1
|
Bao L, Sun Z, Dang L, Zhang Q, Zheng L, Yang F, Zhang J. LncRNA RP11-818O24.3 promotes hair-follicle recovery via FGF2-PI3K/Akt signal pathway. Cytotechnology 2024; 76:425-439. [PMID: 38933868 PMCID: PMC11196536 DOI: 10.1007/s10616-024-00624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/16/2024] [Indexed: 06/28/2024] Open
Abstract
A previous study indicated that patients with androgenic alopecia (AGA) have significantly reduced levels of LncRNA RP11-818O24.3. This study investigates whether LncRNA RP11-818O24.3 promotes hair-follicle recovery and its possible mechanism. Hair alteration and cutaneous histopathological changes induced by testosterone propionate were observed by H&E and bromodeoxyuridinc (BrdU) stain to evaluate the therapeutic effect of LncRNA RP11-818O24.3 in C57BL/6 J mice. The cellular viability was analyzed in LncRNA RP11-818O24.3-transfected human hair-follicle stem cells (HFSCs) in vitro. The signaling pathways and pro-proliferative factors were investigated by transcriptomic gene sequencing and qRT-PCR. LncRNA RP11-818O24.3 transfection successfully recovered hair growth and hair-follicle cells in AGA mice. In a series of HFSC studies in vitro, LncRNA RP11-818O24.3 transfection greatly promoted cellular proliferation and decreased cellular apoptosis. Transcriptome gene sequencing suggested that the phosphatidylinositol 3-kinase (PI3K)-Akt pathway was upregulated by LncRNA RP11-818O24.3. The qRT-PCR results showed that fibroblast growth factor (FGF)-2 was 14-times upregulated after LncRNA RP11-818O24.3 transfection. Hair-follicle recovery activity of LncRNA RP11-818O24.3 may involve the upregulation of FGF2 and PI3K-Akt to promote follicle stem cell survival. These data not only provide a theoretical basis for AGA development but also reveal a novel therapeutic method for AGA patients. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00624-3.
Collapse
Affiliation(s)
- Linlin Bao
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020 Guangdong China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, 518020 Guangdong China
| | - Zhaojun Sun
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020 Guangdong China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, 518020 Guangdong China
| | - Lin Dang
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020 Guangdong China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, 518020 Guangdong China
| | - Qianqian Zhang
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020 Guangdong China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, 518020 Guangdong China
| | - Lixiong Zheng
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020 Guangdong China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, 518020 Guangdong China
| | - Fang Yang
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020 Guangdong China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, 518020 Guangdong China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020 Guangdong China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, 518020 Guangdong China
| |
Collapse
|
2
|
Li N, Zhao L, Geng X, Liu J, Zhang X, Hu Y, Qi J, Chen H, Qiu J, Zhang X, Jin S. Stimulation by exosomes from hypoxia-preconditioned hair follicle mesenchymal stem cells facilitates mitophagy by inhibiting the PI3K/AKT/mTOR signaling pathway to alleviate ulcerative colitis. Theranostics 2024; 14:4278-4296. [PMID: 39113800 PMCID: PMC11303078 DOI: 10.7150/thno.96038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Background: Ulcerative colitis (UC) is an intestinal inflammatory disease that is strongly associated with mitochondrial damage and dysfunction as well as mitophagy and lacks of satisfactory treatments. Hair follicle mesenchymal stem cell (HF-MSC)-derived exosomes owe benefit effectiveness on inflammatory therapies. Hypoxia-preconditioned HF-MSCs exhibit enhanced proliferation and migration abilities, and their exosomes exert stronger effects than normal exosomes. However, the therapeutic function of Hy-Exos in UC is unknown. Methods: The inflammation model was established with LPS-treated MODE-K cells, and the mouse UC model was established by dextran sulfate sodium (DSS) administration. The therapeutic effects of HF-MSC-derived exosomes (Exos) and hypoxia-preconditioned HF-MSC-derived exosomes (Hy-Exos) were compared in vitro and in vivo. Immunofluorescence staining and western blotting were used to explore the effects of Hy-Exos on mitochondrial function, mitochondrial fission and fusion and mitophagy. MiRNA sequencing analysis was applied to investigate the differences in components between Exos and Hy-Exos. Results: Hy-Exos had a better therapeutic effect on LPS-treated MODE-K cells and DSS-induced UC mice. Hy-Exos promoted colonic tight junction proteins expression, suppressed the oxidative stress response, and reduced UC-related inflammatory injury. Hy-Exos may exert these effects via miR-214-3p-mediated inhibition of the PI3K/AKT/mTOR signaling pathway, maintenance of mitochondrial dynamic stability, alleviation of mitochondrial dysfunction and enhancement of mitophagy. Conclusion: This study revealed a vital role for Hy-Exos in suppressing inflammatory progression in UC and suggested that miR-214-3p is a potential critical target for Hy-Exos in alleviating UC.
