1
|
Todd EA, Mirsky NA, Silva BLG, Shinde AR, Arakelians ARL, Nayak VV, Marcantonio RAC, Gupta N, Witek L, Coelho PG. Functional Scaffolds for Bone Tissue Regeneration: A Comprehensive Review of Materials, Methods, and Future Directions. J Funct Biomater 2024; 15:280. [PMID: 39452579 PMCID: PMC11509029 DOI: 10.3390/jfb15100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Bone tissue regeneration is a rapidly evolving field aimed at the development of biocompatible materials and devices, such as scaffolds, to treat diseased and damaged osseous tissue. Functional scaffolds maintain structural integrity and provide mechanical support at the defect site during the healing process, while simultaneously enabling or improving regeneration through amplified cellular cues between the scaffold and native tissues. Ample research on functionalization has been conducted to improve scaffold-host tissue interaction, including fabrication techniques, biomaterial selection, scaffold surface modifications, integration of bioactive molecular additives, and post-processing modifications. Each of these methods plays a crucial role in enabling scaffolds to not only support but actively participate in the healing and regeneration process in bone and joint surgery. This review provides a state-of-the-art, comprehensive overview of the functionalization of scaffold-based strategies used in tissue engineering, specifically for bone regeneration. Critical issues and obstacles are highlighted, applications and advances are described, and future directions are identified.
Collapse
Affiliation(s)
- Emily Ann Todd
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Bruno Luís Graciliano Silva
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara 01049-010, Brazil
| | - Ankita Raja Shinde
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Aris R. L. Arakelians
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Nikhil Gupta
- Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Younus ZM, Ahmed I, Roach P, Forsyth NR. A phosphate glass reinforced composite acrylamide gradient scaffold for osteochondral interface regeneration. BIOMATERIALS AND BIOSYSTEMS 2024; 15:100099. [PMID: 39221155 PMCID: PMC11364006 DOI: 10.1016/j.bbiosy.2024.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
The bone-cartilage interface is defined by a unique arrangement of cells and tissue matrix. Injury to the interface can contribute to the development of arthritic joint disease. Attempts to repair osteochondral damage through clinical trials have generated mixed outcomes. Tissue engineering offers the potential of integrated scaffold design with multiregional architecture to assist in tissue regeneration, such as the bone-cartilage interface. Challenges remain in joining distinct materials in a single scaffold mass while maintaining integrity and avoiding delamination. The aim of the current work is to examine the possibility of joining two closely related acrylamide derivatives such as, poly n-isopropyl acrylamide (pNIPAM) and poly n‑tert‑butyl acrylamide (pNTBAM). The target is to produce a single scaffold unit with distinct architectural regions in the favour of regenerating the osteochondral interface. Longitudinal phosphate glass fibres (PGFs) with the formula 50P2O5.30CaO.20Na2O were incorporated to provide additional bioactivity by degradation to release ions such as calcium and phosphate which are considered valuable to assist the mineralization process. Polymers were prepared via atom transfer radical polymerization (ATRP) and solutions cast to ensure the integration of polymers chains. Scaffold was characterized using scanning electron microscope (SEM) and Fourier transform infra-red (FTIR) techniques. The PGF mass degradation pattern was inspected using micro computed tomography (µCT). Biological assessment of primary human osteoblasts (hOBs) and primary human chondrocytes (hCHs) upon scaffolds was performed using alizarin red and colorimetric calcium assay for mineralization assessment; alcian blue staining and dimethyl-methylene blue (DMMB) assay for glycosaminoglycans (GAGs); immunostaining and enzyme-linked immunosorbent assay (ELISA) to detect functional proteins expression by cells such as collagen I, II, and annexin A2. FTIR analysis revealed an intact unit with gradual transformation from pNIPAM to pNTBAM. SEM images showed three distinct architectural regions with mean pore diameter of 54.5 µm (pNIPAM), 16.5 µm (pNTBAM) and 118 µm at the mixed interface. Osteogenic and mineralization potential by cells was observed upon the entire scaffold's regions. Chondrogenic activity was relevant on the pNTBAM side of the scaffold only with minimal evidence in the pNIPAM region. PGFs increased mineralization potential of both hOBs and hCHs, evidenced by elevated collagens I, X, and annexin A2 with reduction of collagen II in PGFs scaffolds. In conclusion, pNIPAM and pNTBAM integration created a multiregional scaffold with distinct architectural regions. Differential chondrogenic, osteogenic, and mineralized cell performance, in addition to the impact of PGF, suggests a potential role for phosphate glass-incorporated, acrylamide-derivative scaffolds in osteochondral interface regeneration.
