific interactions. KEY MESSAGES The results presented reveal both similar and different structures in human and murine LOX-1 and provide clues as to the possible origins of different modes of interaction. These descriptions raise concerns about the suitability, particularly of mouse models, that are often used in the analysis of its functionality in humans. Further research should also aim to better understand the mostly unknown binding and interaction mechanisms between LOX-1 and different pathogens. This pursuit will not only enhance our understanding of LOX-1 involvement in inflammatory processes but also identify potential targets for immunomodulatory approaches.
Collapse
Affiliation(s)
- Sarah Truthe
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany,
- Dynamics of Respiratory Infection Group, Helmholtz Centre for Infection Research, Braunschweig, Germany,
- Hannover Biomedical Research School (HRBS) and ZIB (Centre of Infection Biology), Braunschweig, Germany,
| | - Tilman E Klassert
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Dynamics of Respiratory Infection Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Schmelz
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Danny Jonigk
- Institute of Pathology, RWTH Medical University Aachen, Aachen, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hortense Slevogt
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Dynamics of Respiratory Infection Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
6
|
Marroquin TY, Guauque-Olarte S. Integrative analysis of gene and protein expression in atherosclerosis-related pathways modulated by periodontal pathogens. Systematic review. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:8-22. [PMID: 36654677 PMCID: PMC9841036 DOI: 10.1016/j.jdsr.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
The mechanisms modulated by periodontal pathogens in atherosclerosis are not fully understood. Aim: to perform an integrative analysis of gene and protein expression modulated by periodontal pathogens in cells and animal models for atherosclerosis. Methods Cochrane, PRISMA and AMSTAR2 guidelines for systematic reviews were followed. Data search was conducted in Pub-med, LILACS and Science Direct databases. Gene and protein expression data were collected from the included papers to perform an overrepresentation analysis using the Reactome Pathway Analysis tool and the KEGG database. Results Thirty-two papers were included in the review, they analyzed the effect of Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus anginosus, Streptococcus sanguinis, Tannerella forsythia, and Treponema denticola or/and their virulent factors on gene and protein expression in human cells and animal models of atherosclerosis. Some of the modulated pathways include the immune system, programmed cell death, cellular responses to external stimuli, transport of small molecules, and signal transduction (p < 0.05). Those pathways are known to be involved in different stages of atherosclerosis progression. Conclusion Based on the performed analysis, it is possible to state that periodontal pathogens have the potential to be a contributing factor for atherosclerosis even in absence of a high-fat diet or high shear stress.
Collapse
Affiliation(s)
| | - Sandra Guauque-Olarte
- GIOM group, Faculty of Dentistry, Universidad Cooperativa de Colombia, Envigado, Colombia
| |
Collapse
|
7
|
Slavetinsky J, Lehmann E, Slavetinsky C, Gritsch L, van Dalen R, Kretschmer D, Bleul L, Wolz C, Weidenmaier C, Peschel A. Wall Teichoic Acid Mediates Staphylococcus aureus Binding to Endothelial Cells via the Scavenger Receptor LOX-1. ACS Infect Dis 2023; 9:2133-2140. [PMID: 37910786 DOI: 10.1021/acsinfecdis.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The success of Staphylococcus aureus as a major cause for endovascular infections depends on effective interactions with blood-vessel walls. We have previously shown that S. aureus uses its wall teichoic acid (WTA), a surface glycopolymer, to attach to endothelial cells. However, the endothelial WTA receptor remained unknown. We show here that the endothelial oxidized low-density lipoprotein receptor 1 (LOX-1) interacts with S. aureus WTA and permits effective binding of S. aureus to human endothelial cells. Purified LOX-1 bound to isolated S. aureus WTA. Ectopic LOX-1 expression led to increased binding of S. aureus wild type but not of a WTA-deficient mutant to a cell line, and LOX-1 blockage prevented S. aureus binding to endothelial cells. Moreover, WTA and LOX-1 expression levels correlated with the efficacy of the S. aureus-endothelial interaction. Thus, LOX-1 is an endothelial ligand for S. aureus, whose blockage may help to prevent or treat severe endovascular infections.