Collapse
Affiliation(s)
- Ning Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Lei Zhao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xinyu Geng
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jingyang Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xu Zhang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ying Hu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jihan Qi
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Hongliang Chen
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiawei Qiu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xiaoyu Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Shizhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
3
|
Frech S, Lichtenberger BM. Modulating embryonic signaling pathways paves the way for regeneration in wound healing. Front Physiol 2024; 15:1367425. [PMID: 38434140 PMCID: PMC10904466 DOI: 10.3389/fphys.2024.1367425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Epithelial tissues, including the skin, are highly proliferative tissues with the capability to constant renewal and regeneration, a feature that is essential for survival as the skin forms a protective barrier against external insults and water loss. In adult mammalian skin, every injury will lead to a scar. The scar tissue that is produced to seal the wound efficiently is usually rigid and lacks elasticity and the skin's original resilience to external impacts, but also secondary appendages such as hair follicles and sebaceous glands. While it was long thought that hair follicles develop solely during embryogenesis, it is becoming increasingly clear that hair follicles can also regenerate within a wound. The ability of the skin to induce hair neogenesis following injury however declines with age. As fetal and neonatal skin have the remarkable capacity to heal without scarring, the recapitulation of a neonatal state has been a primary target of recent regenerative research. In this review we highlight how modulating dermal signaling or the abundance of specific fibroblast subsets could be utilized to induce de novo hair follicles within the wound bed, and thus to shift wound repair with a scar to scarless regeneration.
Collapse
|
4
|
Lim C, Lim J, Choi S. Wound-Induced Hair Follicle Neogenesis as a Promising Approach for Hair Regeneration. Mol Cells 2023; 46:573-578. [PMID: 37650216 PMCID: PMC10590709 DOI: 10.14348/molcells.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/21/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
The mammalian skin contains hair follicles, which are epidermal appendages that undergo periodic cycles and exhibit mini-organ features, such as discrete stem cell compartments and different cellular components. Wound-induced hair follicle neogenesis (WIHN) is the remarkable ability to regenerate hair follicles after large-scale wounding and occurs in several adult mammals. WIHN is comparable to embryonic hair follicle development in its processes. Researchers are beginning to identify the stem cells that, in response to wounding, develop into neogenic hair follicles, as well as to understand the functions of immune cells, mesenchymal cells, and several signaling pathways that are essential for this process. WIHN represents a promising therapeutic approach to the reprogramming of cellular states for promoting hair follicle regeneration and preventing scar formation. In the scope of this review, we investigate the contribution of several cell types and molecular mechanisms to WIHN.
Collapse
Affiliation(s)
- Chaeryeong Lim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jooyoung Lim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sekyu Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- School of Medical Science and Engineering, POSTECH, Pohang 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I_CREATE), Yonsei University, Incheon 21983, Korea
| |
Collapse
|
5
|
Chen Y, Lu Z, Feng J, Chen Z, Liu Z, Wang X, Yan H, Gao C. Novel recombinant R-spondin1 promotes hair regeneration by targeting the Wnt/β-catenin signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1213-1221. [PMID: 37475547 PMCID: PMC10448039 DOI: 10.3724/abbs.2023112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/10/2023] [Indexed: 07/22/2023] Open
Abstract
Roof plate-specific spondin 1 (R-spondin1, RSPO1) is a Wnt/β-catenin signaling pathway activator that binds with Wnt ligands to stimulate the Wnt/β-catenin signaling pathway, which is key to hair regeneration. However, it is not clear whether recombinant RSPO1 (rRSPO1) affects hair regeneration. Here, we treat C57BL/6 male mice with rRSPO1 and investigate the expression of the Wnt/β-catenin signaling pathway and the activation of hair follicle stem cells in the dorsal skin. The mouse skin color score and hair-covered area are determined to describe hair growth, and the skin samples are subjected to H&E staining, western blot analysis and immunofluorescence staining to evaluate hair follicle development and the expressions of Wnt/β-catenin signaling pathway-related proteins. We find that rRSPO1 activates mouse hair follicle stem cells (mHFSCs) and accelerates hair regeneration. rRSPO1 increases the hair-covered area, the number of hair follicles, and the hair follicle diameter and length. Moreover, rRSPO1 enhances the activity of Wnt/β-catenin signaling pathway-related proteins and the expressions of HFSC markers, as well as mHFSC viability. These results indicate that subcutaneous injection of rRSPO1 can improve hair follicle development by activating the Wnt/β-catenin signaling pathway, thereby promoting hair regeneration. This study demonstrates that rRSPO1 has the potential to treat hair loss by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yijun Chen