Collapse
Affiliation(s)
- Zaid M. Younus
- School of Pharmacy and Bioengineering, Keele University, Keele, UK
- College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ifty Ahmed
- Faculty of Engineering, Advanced Materials Research Group, University of Nottingham, Nottingham, UK
| | - Paul Roach
- Department of Chemistry, School of Science, Loughborough University, Leicestershire, UK
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Keele, UK
- Vice principals’ office, King's College, University of Aberdeen, Aberdeen, AB24 3FX, UK
| |
Collapse
|
3
|
Komatsu D, Cabrera ARE, Quevedo BV, Asami J, Cristina Motta A, de Moraes SC, Duarte MAT, Hausen MDA, Aparecida de Rezende Duek E. Meniscal repair with additive manufacture of bioresorbable polymer: From physicochemical characterization to implantation of 3D printed poly (L-co-D, L lactide-co-trimethylene carbonate) with autologous stem cells in rabbits. J Biomater Appl 2024; 39:66-79. [PMID: 38646887 DOI: 10.1177/08853282241248517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Three-dimensional (3D) structures are actually the state-of-the-art technique to create porous scaffolds for tissue engineering. Since regeneration in cartilage tissue is limited due to intrinsic cellular properties this study aims to develop and characterize three-dimensional porous scaffolds of poly (L-co-D, L lactide-co-trimethylene carbonate), PLDLA-TMC, obtained by 3D fiber deposition technique. The PLDLA-TMC terpolymer scaffolds (70:30), were obtained and characterized by scanning electron microscopy, gel permeation chromatography, differential scanning calorimetry, thermal gravimetric analysis, compression mechanical testing and study on in vitro degradation, which showed its amorphous characteristics, cylindrical geometry, and interconnected pores. The in vitro degradation study showed significant loss of mechanical properties compatible with a decrease in molar mass, accompanied by changes in morphology. The histocompatibility association of mesenchymal stem cells from rabbit's bone marrow, and PLDLA-TMC scaffolds, were evaluated in the meniscus regeneration, proving the potential of cell culture at in vivo tissue regeneration. Nine New Zealand rabbits underwent total medial meniscectomy, yielding three treatments: implantation of the seeded PLDLA-TMC scaffold, implantation of the unseeded PLDLA-TMC and negative control (defect without any implant). After 24 weeks, the results revealed the presence of fibrocartilage in the animals treated with polymer. However, the regeneration obtained with the seeded PLDLA-TMC scaffolds with mesenchymal stem cells had become intimal to mature fibrocartilaginous tissue of normal meniscus both macroscopically and histologically. This study demonstrated the effectiveness of the PLDLA-TMC scaffold in meniscus regeneration and the potential of mesenchymal stem cells in tissue engineering, without the use of growth factors. It is concluded that bioresorbable polymers represent a promising alternative for tissue regeneration.
Collapse
Affiliation(s)
- Daniel Komatsu
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, Brazil
| | | | - Bruna Vanessa Quevedo
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, Brazil
- Post-Graduation Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba, Brazil
| | - Jessica Asami
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, Brazil
- Post-Graduation Program of School of Mechanical Engineering (FEM), University of Campinas (UNICAMP), Campinas, Brazil
| | - Adriana Cristina Motta
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, Brazil
| | | | | | - Moema de Alencar Hausen
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, Brazil
- Post-Graduation Program of Biomaterials and Regenerative Medicine (PPGBMR), Surgery Department, PUC-SP, Sorocaba, Brazil
| | - Eliana Aparecida de Rezende Duek
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, Brazil
- Post-Graduation Program of School of Mechanical Engineering (FEM), University of Campinas (UNICAMP), Campinas, Brazil
- Post-Graduation Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba, Brazil
- Post-Graduation Program of Biomaterials and Regenerative Medicine (PPGBMR), Surgery Department, PUC-SP, Sorocaba, Brazil
| |
Collapse
|
4
|
Faeed M, Ghiasvand M, Fareghzadeh B, Taghiyar L. Osteochondral organoids: current advances, applications, and upcoming challenges. Stem Cell Res Ther 2024; 15:183. [PMID: 38902814 PMCID: PMC11191177 DOI: 10.1186/s13287-024-03790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024] Open
Abstract
In the realm of studying joint-related diseases, there is a continuous quest for more accurate and representative models. Recently, regenerative medicine and tissue engineering have seen a growing interest in utilizing organoids as powerful tools for studying complex biological systems in vitro. Organoids, three-dimensional structures replicating the architecture and function of organs, provide a unique platform for investigating disease mechanisms, drug responses, and tissue regeneration. The surge in organoid research is fueled by the need for physiologically relevant models to bridge the gap between traditional cell cultures and in vivo studies. Osteochondral organoids have emerged as a promising avenue in this pursuit, offering a better platform to mimic the intricate biological interactions within bone and cartilage. This review explores the significance of osteochondral organoids and the need for their development in advancing our understanding and treatment of bone and cartilage-related diseases. It summarizes osteochondral organoids' insights and research progress, focusing on their composition, materials, cell sources, and cultivation methods, as well as the concept of organoids on chips and application scenarios. Additionally, we address the limitations and challenges these organoids face, emphasizing the necessity for further research to overcome these obstacles and facilitate orthopedic regeneration.