Collapse
Affiliation(s)
- Jessica Slavetinsky
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Esther Lehmann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Christoph Slavetinsky
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
- Pediatric Surgery and Urology, University Children's Hospital Tübingen, Tübingen 72076, Germany
| | - Lisa Gritsch
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Rob van Dalen
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Dorothee Kretschmer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Lisa Bleul
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Christopher Weidenmaier
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| |
Collapse
|
8
|
Iwashita M. Association between Periodontal Disease and Arteriosclerosis-Related Diseases. J Atheroscler Thromb 2023; 30:1517-1524. [PMID: 37648470 PMCID: PMC10627774 DOI: 10.5551/jat.rv22010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 09/01/2023] Open
Abstract
Periodontitis, a major inflammatory disease of the oral cavity that can cause low-grade systemic inflammation, has been suggested to influence the development of comorbidities. Multiple systemic inflammatory mechanisms are common in the development of periodontal disease and atherosclerosis. Observational studies conducted worldwide have reported that periodontal disease may independently influence the progression of atherosclerotic disease. However, there is still insufficient evidence to demonstrate the causal relationship. This review describes the association between periodontal disease and arteriosclerosis-related diseases with the latest findings.
Collapse
Affiliation(s)
- Misaki Iwashita
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
9
|
Huang X, Xie M, Lu X, Mei F, Song W, Liu Y, Chen L. The Roles of Periodontal Bacteria in Atherosclerosis. Int J Mol Sci 2023; 24:12861. [PMID: 37629042 PMCID: PMC10454115 DOI: 10.3390/ijms241612861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Atherosclerosis (AS) is an inflammatory vascular disease that constitutes a major underlying cause of cardiovascular diseases (CVD) and stroke. Infection is a contributing risk factor for AS. Epidemiological evidence has implicated individuals afflicted by periodontitis displaying an increased susceptibility to AS and CVD. This review concisely outlines several prevalent periodontal pathogens identified within atherosclerotic plaques, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum. We review the existing epidemiological evidence elucidating the association between these pathogens and AS-related diseases, and the diverse mechanisms for which these pathogens may engage in AS, such as endothelial barrier disruption, immune system activation, facilitation of monocyte adhesion and aggregation, and promotion of foam cell formation, all of which contribute to the progression and destabilization of atherosclerotic plaques. Notably, the intricate interplay among bacteria underscores the complex impact of periodontitis on AS. In conclusion, advancing our understanding of the relationship between periodontal pathogens and AS will undoubtedly offer invaluable insights and potential therapeutic avenues for the prevention and management of AS.
Collapse
Affiliation(s)
- Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yang Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
10
|
Zou Z, Fang J, Ma W, Guo J, Shan Z, Ma D, Hu Q, Wen L, Wang Z. Porphyromonas gingivalis Gingipains Destroy the Vascular Barrier and Reduce CD99 and CD99L2 Expression To Regulate Transendothelial Migration. Microbiol Spectr 2023; 11:e0476922. [PMID: 37199607 PMCID: PMC10269447 DOI: 10.1128/spectrum.04769-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
Porphyromonas gingivalis is an important periodontal pathogen that can cause vascular injury and invade local tissues through the blood circulation, and its ability to evade leukocyte killing is critical to its distal colonization and survival. Transendothelial migration (TEM) is a series of that enable leukocytes to squeeze through endothelial barriers and migrate into local tissues to perform immune functions. Several studies have shown that P. gingivalis-mediated endothelial damage initiates a series of proinflammatory signals that promote leukocyte adhesion. However, whether P. gingivalis is involved in TEM and thus influences immune cell recruitment remains unknown. In our study, we found that P. gingivalis gingipains could increase vascular permeability and promote Escherichia coli penetration by downregulating platelet/endothelial cell adhesion molecule 1 (PECAM-1) expression in vitro. Furthermore, we demonstrated that although P. gingivalis infection promoted monocyte adhesion, the TEM capacity of monocytes was substantially impaired, which might be due to the reduced CD99 and CD99L2 expression on gingipain-stimulated endothelial cells and leukocytes. Mechanistically, gingipains mediate CD99 and CD99L2 downregulation, possibly through the inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. In addition, our in vivo model confirmed the role of P. gingivalis in promoting vascular permeability and bacterial colonization in the liver, kidney, spleen, and lung and in downregulating PECAM-1, CD99, and CD99L2 expression in endothelial cells and leukocytes. IMPORTANCE P. gingivalis is associated with a variety of systemic diseases and colonizes in distal locations in the body. Here, we found that P. gingivalis gingipains degrade PECAM-1 to promote bacterial penetration while simultaneously reducing leukocyte TEM capacity. A similar phenomenon was also observed in a mouse model. These findings established P. gingivalis gingipains as the key virulence factor in modulating the permeability of the vascular barrier and TEM processes, which may provide a new rationale for the distal colonization of P. gingivalis and its associated systemic diseases.
