1
|
Wu XY, Dong QW, Zhang YB, Li JX, Zhang MQ, Zhang DQ, Cui YL. Cimicifuga heracleifolia kom. Attenuates ulcerative colitis through the PI3K/AKT/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118892. [PMID: 39395768 DOI: 10.1016/j.jep.2024.118892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cimicifuga heracleifolia Kom. (C. heracleifolia) has demonstrated efficacy in treating gastrointestinal disorders, including splenasthenic diarrhea. Ulcerative colitis (UC), a chronic inflammatory bowel disease, shares similarities with splenasthenic diarrhea. However, the pharmacological effects of C. heracleifolia on UC and the underlying mechanisms remain unexplored. AIM OF THE STUDY The present study investigates the therapeutic potential and mechanisms of C. heracleifolia in UC. METHODS Initially, network pharmacology analysis, encompassing ingredient screening, target prediction, protein-protein interaction (PPI) network analysis, and enrichment analysis, was employed to predict the mechanisms of C. heracleifolia. The findings were further validated using transcriptomics and functional assays in a dextran sulfate sodium (DSS)-induced UC model. Additionally, bioactive compounds were identified through surface plasmon resonance (SPR) analysis, molecular docking, and cell-based assays. RESULTS A total of 52 ingredients of C. heracleifolia were screened, and 32 key targets were identified within a PPI network comprising 285 potential therapeutic targets. Enrichment analysis indicated that the anti-UC effects of C. heracleifolia are mediated through immune response modulation and the inhibition of inflammatory signaling pathways. In vivo experiments showed that C. heracleifolia mitigated histological damage in the colon, reduced the expression of phosphorylated Akt1, nuclear factor-kappa B (NF-κB) p65, and inhibitor of Kappa B kinase α/β (IKKα/β), suppressed the content of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and enhanced the expression of tight junction proteins. Moreover, cimigenoside, caffeic acid, and methyl caffeate were identified as the bioactive constituents responsible for the UC treatment effects of C. heracleifolia. CONCLUSIONS In summary, this study is the first to demonstrate that C. heracleifolia exerts therapeutic effects on UC by enhancing the intestinal mucosal barrier and inhibiting the phosphatidylinositol 3-kinase (PI3K)/AKT/NF-κB signaling pathway. These findings offer valuable insights into the clinical application of C. heracleifolia for UC management.
Collapse
Affiliation(s)
- Xue-Yi Wu
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Qin-Wei Dong
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Yong-Bo Zhang
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Jia-Xin Li
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Mei-Qing Zhang
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - De-Qin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| |
Collapse
|
2
|
Li Y, He Y. Therapeutic applications of stem cell-derived exosomes in radiation-induced lung injury. Cancer Cell Int 2024; 24:403. [PMID: 39695650 DOI: 10.1186/s12935-024-03595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Radiation-induced lung injury is a common complication of chest tumor radiotherapy; however, effective clinical treatments are still lacking. Stem cell-derived exosomes, which contain various signaling molecules such as proteins, lipids, and miRNAs, not only retain the tissue repair and reconstruction properties of stem cells but also offer improved stability and safety. This presents significant potential for treating radiation-induced lung injury. Nonetheless, the clinical adoption of stem cell-derived exosomes for this purpose remains limited due to scientific, practical, and regulatory challenges. In this review, we highlight the current pathology and therapies for radiation-induced lung injury, focusing on the potential applications and therapeutic mechanisms of stem cell-derived exosomes. We also discuss the limitations of existing stem cell-derived exosomes and outline future directions for exosome-based treatments for radiation-induced lung injury.
Collapse
Affiliation(s)
- Ying Li
- Department of Radiotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yan He
- Department of Radiotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Sharma G, Jangra A, Sihag S, Chaturvedi S, Yadav S, Chhokar V. Bryophyllum pinnatum (Lam.) Oken: unravelling therapeutic potential and navigating toxicity. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1413-1427. [PMID: 39310702 PMCID: PMC11413295 DOI: 10.1007/s12298-024-01509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/10/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
Bryophyllum pinnatum (Lam.) Oken, a multipurpose medicinal herb, has drawn much interest for its therapeutic qualities from both traditional and modern medicine systems. Many active secondary metabolites, such as bufadienolides, triterpenes, phenols, alkaloids, glycosides, lipids, flavonoids, and organic acids, are responsible for the plant's curative properties. B. pinnatum exhibits a noteworthy significance in oncological research by exhibiting its ability to modify numerous pathways, which may suggest a potential anticancer impact. The herb is recommended for treating lithiasis, a common cause of renal failure, due to its effectiveness in dissolving stones and avoiding crystal formation. The plant has a major impact on diabetes, especially type II diabetes. Moreover, the versatility of B. pinnatum extends to its examination in connection to COVID-19. However, caution is warranted, as B. pinnatum has been reported to possess toxicity attributed to the presence of bufadienolides in its metabolic profile. A comprehensive investigation is essential to thoroughly understand and confirm the synthesis of potentially hazardous compounds. This is crucial for minimizing their presence and ensuring the safe consumption of B. pinnatum among diverse populations of organisms. This review highlights the various medical uses of B. pinnatum, including its ability to effectively treat kidney and liver diseases, as well as its anti-leishmanial, neuropharmacological, antibacterial, immunosuppressive, anti-tumour, and cytotoxic effects. While extensively employed in both traditional and scientific domains, the plant's complete medicinal potential, molecular mechanisms, safety profile, and pharmacodynamics remain ambiguous, rendering it an ideal candidate for pioneering research endeavours.