Collapse
Affiliation(s)
- Maryam Faeed
- Cell and Molecular School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahsa Ghiasvand
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran
| | - Bahar Fareghzadeh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Taghiyar
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Hu J, Peng J, Zhou Z, Zhao T, Zhong L, Yu K, Jiang K, Lau TS, Huang C, Lu L, Zhang X. Associating Knee Osteoarthritis Progression with Temporal-Regional Graph Convolutional Network Analysis on MR Images. J Magn Reson Imaging 2024. [PMID: 38686707 DOI: 10.1002/jmri.29412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Artificial intelligence shows promise in assessing knee osteoarthritis (OA) progression on MR images, but faces challenges in accuracy and interpretability. PURPOSE To introduce a temporal-regional graph convolutional network (TRGCN) on MR images to study the association between knee OA progression status and network outcome. STUDY TYPE Retrospective. POPULATION 194 OA progressors (mean age, 62 ± 9 years) and 406 controls (mean age, 61 ± 9 years) from the OA Initiative were randomly divided into training (80%) and testing (20%) cohorts. FIELD STRENGTH/SEQUENCE Sagittal 2D IW-TSE-FS (IW) and 3D-DESS-WE (DESS) at 3T. ASSESSMENT Anatomical subregions of cartilage, subchondral bone, meniscus, and the infrapatellar fat pad at baseline, 12-month, and 24-month were automatically segmented and served as inputs to form compartment-based graphs for a TRGCN model, which containing both regional and temporal information. The performance of models based on (i) clinical variables alone, (ii) radiologist score alone, (iii) combined features (containing i and ii), (iv) composite TRGCN (combining TRGCN, i and ii), (v) radiomics features, (vi) convolutional neural network based on Densenet-169 were compared. STATISTICAL TESTS DeLong test was performed to compare the areas under the ROC curve (AUC) of all models. Additionally, interpretability analysis was done to evaluate the contributions of individual regions. A P value <0.05 was considered significant. RESULTS The composite TRGCN outperformed all other models with AUCs of 0.841 (DESS) and 0.856 (IW) in the testing cohort (all P < 0.05). Interpretability analysis highlighted cartilage's importance over other structures (42%-45%), tibiofemoral joint's (TFJ) dominance over patellofemoral joint (PFJ) (58%-67% vs. 12%-37%), and importance scores changes in compartments over time (TFJ vs. PFJ: baseline: 44% vs. 43%, 12-month: 52% vs. 39%, 24-month: 31% vs. 48%). DATA CONCLUSION The composite TRGCN, capturing temporal and regional information, demonstrated superior discriminative ability compared with other methods, providing interpretable insights for identifying knee OA progression. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Jiaping Hu
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics· Guangdong Province), Guangzhou, China
| | - Junyi Peng
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Zidong Zhou
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Tianyun Zhao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Lijie Zhong
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics· Guangdong Province), Guangzhou, China
| | - Keyan Yu
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Kexin Jiang
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics· Guangdong Province), Guangzhou, China
| | - Tzak Sing Lau
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chuan Huang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Lijun Lu
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Pazhou Lab, Guangzhou, China
| | - Xiaodong Zhang
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics· Guangdong Province), Guangzhou, China
| |
Collapse
|
6
|
Zecca PA, Reguzzoni M, Borgese M, Protasoni M, Filibian M, Raspanti M. Investigating the interfaces of the epiphyseal plate: An integrated approach of histochemistry, microtomography and SEM. J Anat 2023; 243:870-877. [PMID: 37391907 PMCID: PMC10557393 DOI: 10.1111/joa.13924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
We investigated the interfaces of the epiphyseal plate with over- and underlying bone segments using an integrated approach of histochemistry, microtomography and scanning electron microscopy (SEM) to overcome the inherent limitations of sections-based techniques. Microtomography was able to provide an unobstructed, frontal view of large expanses of the two bone surfaces facing the growth plate, while SEM observation after removal of the soft matrix granted an equally unhindered access with a higher resolution. The two interfaces appeared widely dissimilar. On the diaphyseal side the hypertrophic chondrocytes were arranged in tall columns packed in a sort of compact palisade; the interposed extracellular matrix was actively calcifying into a thick mineralized crust growing towards the epiphysis. Behind the mineralization front, histochemical data revealed a number of surviving cartilage islets which were being slowly remodelled into bone. In contrast, the epiphyseal side of the cartilage consisted of a relatively quiescent reserve zone whose mineralization was marginal in amount and discontinuous in extension; the epiphyseal bone consisted of a loose trabecular meshwork, with ample vascular spaces opening directly into the non-mineralized cartilage. On both sides the calcification process took place through the formation of spheroidal bodies 1-2 μm wide which gradually grew by apposition and coalesced into a solid mass, in a way distinctly different from that of bone and other calcified tissues.
Collapse
Affiliation(s)
| | | | - Marina Borgese
- Department of Medicine & SurgeryInsubria UniversityVareseItaly
| | | | - Marta Filibian
- Centro Grandi StrumentiUniversity of PaviaPaviaItaly
- Istituto Nazionale di Fisica Nucleare, Pavia UnitPaviaItaly
| | - Mario Raspanti
- Department of Medicine & SurgeryInsubria UniversityVareseItaly
| |
Collapse
|
7
|
Diaz F, Forsyth N, Boccaccini AR. Aligned Ice Templated Biomaterial Strategies for the Musculoskeletal System. Adv Healthc Mater 2023; 12:e2203205. [PMID: 37058583 PMCID: PMC11468517 DOI: 10.1002/adhm.202203205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/21/2023] [Indexed: 04/16/2023]
Abstract
Aligned pore structures present many advantages when conceiving biomaterial strategies for treatment of musculoskeletal disorders. Aligned ice templating (AIT) is one of the many different techniques capable of producing anisotropic porous scaffolds; its high versatility allows for the formation of structures with tunable pore sizes, as well as the use of many different materials. AIT has been found to yield improved compressive properties for bone tissue engineering (BTE), as well as higher tensile strength and optimized cellular alignment and proliferation in tendon and muscle repair applications. This review evaluates the work that has been done in the last decade toward the production of aligned pore structures by AIT with an outlook on the musculoskeletal system. This work describes the fundamentals of the AIT technique and focuses on the research carried out to optimize the biomechanical properties of scaffolds by modifying the pore structure, categorizing by material type and application. Related topics including growth factor incorporation into AIT scaffolds, drug delivery applications, and studies about immune system response will be discussed.