Collapse
Affiliation(s)
- Zhaolei Zou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Juan Fang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wanting Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Junyi Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhongyan Shan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Da Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qiannan Hu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Liling Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
11
|
Ruan Q, Guan P, Qi W, Li J, Xi M, Xiao L, Zhong S, Ma D, Ni J. Porphyromonas gingivalis regulates atherosclerosis through an immune pathway. Front Immunol 2023; 14:1103592. [PMID: 36999040 PMCID: PMC10043234 DOI: 10.3389/fimmu.2023.1103592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, involving a pathological process of endothelial dysfunction, lipid deposition, plaque rupture, and arterial occlusion, and is one of the leading causes of death in the world population. The progression of AS is closely associated with several inflammatory diseases, among which periodontitis has been shown to increase the risk of AS. Porphyromonas gingivalis (P. gingivalis), presenting in large numbers in subgingival plaque biofilms, is the “dominant flora” in periodontitis, and its multiple virulence factors are important in stimulating host immunity. Therefore, it is significant to elucidate the potential mechanism and association between P. gingivalis and AS to prevent and treat AS. By summarizing the existing studies, we found that P. gingivalis promotes the progression of AS through multiple immune pathways. P. gingivalis can escape host immune clearance and, in various forms, circulate with blood and lymph and colonize arterial vessel walls, directly inducing local inflammation in blood vessels. It also induces the production of systemic inflammatory mediators and autoimmune antibodies, disrupts the serum lipid profile, and thus promotes the progression of AS. In this paper, we summarize the recent evidence (including clinical studies and animal studies) on the correlation between P. gingivalis and AS, and describe the specific immune mechanisms by which P. gingivalis promotes AS progression from three aspects (immune escape, blood circulation, and lymphatic circulation), providing new insights into the prevention and treatment of AS by suppressing periodontal pathogenic bacteria.
Collapse
Affiliation(s)
- Qijun Ruan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Peng Guan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weijuan Qi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jiatong Li
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mengying Xi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Limin Xiao
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Sulan Zhong
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| |
Collapse
|
12
|
Wang YH, Tsai CH, Liu SC, Chen HT, Chang JW, Ko CY, Hsu CJ, Chang TK, Tang CH. miR-150-5p and XIST interaction controls monocyte adherence: Implications for osteoarthritis therapy. Front Immunol 2022; 13:1004334. [PMID: 36203618 PMCID: PMC9530358 DOI: 10.3389/fimmu.2022.1004334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Recent literature highlights the importance of microRNAs (miRNAs) functioning as diagnostic biomarkers and therapeutic agents in osteoarthritis (OA) and regulators of gene expression. In OA pathogenesis, cell adhesion molecules (CAMs), especially vascular cell adhesion protein 1 (VCAM-1), recruit monocyte infiltration to inflamed synovial tissues and thus accelerate OA progression. Up until now, little has been known about the regulatory mechanisms between miRNAs, long non-coding RNAs (lncRNAs) and VCAM-1 during OA progression. The evidence in this article emphasizes that the functional feature of miR-150-5p is an interaction with the lncRNA X-inactive specific transcript (XIST), which regulates VCAM-1-dependent monocyte adherence in OA synovial fibroblasts (OASFs). Levels of VCAM-1, CD11b (a monocyte marker) and XIST expression were higher in human synovial tissue samples and OASFs, while levels of miR-150-5p were lower in human OA synovial tissue compared with non-OA specimens. XIST enhanced VCAM-1-dependent monocyte adherence to OASFs. Upregulation of miR-150-5p inhibited the effects of XIST upon monocyte adherence. Administration of miR-150-5p effectively ameliorated OA severity in anterior cruciate ligament transection (ACLT) rats. The interaction of miR-150-5p and XIST regulated VCAM-1-dependent monocyte adherence and attenuated OA progression. Our findings suggest that miR-150-5p is a promising small-molecule therapeutic strategy for OA.