Collapse
Affiliation(s)
- Garima Sharma
- Department of Biotechnology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana India
| | - Alka Jangra
- Department of Agriculture Biotechnology, College of Biotechnology, Chaudhary Charan Singh Haryana Agriculture University, Hisar, Haryana India
| | - Sonia Sihag
- Department of Biotechnology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana India
| | - Siddhant Chaturvedi
- Department of Botany, Goswami Tulsidas Government Post Graduate College (Bundelkhand University, Jhansi), Karwi, Chitrakoot, Uttar Pradesh India
| | - Shalu Yadav
- Department of Biotechnology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana India
| | - Vinod Chhokar
- Department of Biotechnology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana India
| |
Collapse
|
4
|
Zhang L, Lu J. Rosemary (Rosmarinus officinalis L.) polyphenols and inflammatory bowel diseases: Major phytochemicals, functional properties, and health effects. Fitoterapia 2024; 177:106074. [PMID: 38906386 DOI: 10.1016/j.fitote.2024.106074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Major polyphenols in Rosmarinus officinalis L. primarily consist of phenolic acids, phenolic diterpenes, and flavonoids, all of which have pharmacological properties including anti-inflammatory and antibacterial characteristics. Numerous in vitro and animal studies have found that rosemary polyphenols have the potential to decrease the severity of intestinal inflammation. The beneficial effects of rosemary polyphenols were associated with anti-inflammatory properties, including improved gut barrier (increased mucus secretion and tight junction), increased antioxidant enzymes, inhibiting inflammatory pathways and cytokines (downregulation of NF-κB, NLRP3 inflammasomes, STAT3 and activation of Nrf2), and modulating gut microbiota community (increased core probiotics and SCFA-producing bacteria, and decreased potential pathogens) and metabolism (changes in SCFA and bile acid metabolites). This paper provides a better understanding of the anti-inflammatory properties of rosemary polyphenols and suggests that rosemary polyphenols might be employed as strong anti-inflammatory agents to prevent intestinal inflammation and lower the risk of inflammatory bowel disease and related diseases.
Collapse
Affiliation(s)
- Lianhua Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jie Lu
- China Animal Husbandry Group, Beijing 100070, China
| |
Collapse
|
5
|
Xie C, Chan L, Pang Y, Shang Y, Cao W, Tuohan M, Deng Q, Wang Y, Zhao L, Wang W. Caffeic acid inhibits the tumorigenicity of triple-negative breast cancer cells through the FOXO1/FIS pathway. Biomed Pharmacother 2024; 178:117158. [PMID: 39042963 DOI: 10.1016/j.biopha.2024.117158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Triple-negative breast cancer (TNBC) still one of the most challenging sub-type in breast cancer clinical. Caffeic acid (CA) derived from effective components of traditional Chinese herbal medicine has been show potential against TNBCs. Our research has found that CA can inhibit the proliferation of TNBC cells while also suppressing the size of cancer stem cell spheres. Additionally, it reduces reactive oxygen species (ROS) levels and disruption of mitochondrial membrane potential. Simultaneously, CA influences the stemness of TNBC cells by reducing the expression of the stem cell marker protein CD44. Furthermore, we have observed that CA can modulate the FOXO1/FIS signaling pathway, disrupting mitochondrial function, inducing mitochondrial autophagy, and exerting anti-tumor activity. Additionally, changes in the immune microenvironment were detected using a mass cytometer, we found that CA can induce M1 polarization of macrophages, enhancing anti-tumor immune responses to exert anti-tumor activity. In summary, CA can be considered as a lead compound for further research in targeting TNBC.