Collapse
Affiliation(s)
- Florencia Diaz
- Department of Materials Science and EngineeringInstitute of BiomaterialsUniversity of Erlangen‐Nuremberg91058ErlangenGermany
| | - Nicholas Forsyth
- The Guy Hilton Research LaboratoriesSchool of Pharmacy and BioengineeringFaculty of Medicine and Health SciencesKeele UniversityStoke on TrentST4 7QBUK
| | - Aldo R. Boccaccini
- Department of Materials Science and EngineeringInstitute of BiomaterialsUniversity of Erlangen‐Nuremberg91058ErlangenGermany
| |
Collapse
|
8
|
Zecca PA, Reguzzoni M, Protasoni M, Raspanti M. The chondro-osseous junction of articular cartilage. Tissue Cell 2023; 80:101993. [PMID: 36516570 DOI: 10.1016/j.tice.2022.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
In the synovial joints the transition between the soft articular cartilage and the subchondral bone is mediated by a layer of calcified cartilage of structural and mechanical characteristics closer to those of bone. This layer, buried in the depth of articular cartilage, is not directly accessible and is mostly visualized in histological sections of decalcified tissue, where it appears as a darker strip in contact with the subchondral bone. In this study conventional histology and scanning electron microscopy (SEM) with secondary electron imaging (SE) or backscattered electron imaging (BSE) were used to discriminate the calcified and the uncalcified cartilage in high resolution on native, untreated tissue as well as in deproteinated or demineralized tissue. This approach evidenced a high heterogeneity of the calcified layer of articular cartilage. High resolution pictures revealed that the mineralization process originates by progressive accretion and confluence of individual, small mineral clusters, in a very different way from other hard tissues such as bone, dentin and mineralized tendons. Finally, selective removal of the soft matrix by thermal treatment allowed for the first time a face-on, unrestricted 3D view of the mineralization front.
Collapse
Affiliation(s)
| | | | - Marina Protasoni
- Department of Medicine & Surgery, Insubria University, Varese, Italy
| | - Mario Raspanti
- Department of Medicine & Surgery, Insubria University, Varese, Italy.
| |
Collapse
|
9
|
Silva MO, Kirkwood N, Mulvaney P, Ellis AV, Stok KS. Evaluation of a lanthanide nanoparticle-based contrast agent for microcomputed tomography of porous channels in subchondral bone. J Orthop Res 2023; 41:447-458. [PMID: 35524421 PMCID: PMC10084061 DOI: 10.1002/jor.25361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/10/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a chronic joint disease that causes disability and pain. The osteochondral interface is a gradient tissue region that plays a significant role in maintaining joint health. It has been shown that during OA, increased neoangiogenesis creates porous channels at the osteochondral interface allowing the transport of molecules related to OA. Importantly, the connection between these porous channels and the early stages of OA development is still not fully understood. Microcomputed tomography (microCT) offers the ability to image the porous channels at the osteochondral interface, however, a contrast agent is necessary to delineate the different X-ray attenuations of the tissues. In this study BaYbF5 -SiO2 nanoparticles are synthesized and optimized as a microCT contrast agent to obtain an appropriate contrast attenuation for subsequent segmentation of structures of interest, that is, porous channels, and mouse subchondral bone. For this purpose, BaYbF5 nanoparticles were synthesized and coated with a biocompatible silica shell (SiO2 ). The optimized BaYbF5 -SiO2 27 nm nanoparticles exhibited the highest average microCT attenuation among the biocompatible nanoparticles tested. The BaYbF5 -SiO2 27 nm nanoparticles increased the mean X-ray attenuation of structures of interest, for example, porous channel models and mouse subchondral bone. The BaYbF5 -SiO2 contrast attenuation was steady after diffusion into mouse subchondral bone. In this study, we obtained for the first time, the average microCT attenuation of the BaYbF5 -SiO2 nanoparticles into porous channel models and mouse subchondral bone. In conclusion, BaYbF5 -SiO2 nanoparticles are a potential contrast agent for imaging porous channels at the osteochondral interface using microCT.
Collapse
Affiliation(s)
- Mateus O Silva
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas Kirkwood
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Kathryn S Stok
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Jalandhra GK, Molley TG, Hung TT, Roohani I, Kilian KA. In situ formation of osteochondral interfaces through "bone-ink" printing in tailored microgel suspensions. Acta Biomater 2023; 156:75-87. [PMID: 36055612 DOI: 10.1016/j.actbio.2022.08.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Osteochondral tissue has a complex hierarchical structure spanning subchondral bone to articular cartilage. Biomaterials approaches to mimic and repair these interfaces have had limited success, largely due to challenges in fabricating composite hard-soft interfaces with living cells. Biofabrication approaches have emerged as attractive methods to form osteochondral analogues through additive assembly of hard and soft components. We have developed a unique printing platform that is able to integrate soft and hard materials concurrently through freeform printing of mineralized constructs within tunable microgel suspensions containing living cells. A library of microgels based on gelatin were prepared, where the stiffness of the microgels and a liquid "filler" phase can be tuned for bioprinting while simultaneously directing differentiation. Tuning microgel stiffness and filler content differentially directs chondrogenesis and osteogenesis within the same construct, demonstrating how this technique can be used to fabricate osteochondral interfaces in a single step. Printing of a rapidly setting calcium phosphate cement, so called "bone-ink" within a cell laden suspension bath further guides differentiation, where the cells adjacent to the nucleated hydroxyapatite phase undergo osteogenesis with cells in the surrounding medium undergoing chondrogenesis. In this way, bone analogues with hierarchical structure can be formed within cell-laden gradient soft matrices to yield multiphasic osteochondral constructs. This technique provides a versatile one-pot biofabrication approach without harsh post-processing which will aid efforts in bone disease modelling and tissue engineering. STATEMENT OF SIGNIFICANCE: This paper demonstrates the first example of a biofabrication approach to rapidly form osteochondral constructs in a single step under physiological conditions. Key to this advance is a tunable suspension of extracellular matrix microgels that are packed together with stem cells, providing a unique and modular scaffolding for guiding the simultaneous formation of bone and cartilage tissue. The physical properties of the suspension allow direct writing of a ceramic "bone-ink", resulting in an ordered structure of microscale hydrogels, living cells, and bone mimics in a single step. This platform reveals a simple approach to making complex skeletal tissue for disease modelling, with the possibility of repairing and replacing bone-cartilage interfaces in the clinic using a patient's own cells.