- />College of Animal ScienceSouth China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding IndustryGuangzhou510642China
| | - Zhujin Lu
- />College of Animal ScienceSouth China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding IndustryGuangzhou510642China
| | - Jiaxin Feng
- />College of Animal ScienceSouth China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding IndustryGuangzhou510642China
| | - Zefeng Chen
- />College of Animal ScienceSouth China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding IndustryGuangzhou510642China
| | - Zejian Liu
- />College of Animal ScienceSouth China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding IndustryGuangzhou510642China
| | - Xiuqi Wang
- />College of Animal ScienceSouth China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding IndustryGuangzhou510642China
| | - Huichao Yan
- />College of Animal ScienceSouth China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding IndustryGuangzhou510642China
| | - Chunqi Gao
- />College of Animal ScienceSouth China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding IndustryGuangzhou510642China
| |
Collapse
|
6
|
Wang G, Sweren E, Andrews W, Li Y, Chen J, Xue Y, Wier E, Alphonse MP, Luo L, Miao Y, Chen R, Zeng D, Lee S, Li A, Dare E, Kim D, Archer NK, Reddy SK, Resar L, Hu Z, Grice EA, Kane MA, Garza LA. Commensal microbiome promotes hair follicle regeneration by inducing keratinocyte HIF-1α signaling and glutamine metabolism. SCIENCE ADVANCES 2023; 9:eabo7555. [PMID: 36598999 PMCID: PMC9812389 DOI: 10.1126/sciadv.abo7555] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/23/2022] [Indexed: 05/06/2023]
Abstract
Tissue injury induces metabolic changes in stem cells, which likely modulate regeneration. Using a model of organ regeneration called wound-induced hair follicle neogenesis (WIHN), we identified skin-resident bacteria as key modulators of keratinocyte metabolism, demonstrating a positive correlation between bacterial load, glutamine metabolism, and regeneration. Specifically, through comprehensive multiomic analysis and single-cell RNA sequencing in murine skin, we show that bacterially induced hypoxia drives increased glutamine metabolism in keratinocytes with attendant enhancement of skin and hair follicle regeneration. In human skin wounds, topical broad-spectrum antibiotics inhibit glutamine production and are partially responsible for reduced healing. These findings reveal a conserved and coherent physiologic context in which bacterially induced metabolic changes improve the tolerance of stem cells to damage and enhance regenerative capacity. This unexpected proregenerative modulation of metabolism by the skin microbiome in both mice and humans suggests important methods for enhancing regeneration after injury.
Collapse
Affiliation(s)
- Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Evan Sweren
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - William Andrews
- Department of Pharmaceutical Sciences, School of Pharmacy Mass Spectrometry Center, University of Maryland, Baltimore, MD 21201, USA
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Junjun Chen
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Yingchao Xue
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Eric Wier
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Martin P. Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Li Luo
- Departments of Medicine, Oncology, Pathology and Institute for Cellular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Ruosi Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Sam Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Ang Li
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Erika Dare
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Dongwon Kim
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
- Department of Bio-Chemical Engineering, Dongseo University, Busan, Republic of Korea
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Sashank K. Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Linda Resar
- Departments of Medicine, Oncology, Pathology and Institute for Cellular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Elizabeth A. Grice
- Department of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy Mass Spectrometry Center, University of Maryland, Baltimore, MD 21201, USA
| | - Luis A. Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| |
Collapse
|
7
|
Mao MQ, Jing J, Miao YJ, Lv ZF. Epithelial-Mesenchymal Interaction in Hair Regeneration and Skin Wound Healing. Front Med (Lausanne) 2022; 9:863786. [PMID: 35492363 PMCID: PMC9048199 DOI: 10.3389/fmed.2022.863786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Interactions between epithelial and mesenchymal cells influence hair follicles (HFs) during embryonic development and skin regeneration following injury. Exchanging soluble molecules, altering key pathways, and extracellular matrix signal transduction are all part of the interplay between epithelial and mesenchymal cells. In brief, the mesenchyme contains dermal papilla cells, while the hair matrix cells and outer root sheath represent the epithelial cells. This study summarizes typical epithelial–mesenchymal signaling molecules and extracellular components under the control of follicular stem cells, aiming to broaden our current understanding of epithelial–mesenchymal interaction mechanisms in HF regeneration and skin wound healing.