Collapse
Affiliation(s)
- Chufei Xie
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, 4, Dongqing Road, Huaxi District, Guiyang 550025, China
| | - Liujia Chan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10, Xitoutiao, Right Anmen West, Fengtai District, Beijing 100069, China
| | - Yuheng Pang
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, 150, Haping Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Yuefeng Shang
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, 150, Haping Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Weifang Cao
- Institute of Basic Medicine, Chinese Academy of Medical Science, 5, Third Dongdan Alley, Dongcheng District, Beijing 100000, China
| | - Marmar Tuohan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10, Xitoutiao, Right Anmen West, Fengtai District, Beijing 100069, China
| | - Qian Deng
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10, Xitoutiao, Right Anmen West, Fengtai District, Beijing 100069, China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10, Xitoutiao, Right Anmen West, Fengtai District, Beijing 100069, China.
| | - Lichun Zhao
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, 4, Dongqing Road, Huaxi District, Guiyang 550025, China; Science Experimental Center, Guangxi University of Traditional Chinese Medicine, 13, Wuhe Avenue, Qingxiu District, Nanning 530200, China.
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, 8, Xitoutiao, Right Anmen West, Fengtai District, Beijing 100069, China.
| |
Collapse
|
6
|
Cortez N, Villegas C, Burgos V, Cabrera-Pardo JR, Ortiz L, González-Chavarría I, Nchiozem-Ngnitedem VA, Paz C. Adjuvant Properties of Caffeic Acid in Cancer Treatment. Int J Mol Sci 2024; 25:7631. [PMID: 39062873 PMCID: PMC11276737 DOI: 10.3390/ijms25147631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Caffeic acid (CA) is a polyphenol belonging to the phenylpropanoid family, commonly found in plants and vegetables. It was first identified by Hlasiwetz in 1867 as a breakdown product of caffetannic acid. CA is biosynthesized from the amino acids tyrosine or phenylalanine through specific enzyme-catalyzed reactions. Extensive research since its discovery has revealed various health benefits associated with CA, including its antioxidant, anti-inflammatory, and anticancer properties. These effects are attributed to its ability to modulate several pathways, such as inhibiting NFkB, STAT3, and ERK1/2, thereby reducing inflammatory responses, and activating the Nrf2/ARE pathway to enhance antioxidant cell defenses. The consumption of CA has been linked to a reduced risk of certain cancers, mitigation of chemotherapy and radiotherapy-induced toxicity, and reversal of resistance to first-line chemotherapeutic agents. This suggests that CA could serve as a useful adjunct in cancer treatment. Studies have shown CA to be generally safe, with few adverse effects (such as back pain and headaches) reported. This review collates the latest information from Google Scholar, PubMed, the Phenol-Explorer database, and ClinicalTrials.gov, incorporating a total of 154 articles, to underscore the potential of CA in cancer prevention and overcoming chemoresistance.
Collapse
Affiliation(s)
- Nicole Cortez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4081112, Chile;
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción 4030000, Chile;
| | | | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| |
Collapse
|
7
|
Zhu S, Li R, Yin K, Wu L. CPNE1, A Potential Therapeutic Target in Nasopharyngeal Carcinoma, Affects Cell Growth and Radiation Resistance. Radiat Res 2024; 201:310-316. [PMID: 38355101 DOI: 10.1667/rade-23-00220.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The increased expression of Copine 1 (CPNE1) has been observed in various cancers, which promotes cell proliferation, apoptosis, and radio resistance. However, the potential mechanism of CPNE1 in nasopharyngeal carcinoma (NPC) remains elusive. Consequently, our objective was to investigate the role of CPNE1 in regulating proliferation and radio resistance of NPC. CPNE1 expression in NPC and normal patients were obtained from Cancer Genome Atlas (TCGA) database. An elevated CPNE1 was observed in NPC patients and cells (C666-1, SUNE-1, and HNE-1). Then, C666-1 and SUNE-1 cells were subjected to si-CPNE1 under different radiations (0-8 Gy). Cell growth and proliferation were measured by CCK8 and EDU assays, which demonstrated si-CPNE1 suppressed proliferation. Colony formation was performed to detect cell viability under different radiation therapy and survival curve of cell was plotted, which indicated that CPNE1 knockdown improved cell radiosensitivity. Additionally, flow cytometry showed silence of CPNE1 enhanced apoptosis rate in radiated cells. To further investigate the mechanisms of CPNE1 regulating NPC, the expression of activated phosphate Akt (p-Akt) was assessed through western blotting. We observed elevated p-Akt in si-CPNE1 transfected C666-1 and SUNE-1 cells. In conclusion, these results demonstrated that CPNE1 expression is elevated in nasopharyngeal carcinoma cells, and its silencing could attenuate nasopharyngeal carcinoma advancement and improve radiosensitivity to radiation therapy by controlling Akt activation.