Collapse
Affiliation(s)
- Gagan K Jalandhra
- School of Materials Science and Engineering, University of New South Wales, Sydney NSW 2052; Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052
| | - Thomas G Molley
- School of Materials Science and Engineering, University of New South Wales, Sydney NSW 2052; Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052
| | - Tzong-Tyng Hung
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney NSW 2052
| | - Iman Roohani
- School of Chemistry, University of New South Wales, Sydney NSW 2052; Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052
| | - Kristopher A Kilian
- School of Materials Science and Engineering, University of New South Wales, Sydney NSW 2052; School of Chemistry, University of New South Wales, Sydney NSW 2052; Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052.
| |
Collapse
|
11
|
Bruno MC, Cristiano MC, Celia C, d'Avanzo N, Mancuso A, Paolino D, Wolfram J, Fresta M. Injectable Drug Delivery Systems for Osteoarthritis and Rheumatoid Arthritis. ACS NANO 2022; 16:19665-19690. [PMID: 36512378 DOI: 10.1021/acsnano.2c06393] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Joint diseases are one of the most common causes of morbidity and disability worldwide. The main diseases that affect joint cartilage are osteoarthritis and rheumatoid arthritis, which require chronic treatment focused on symptomatic relief. Conventional drugs administered through systemic or intra-articular routes have low accumulation and/or retention in articular cartilage, causing dose-limiting toxicities and reduced efficacy. Therefore, there is an urgent need to develop improved strategies for drug delivery, in particular, the use of micro- and nanotechnology-based methods. Encapsulation of therapeutic agents in delivery systems reduces drug efflux from the joint and protects against rapid cellular and enzymatic clearance following intra-articular injection. Consequently, the use of drug delivery systems decreases side effects and increases therapeutic efficacy due to enhanced drug retention in the intra-articular space. Additionally, the frequency of intra-articular administration is reduced, as delivery systems enable sustained drug release. This review summarizes various advanced drug delivery systems, such as nano- and microcarriers, developed for articular cartilage diseases.
Collapse
Affiliation(s)
- Maria Chiara Bruno
- Department of Health Sciences, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti, I-66100, Italy
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307, Kaunas, Lithuania
| | - Nicola d'Avanzo
- Department of Health Sciences, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti, I-66100, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Massimo Fresta
- Department of Health Sciences, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| |
Collapse
|
12
|
Zelinka A, Roelofs AJ, Kandel RA, De Bari C. Cellular therapy and tissue engineering for cartilage repair. Osteoarthritis Cartilage 2022; 30:1547-1560. [PMID: 36150678 DOI: 10.1016/j.joca.2022.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/02/2023]
Abstract
Articular cartilage (AC) has limited capacity for repair. The first attempt to repair cartilage using tissue engineering was reported in 1977. Since then, cell-based interventions have entered clinical practice in orthopaedics, and several tissue engineering approaches to repair cartilage are in the translational pipeline towards clinical application. Classically, these involve a scaffold, substrate or matrix to provide structure, and cells such as chondrocytes or mesenchymal stromal cells to generate the tissue. We discuss the advantages and drawbacks of the use of various cell types, natural and synthetic scaffolds, multiphasic or gradient-based scaffolds, and self-organizing or self-assembling scaffold-free systems, for the engineering of cartilage constructs. Several challenges persist including achieving zonal tissue organization and integration with the surrounding tissue upon implantation. Approaches to improve cartilage thickness, organization and mechanical properties include mechanical stimulation, culture under hypoxic conditions, and stimulation with growth factors or other macromolecules. In addition, advanced technologies such as bioreactors, biosensors and 3D bioprinting are actively being explored. Understanding the underlying mechanisms of action of cell therapy and tissue engineering approaches will help improve and refine therapy development. Finally, we discuss recent studies of the intrinsic cellular and molecular mechanisms of cartilage repair that have identified novel signals and targets and are inspiring the development of molecular therapies to enhance the recruitment and cartilage reparative activity of joint-resident stem and progenitor cells. A one-fits-all solution is unrealistic, and identifying patients who will respond to a specific targeted treatment will be critical.