Collapse
Affiliation(s)
- Yu-Han Wang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Hsien-Te Chen
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Jun-Way Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Chih-Yuan Ko
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Kuo Chang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Division of Spine Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, New Taipei, Taiwan
- *Correspondence: Chih-Hsin Tang, ; Ting-Kuo Chang,
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- *Correspondence: Chih-Hsin Tang, ; Ting-Kuo Chang,
| |
Collapse
|
13
|
Li Q, Ouyang X, Lin J. The impact of periodontitis on vascular endothelial dysfunction. Front Cell Infect Microbiol 2022; 12:998313. [PMID: 36118034 PMCID: PMC9480849 DOI: 10.3389/fcimb.2022.998313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
Periodontitis, an oral inflammatory disease, originates from periodontal microbiota dysbiosis which is associated with the dysregulation of host immunoinflammatory response. This chronic infection is not only harmful to oral health but is also a risk factor for the onset and progress of various vascular diseases, such as hypertension, atherosclerosis, and coronary arterial disease. Vascular endothelial dysfunction is the initial key pathological feature of vascular diseases. Clarifying the association between periodontitis and vascular endothelial dysfunction is undoubtedly a key breakthrough for understanding the potential relationship between periodontitis and vascular diseases. However, there is currently a lack of an updated review of their relationship. Therefore, we aim to focus on the implications of periodontitis in vascular endothelial dysfunction in this review.
Collapse
Affiliation(s)
- Qian Li
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiangying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Xiangying Ouyang, ; Jiang Lin,
| | - Jiang Lin
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xiangying Ouyang, ; Jiang Lin,
| |
Collapse
|
14
|
Identification of Prognostic Biomarkers of Glioblastoma Based on Multidatabase Integration and Its Correlation with Immune-Infiltration Cells. JOURNAL OF ONCOLOGY 2022; 2022:3909030. [PMID: 35685428 PMCID: PMC9174005 DOI: 10.1155/2022/3909030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
Abstract
Background Glioblastoma (GBM) is the most malignant of all known intracranial tumors; meanwhile, most patients have a poor prognosis. In order to improve the poor prognosis of GBM patients as much as possible, it is specifically significant to identify biomarkers related to the gene diagnosis and gene therapy. Methods In this study, a total of 343 GBM specimens and 259 nontumor specimens were collected from four Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) database; then, we analyzed the differentially expressed genes (DEGs) from the above data. Through Venn diagram analysis, 54 common upregulated DEGs and 22 common downregulated DEGs were triumphantly recognized. Results On the basis of the degree of formation communication in protein-protein interaction network (PPIN), the 10 upregulated central genes were ranked, incorporating LOX, IGFBP3, CD44, TIMP1, FN1, VEGFA, POSTN, COL1A1, COL1A2, and COL3A1. By combining the expression levels and the clinical features of GBM, we found that four hub genes (TIMP1, FN1, POSTN, and LOX) were significantly upregulated and related to poor prognosis of GBM. Meanwhile, univariate and multivariate Cox regression analysis suggested that TIMP1 could be one of the independent prognostic factors for GBM patients. Furthermore, TIMP1 was particularly correlated with the immune marker of macrophage M1, macrophage M2, neutrophils, tumor-associated macrophage, and Tregs. We then analyzed the role of TIMP1 in GBM cancer cell lines by relevant experiments, which indicated that TIMP1 knockdown resulted in the decreased cell proliferation, migration, and invasion. Conclusions Taken together, these findings demonstrated that TIMP1 might be a new biomarker to determine prognosis and immune infiltration of GBM patients.
Collapse
|
15
|
Periodontopathic Microbiota and Atherosclerosis: Roles of TLR-Mediated Inflammation Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9611362. [PMID: 35295717 PMCID: PMC8920700 DOI: 10.1155/2022/9611362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease with a high prevalence worldwide, contributing to a series of adverse cardiovascular and cerebrovascular diseases. Periodontal disease induced by pathogenic periodontal microbiota has been well established as an independent factor of atherosclerosis. Periodontal microorganisms have been detected in atherosclerotic plaques. The high-risk microbiota dwelling in the subgingival pocket can stimulate local and systematic host immune responses and inflammatory cascade reactions through various signaling pathways, resulting in the development and progression of atherosclerosis. One often-discussed pathway is the Toll-like receptor-nuclear factor-κB (TLR-NF-κB) signaling pathway that plays a central role in the transduction of inflammatory mediators and the release of proinflammatory cytokines. This narrative review is aimed at summarizing and updating the latest literature on the association between periodontopathic microbiota and atherosclerosis and providing possible therapeutic ideas for clinicians regarding atherosclerosis prevention and treatment.