Collapse
|
8
|
Ankawa R, Fuchs Y. May the best wound WIHN: the hallmarks of wound-induced hair neogenesis. Curr Opin Genet Dev 2021; 72:53-60. [PMID: 34861514 DOI: 10.1016/j.gde.2021.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/05/2021] [Accepted: 10/21/2021] [Indexed: 01/06/2023]
Abstract
The hair follicle is a unique mini organ that undergoes continuous cycles of replenishment. While hair follicle formation was long thought to occur strictly during embryogenesis, it is now becoming increasingly clear that hair follicles can regenerate from the wound bed. Here, we provide an overview of the recent advancements in the field of Wound Induced Hair Neogenesis (WIHN) in mice. We briefly outline the hair follicle morphogenic process and discuss the major features of adult hair follicle regeneration. We examine the role of distinct cell types and review the contribution of specific signaling pathways to the WIHN phenotype. The phenomenon of neogenic hair regeneration provides an important platform, which may offer new insights into mammalian regeneration in the adult setting.
Collapse
Affiliation(s)
- Roi Ankawa
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Israel; Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Israel; Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa 3200, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Israel; Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Israel; Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa 3200, Israel.
| |
Collapse
|
9
|
Lei M, Lin SJ, Chuong CM. Editorial: Hair Follicle Stem Cell Regeneration in Aging. Front Cell Dev Biol 2021; 9:799268. [PMID: 34901037 PMCID: PMC8655873 DOI: 10.3389/fcell.2021.799268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mingxing Lei
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology of the Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Sung-Jan Lin
- Department of Biomedical Engineering and Department of Dermatology, College of Engineering and College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
10
|
Xu H, Ma G, Mu F, Ning B, Li H, Wang N. STAT3 Partly Inhibits Cell Proliferation via Direct Negative Regulation of FST Gene Expression. Front Genet 2021; 12:678667. [PMID: 34239543 PMCID: PMC8259742 DOI: 10.3389/fgene.2021.678667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Follistatin (FST) is a secretory glycoprotein and belongs to the TGF-β superfamily. Previously, we found that two single nucleotide polymorphisms (SNPs) of sheep FST gene were significantly associated with wool quality traits in Chinese Merino sheep (Junken type), indicating that FST is involved in the regulation of hair follicle development and hair trait formation. The transcription regulation of human and mouse FST genes has been widely investigated, and many transcription factors have been identified to regulate FST gene. However, to date, the transcriptional regulation of sheep FST is largely unknown. In the present study, genome walking was used to close the genomic gap upstream of the sheep genomic FST gene and to obtain the FST gene promoter sequence. Transcription factor binding site analysis showed sheep FST promoter region contained a conserved putative binding site for signal transducer and activator of transcription 3 (STAT3), located at nucleotides -423 to -416 relative to the first nucleotide (A, +1) of the initiation codon (ATG) of sheep FST gene. The dual-luciferase reporter assay demonstrated that STAT3 inhibited the FST promoter activity and that the mutation of the putative STAT3 binding site attenuated the inhibitory effect of STAT3 on the FST promoter activity. Additionally, chromatin immunoprecipitation assay (ChIP) exhibited that STAT3 is directly bound to the FST promoter. Cell proliferation assay displayed that FST and STAT3 played opposite roles in cell proliferation. Overexpression of sheep FST significantly promoted the proliferation of sheep fetal fibroblasts (SFFs) and human keratinocyte (HaCaT) cells, and overexpression of sheep STAT3 displayed opposite results, which was accompanied by a significantly reduced expression of FST gene (P < 0.05). Taken together, STAT3 directly negatively regulates sheep FST gene and depresses cell proliferation. Our findings may contribute to understanding molecular mechanisms that underlie hair follicle development and morphogenesis.
Collapse
Affiliation(s)
- Haidong Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guangwei Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Fang Mu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Bolin Ning
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
Bhoopalam M, Garza LA, Reddy SK. Wound Induced Hair Neogenesis - A Novel Paradigm for Studying Regeneration and Aging. Front Cell Dev Biol 2020; 8:582346. [PMID: 33178696 PMCID: PMC7593594 DOI: 10.3389/fcell.2020.582346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/04/2020] [Indexed: 01/06/2023] Open
Abstract
Hair follicles are the signature dermal appendage of mammals. They can be thought of as mini-organs with defined polarity, distinct constituent cell types, dedicated neurovascular supply, and specific stem cell compartments. Strikingly, some mammals show a capacity for adult hair follicle regeneration in a phenomenon known as wound-induced hair neogenesis (WIHN). In WIHN functional hair follicles reemerge during healing of large cutaneous wounds, and they can be counted to provide an index of regeneration. While age-related decline in hair follicle number and cycling are widely appreciated in normal physiology, it is less clear whether hair follicle regeneration also diminishes with age. WIHN provides an extraordinary quantitative system to address questions of mammalian regeneration and aging. Here we review cellular and molecular underpinnings of WIHN, explore known age-related changes to these elements, and present unanswered questions for future exploration.
Collapse
Affiliation(s)
- Myan Bhoopalam
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sashank K Reddy
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|