Collapse
Affiliation(s)
- A Zelinka
- Lunenfeld Tanenbaum Research Institute, Sinai Health, Dept. Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - A J Roelofs
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - R A Kandel
- Lunenfeld Tanenbaum Research Institute, Sinai Health, Dept. Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| | - C De Bari
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
13
|
Fan X, Lee KM, Jones MWM, Howard D, Crawford R, Prasadam I. A technique for preparing undecalcified osteochondral fresh frozen sections for elemental mapping and understanding disease etiology. Histochem Cell Biol 2022; 158:463-469. [PMID: 35809120 PMCID: PMC9630180 DOI: 10.1007/s00418-022-02135-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 12/16/2022]
Abstract
The anatomy of the osteochondral junction is complex because several tissue components exist as a unit, including uncalcified cartilage (with superficial, middle, and deep layers), calcified cartilage, and subchondral bone. Furthermore, it is difficult to study because this region is made up of a variety of cell types and extracellular matrix compositions. Using X-ray fluorescence microscopy, we present a protocol for simultaneous elemental detection on fresh frozen samples. We transferred the osteochondral sample using a tape-assisted system and successfully tested it in synchrotron X-ray fluorescence. This protocol elucidates the distinct distribution of elements at the human knee's osteochondral junction, making it a useful tool for analyzing the co-distribution of various elements in both healthy and diseased states.
Collapse
Affiliation(s)
- Xiwei Fan
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 60 Musk Ave/cnr. Blamey St, Kelvin Grove, Brisbane, QLD 4059 Australia
| | - Kah Meng Lee
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, 4059 Australia
| | - Michael W. M. Jones
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, 4059 Australia
| | - Daryl Howard
- The Australian Synchrotron, Melbourne, 3168 Australia
| | - Ross Crawford
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 60 Musk Ave/cnr. Blamey St, Kelvin Grove, Brisbane, QLD 4059 Australia
- The Prince Charles Hospital, Brisbane, 4032 Australia
| | - Indira Prasadam
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 60 Musk Ave/cnr. Blamey St, Kelvin Grove, Brisbane, QLD 4059 Australia
| |
Collapse
|
14
|
Su Z, Zong Z, Deng J, Huang J, Liu G, Wei B, Cui L, Li G, Zhong H, Lin S. Lipid Metabolism in Cartilage Development, Degeneration, and Regeneration. Nutrients 2022; 14:3984. [PMID: 36235637 PMCID: PMC9570753 DOI: 10.3390/nu14193984] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lipids affect cartilage growth, injury, and regeneration in diverse ways. Diet and metabolism have become increasingly important as the prevalence of obesity has risen. Proper lipid supplementation in the diet contributes to the preservation of cartilage function, whereas excessive lipid buildup is detrimental to cartilage. Lipid metabolic pathways can generate proinflammatory substances that are crucial to the development and management of osteoarthritis (OA). Lipid metabolism is a complicated metabolic process involving several regulatory systems, and lipid metabolites influence different features of cartilage. In this review, we examine the current knowledge about cartilage growth, degeneration, and regeneration processes, as well as the most recent research on the significance of lipids and their metabolism in cartilage, including the extracellular matrix and chondrocytes. An in-depth examination of the involvement of lipid metabolism in cartilage metabolism will provide insight into cartilage metabolism and lead to the development of new treatment techniques for metabolic cartilage damage.
Collapse
Affiliation(s)
- Zhanpeng Su
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Zhixian Zong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Jinxia Deng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Jianping Huang
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Guihua Liu
- Institute of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou 516001, China
| | - Bo Wei
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Liao Cui
- Department of Pharmacology, Marine Biomedical Research Institute, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical Unversity, Zhanjiang 524023, China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Huan Zhong
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Sien Lin
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
15
|
Di Marcello F, Di Donato G, d’Angelo DM, Breda L, Chiarelli F. Bone Health in Children with Rheumatic Disorders: Focus on Molecular Mechanisms, Diagnosis, and Management. Int J Mol Sci 2022; 23:ijms23105725. [PMID: 35628529 PMCID: PMC9143357 DOI: 10.3390/ijms23105725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Bone is an extremely dynamic and adaptive tissue, whose metabolism and homeostasis is influenced by many different hormonal, mechanical, nutritional, immunological and pharmacological stimuli. Genetic factors significantly affect bone health, through their influence on bone cells function, cartilage quality, calcium and vitamin D homeostasis, sex hormone metabolism and pubertal timing. In addition, optimal nutrition and physical activity contribute to bone mass acquisition in the growing age. All these factors influence the attainment of peak bone mass, a critical determinant of bone health and fracture risk in adulthood. Secondary osteoporosis is an important issue of clinical care in children with acute and chronic diseases. Systemic autoimmune disorders, like juvenile idiopathic arthritis, can affect the skeletal system, causing reduced bone mineral density and high risk of fragility fractures during childhood. In these patients, multiple factors contribute to reduce bone strength, including systemic inflammation with elevated cytokines, reduced physical activity, malabsorption and nutritional deficiency, inadequate daily calcium and vitamin D intake, use of glucocorticoids, poor growth and pubertal delay. In juvenile arthritis, osteoporosis is more prominent at the femoral neck and radius compared to the lumbar spine. Nevertheless, vertebral fractures are an important, often asymptomatic manifestation, especially in glucocorticoid-treated patients. A standardized diagnostic approach to the musculoskeletal system, including prophylaxis, therapy and follow up, is therefore mandatory in at risk children. Here we discuss the molecular mechanisms involved in skeletal homeostasis and the influence of inflammation and chronic disease on bone metabolism.