Collapse
|
16
|
Zhang J, Xie M, Huang X, Chen G, Yin Y, Lu X, Feng G, Yu R, Chen L. The Effects of Porphyromonas gingivalis on Atherosclerosis-Related Cells. Front Immunol 2022; 12:766560. [PMID: 35003080 PMCID: PMC8734595 DOI: 10.3389/fimmu.2021.766560] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis (AS), one of the most common types of cardiovascular disease, has initially been attributed to the accumulation of fats and fibrous materials. However, more and more researchers regarded it as a chronic inflammatory disease nowadays. Infective disease, such as periodontitis, is related to the risk of atherosclerosis. Porphyromonas gingivalis (P. gingivalis), one of the most common bacteria in stomatology, is usually discovered in atherosclerotic plaque in patients. Furthermore, it was reported that P. gingivalis can promote the progression of atherosclerosis. Elucidating the underlying mechanisms of P. gingivalis in atherosclerosis attracted attention, which is thought to be crucial to the therapy of atherosclerosis. Nevertheless, the pathogenesis of atherosclerosis is much complicated, and many kinds of cells participate in it. By summarizing existing studies, we find that P. gingivalis can influence the function of many cells in atherosclerosis. It can induce the dysfunction of endothelium, promote the formation of foam cells as well as the proliferation and calcification of vascular smooth muscle cells, and lead to the imbalance of regulatory T cells (Tregs) and T helper (Th) cells, ultimately promoting the occurrence and development of atherosclerosis. This article summarizes the specific mechanism of atherosclerosis caused by P. gingivalis. It sorts out the interaction between P. gingivalis and AS-related cells, which provides a new perspective for us to prevent or slow down the occurrence and development of AS by inhibiting periodontal pathogens.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
17
|
Czerniuk MR, Surma S, Romańczyk M, Nowak JM, Wojtowicz A, Filipiak KJ. Unexpected Relationships: Periodontal Diseases: Atherosclerosis-Plaque Destabilization? From the Teeth to a Coronary Event. BIOLOGY 2022; 11:272. [PMID: 35205138 PMCID: PMC8869674 DOI: 10.3390/biology11020272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) and periodontal disease (PD) are global health problems. High frequency of ASCVD is associated with the spread of many risk factors, including poor diet, sedentary lifestyle, diabetes, hyperlipidemia, obesity, smoking, hypertension, chronic kidney disease, hypertension, hyperhomocysteinemia, hyperuricemia, excessive stress, virus infection, genetic predisposition, etc. The pathogenesis of ASCVD is complex, while inflammation plays an important role. PD is a chronic, multifactorial inflammatory disease caused by dysbiosis of the oral microbiota, causing the progressive destruction of the bone and periodontal tissues surrounding the teeth. The main etiological factor of PD is the bacteria, which are capable of activating the immune response of the host inducing an inflammatory response. PD is associated with a mixed microbiota, with the evident predominance of anaerobic bacteria and microaerophilic. The "red complex" is an aggregate of three oral bacteria: Tannerella forsythia Treponema denticola and Porphyromonas gingivalis responsible for severe clinical manifestation of PD. ASCVD and PD share a number of risk factors, and it is difficult to establish a causal relationship between these diseases. The influence of PD on ASCVD should be treated as a factor increasing the risk of atherosclerotic plaque destabilization and cardiovascular events. The results of observational studies indicate that PD significantly increases the risk of ASCVD. In interventional studies, PD treatment was found to have a beneficial effect in the prevention and control of ASCVD. This comprehensive review summarizes the current knowledge of the relationship between PD and ASCVD.
Collapse
Affiliation(s)
- Maciej R. Czerniuk
- Department of Dental Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.R.C.); (J.M.N.); (A.W.)
| | - Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Monika Romańczyk
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Jacek M. Nowak
- Department of Dental Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.R.C.); (J.M.N.); (A.W.)
| | - Andrzej Wojtowicz
- Department of Dental Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.R.C.); (J.M.N.); (A.W.)
| | - Krzysztof J. Filipiak
- Department of Clinical Sciences, Maria-Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland;
| |
Collapse
|