Collapse
|
16
|
Lesage C, Lafont M, Guihard P, Weiss P, Guicheux J, Delplace V. Material-Assisted Strategies for Osteochondral Defect Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200050. [PMID: 35322596 PMCID: PMC9165504 DOI: 10.1002/advs.202200050] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Indexed: 05/08/2023]
Abstract
The osteochondral (OC) unit plays a pivotal role in joint lubrication and in the transmission of constraints to bones during movement. The OC unit does not spontaneously heal; therefore, OC defects are considered to be one of the major risk factors for developing long-term degenerative joint diseases such as osteoarthritis. Yet, there is currently no curative treatment for OC defects, and OC regeneration remains an unmet medical challenge. In this context, a plethora of tissue engineering strategies have been envisioned over the last two decades, such as combining cells, biological molecules, and/or biomaterials, yet with little evidence of successful clinical transfer to date. This striking observation must be put into perspective with the difficulty in comparing studies to identify overall key elements for success. This systematic review aims to provide a deeper insight into the field of material-assisted strategies for OC regeneration, with particular considerations for the therapeutic potential of the different approaches (with or without cells or biological molecules), and current OC regeneration evaluation methods. After a brief description of the biological complexity of the OC unit, the recent literature is thoroughly analyzed, and the major pitfalls, emerging key elements, and new paths to success are identified and discussed.
Collapse
Affiliation(s)
- Constance Lesage
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
- HTL Biotechnology7 Rue Alfred KastlerJavené35133France
| | - Marianne Lafont
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Pierre Guihard
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Pierre Weiss
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Jérôme Guicheux
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Vianney Delplace
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| |
Collapse
|
17
|
Kuibida VV, Kohanets PP, Lopatynska VV. Temperature, heat shock proteins and growth regulation of the bone tissue. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ambient heat modulates the elongation of bones in mammals, and the mechanism of such a plasticity has not been studied completely. The influence of heat on growth and development of bone depends on its values. Five zones of temperature influence on the bone tissue with different biological effects have been distinguished : a) under-threshold thermal zone < 36.6 ºС, insufficient amount of heat is a limiting factor for osteogenesis; b) normal temperature zone 36.6‒37.5 ºС, the processes of breakdown and development of bone in this temperature range is balanced; b) zone of mild thermal shock 39‒41 ºС, the processes of functioning of osteoblasts, osteocytes and formation of the bone tissue intensify; d) the zone of sublethal thermal shock > 42 ºС, growth of bone slows; e) zone of non-critical shock > 50 ºС, bone tissue cells die. We propose a model of the mechanism of influence of heat shock on bone growth. Mild heat shock is a type of stress to which membrane enzymes adenylyl cyclase and cAMP-protein kinase react. Protein kinase A phosphorylates the gene factors of thermal shock proteins, stress proteins and enzymes of energy-generating processes – glycolysis and lipolysis. Heat shock protein HSP70 activates alkaline phosphatase and promotes the process of mineralization of the bone tissue. In the cells, there is intensification in syntheses of insulin-like growth factor-I, factors of mitogenic action, signals of intensification of blood circulation (NO) and synthesis of somatotropin. The affinity between insulin-like growth factor I and its acid-labile subunit decreases, leading to increased free and active insulin-like growth factor I. Against the background of acceleration of the capillarization process, energy generation and the level of stimulators of growth of bone tissue, mitotic and functional activities of producer cells of the bone – osteoblasts and osteocytes – activate. The generally known Allen’s rule has been developed and expanded: “Warm-blooded animals of different species have longer distal body parts (tails) if after birth the young have developed in the conditions of higher temperature”. The indicated tendency is realized through increased biosynthesis of heat shock proteins and other stimulators of growth processes in the bone tissue.
Collapse
|
18
|
Mu P, Feng J, Hu Y, Xiong F, Ma X, Tian L. Botanical Drug Extracts Combined With Biomaterial Carriers for Osteoarthritis Cartilage Degeneration Treatment: A Review of 10 Years of Research. Front Pharmacol 2022; 12:789311. [PMID: 35173609 PMCID: PMC8841352 DOI: 10.3389/fphar.2021.789311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a long-term chronic arthrosis disease which is usually characterized by pain, swelling, joint stiffness, reduced range of motion, and other clinical manifestations and even results in disability in severe cases. The main pathological manifestation of OA is the degeneration of cartilage. However, due to the special physiological structure of the cartilage, once damaged, it is unable to repair itself, which is one of the challenges of treating OA clinically. Abundant studies have reported the application of cartilage tissue engineering in OA cartilage repair. Among them, cell combined with biological carrier implantation has unique advantages. However, cell senescence, death and dedifferentiation are some problems when cultured in vitro. Botanical drug remedies for OA have a long history in many countries in Asia. In fact, botanical drug extracts (BDEs) have great potential in anti-inflammatory, antioxidant, antiaging, and other properties, and many studies have confirmed their effects. BDEs combined with cartilage tissue engineering has attracted increasing attention in recent years. In this review, we will explain in detail how cartilage tissue engineering materials and BDEs play a role in cartilage repair, as well as the current research status.
Collapse
Affiliation(s)
- Panyun Mu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Feng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yimei Hu
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yimei Hu,
| | - Feng Xiong
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xu Ma
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linling Tian
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Zou Z, Luo X, Chen Z, Zhang YS, Wen C. Emerging microfluidics-enabled platforms for osteoarthritis management: from benchtop to bedside. Theranostics 2022; 12:891-909. [PMID: 34976219 PMCID: PMC8692897 DOI: 10.7150/thno.62685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/17/2021] [Indexed: 11/12/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent debilitating age-related joint degenerative disease. It is a leading cause of pain and functional disability in older adults. Unfortunately, there is no cure for OA once the damage is established. Therefore, it promotes an urgent need for early detection and intervention of OA. Theranostics, combining therapy and diagnosis, emerges as a promising approach for OA management. However, OA theranostics is still in its infancy. Three fundamental needs have to be firstly fulfilled: i) a reliable OA model for disease pathogenesis investigation and drug screening, ii) an effective and precise diagnostic platform, and iii) an advanced fabrication approach for drug delivery and therapy. Meanwhile, microfluidics emerges as a versatile technology to address each of the needs and eventually boost the development of OA theranostics. Therefore, this review focuses on the applications of microfluidics, from benchtop to bedside, for OA modelling and drug screening, early diagnosis, and clinical therapy. We first introduce the basic pathophysiology of OA and point out the major unfilled research gaps in current OA management including lack of disease modelling and drug screening platforms, early diagnostic modalities and disease-modifying drugs and delivery approaches. Accordingly, we then summarize the state-of-the-art microfluidics technology for OA management from in vitro modelling and diagnosis to therapy. Given the existing promising results, we further discuss the future development of microfluidic platforms towards clinical translation at the crossroad of engineering and biomedicine.
Collapse
Affiliation(s)
- Zhou Zou
- Department of Biomedical Engineering, Faculty of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaohe Luo
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhengkun Chen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Currently at Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
20
|
Molfetta L, Casabella A, Rosini S, Saviola G, Palermo A. Role of the osteochondral unit in the pathogenesis of osteoarthritis: focus on the potential use of clodronate. Curr Rheumatol Rev 2021; 18:2-11. [PMID: 34615451 DOI: 10.2174/1573397117666211006094117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/10/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
Osteoarthritis (OA) is a chronic disease characterized by inflammation and progressive deterioration of the joint. The etiology of OA includes genetic, phlogistic, dismetabolic and mechanical factors. Historically, cartilage was considered the target of the disease and therapy was aimed at protecting and lubricating the articular cartilage. The osteochondral unit is composed of articular cartilage, calcified cartilage, and subchondral and trabecular bone, which work synergistically to support the functional loading of the joint. Numerous studies today show that OA involves the osteochondral unit, with the participation therefore of the bone in the starting and progression of the disease, which is associated with chondropathy. Cytokines involved in the process leading to cartilage damage are also mediators of subchondral bone edema. Therefore, OA therapy must be based on the use of painkillers and bisphosphonates for both the control of osteometabolic damage and its analgesic activity. Monitoring of the disease of the osteochondral unit must be extensive, since bone marrow edema can be considered as a marker of the evolution of OA. In the present review we discuss some of the pathogenetic mechanisms associated with osteoarthritis, with particular focus on the osteochondral unit and the use of clodronate.
Collapse
Affiliation(s)
- Luigi Molfetta
- DISC Department of Integrated Surgical and Diagnostic science, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa. Italy
| | - Andrea Casabella
- DiMI Department of Internal Medicine Osteoporosis, Bone and Joint Disease Research Center, CROPO, Geno. Italy
| | | | - Gianantonio Saviola
- Istituti Clinici Scientifici Maugeri IRCCS, Rheumatology and Rehabilitation Unit of the Institute of Castel Goffredo, Mantua. Italy
| | - Andrea Palermo
- IRCCS Auxologico Italian Institute - 3 Unit of Orthopaedic Surgery - Capitanio Hospital, Milan. Italy
| |
Collapse
|
21
|
Velot É, Madry H, Venkatesan JK, Bianchi A, Cucchiarini M. Is Extracellular Vesicle-Based Therapy the Next Answer for Cartilage Regeneration? Front Bioeng Biotechnol 2021; 9:645039. [PMID: 33968913 PMCID: PMC8102683 DOI: 10.3389/fbioe.2021.645039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/15/2021] [Indexed: 01/22/2023] Open
Abstract
"Extracellular vesicles" (EVs) is a term gathering biological particles released from cells that act as messengers for cell-to-cell communication. Like cells, EVs have a membrane with a lipid bilayer, but unlike these latter, they have no nucleus and consequently cannot replicate. Several EV subtypes (e.g., exosomes, microvesicles) are described in the literature. However, the remaining lack of consensus on their specific markers prevents sometimes the full knowledge of their biogenesis pathway, causing the authors to focus on their biological effects and not their origins. EV signals depend on their cargo, which can be naturally sourced or altered (e.g., cell engineering). The ability for regeneration of adult articular cartilage is limited because this avascular tissue is partly made of chondrocytes with a poor proliferation rate and migration capacity. Mesenchymal stem cells (MSCs) had been extensively used in numerous in vitro and preclinical animal models for cartilage regeneration, and it has been demonstrated that their therapeutic effects are due to paracrine mechanisms involving EVs. Hence, using MSC-derived EVs as cell-free therapy tools has become a new therapeutic approach to improve regenerative medicine. EV-based therapy seems to show similar cartilage regenerative potential compared with stem cell transplantation without the associated hindrances (e.g., chromosomal aberrations, immunogenicity). The aim of this short review is to take stock of occurring EV-based treatments for cartilage regeneration according to their healing effects. The article focuses on cartilage regeneration through various sources used to isolate EVs (mature or stem cells among others) and beneficial effects depending on cargos produced from natural or tuned EVs.
Collapse
Affiliation(s)
- Émilie Velot
- Faculté de Médecine, Biopôle de l’Université de Lorraine, Campus Brabois-Santé, Laboratoire UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Vandoeuvre-Lès-Nancy, France
- Campus Brabois-Santé, Laboratoire de Travaux Pratiques de Physiologie, Faculté de Pharmacie, Université de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | | | - Arnaud Bianchi
- Campus Brabois-Santé, Laboratoire de Travaux Pratiques de Physiologie, Faculté de Pharmacie, Université de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| |
Collapse
|