Collapse
Affiliation(s)
- Shujuan Zhu
- Department of Radiotherapy Oncology, Anhui Jimin Cancer Hospital, Hefei, Anhui, 230001, China
| | - Rui Li
- Department of Radiotherapy Oncology, Anhui Jimin Cancer Hospital, Hefei, Anhui, 230001, China
| | - Kun Yin
- Department of Radiotherapy Oncology, Anhui Jimin Cancer Hospital, Hefei, Anhui, 230001, China
| | - Liming Wu
- Department of Radiotherapy Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| |
Collapse
|
8
|
Hu J, Chen K, Hong F, Gao G, Dai X, Yin H. METTL3 facilitates stemness properties and tumorigenicity of cancer stem cells in hepatocellular carcinoma through the SOCS3/JAK2/STAT3 signaling pathway. Cancer Gene Ther 2024; 31:228-236. [PMID: 38030810 DOI: 10.1038/s41417-023-00697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
Liver cancer stem cells (LCSCs) contribute to tumor recurrence and cancer cell proliferation in patients with hepatocellular carcinoma (HCC). METTL3-catalyzed m6A modification is relevant to the cancer stem cell (CSC) phenotype, including LCSCs. LCSCs were isolated from MHCC-97H and HepG2 cells through flow cytometry. UALCAN data were used to analyze the expression of METTL3 in liver hepatocellular carcinoma (LIHC) tissues. Loss- and gain-of-function experiments were utilized to assess the biological effects of METTL3 and SOCS3 on the proliferation and stemness phenotypes in vitro and in vivo. The mechanisms underlying the impact of METTL3 were explored using qPCR, MeRIP-qPCR, dual-luciferase reporter, and western blot assays. METTL3 was significantly upregulated in LIHC tissues according to the UALCAN database. METTL3 was highly expressed in LIHC and was significantly correlated with individual cancer stage, tumor grade and lymph node metastasis. Patients with low METTL3 expression had a longer overall survival time based on the data from UALCAN. In addition, the level of METTL3 was enhanced in LCSCs and decreased in non-LCSCs compared to HCC cells. Moreover, overexpression of METTL3 stimulated the proliferation and stemness of LCSCs in vitro and in vivo, while loss of METTL3 impeded it. Bioinformatics analysis combined with validation experiments determined that m6A was modified by METTL3-targeting SOCS3 mRNA. METTL3 had side effects regarding the stability of SOCS3 mRNA. SOCS3 overexpression impaired and SOCS3 depletion facilitated the development of LCSCs via the JAK2/STAT3 pathway. Furthermore, METTL3 depletion suppressed proliferation and stemness in LCSCs, which was restored by SOCS3 knockdown or colivelin treatment. We discovered that METTL3 facilitated the stemness and tumorigenicity of LCSCs by modifying SOCS3 mRNA with m6A.
Collapse
Affiliation(s)
- Jingjing Hu
- Department of Ultrasonography, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China
| | - Ke Chen
- Ningbo City College of Vocational Technology, 315100, Ningbo, Zhejiang Province, P. R. China
| | - Fangfang Hong
- Department of Ultrasonography, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China
| | - Guosheng Gao
- Clinical Laboratory, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China
| | - Xiaoyu Dai
- Department of Anorectal Surgery, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China
| | - Hua Yin
- Department of Ultrasonography, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China.
| |
Collapse
|
9
|
Zhu Z, Chen R, Zhang L. Simple phenylpropanoids: recent advances in biological activities, biosynthetic pathways, and microbial production. Nat Prod Rep 2024; 41:6-24. [PMID: 37807808 DOI: 10.1039/d3np00012e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Covering: 2000 to 2023Simple phenylpropanoids are a large group of natural products with primary C6-C3 skeletons. They are not only important biomolecules for plant growth but also crucial chemicals for high-value industries, including fragrances, nutraceuticals, biomaterials, and pharmaceuticals. However, with the growing global demand for simple phenylpropanoids, direct plant extraction or chemical synthesis often struggles to meet current needs in terms of yield, titre, cost, and environmental impact. Benefiting from the rapid development of metabolic engineering and synthetic biology, microbial production of natural products from inexpensive and renewable sources provides a feasible solution for sustainable supply. This review outlines the biological activities of simple phenylpropanoids, compares their biosynthetic pathways in different species (plants, bacteria, and fungi), and summarises key research on the microbial production of simple phenylpropanoids over the last decade, with a focus on engineering strategies that seem to hold most potential for further development. Moreover, constructive solutions to the current challenges and future perspectives for industrial production of phenylpropanoids are presented.
Collapse
Affiliation(s)
- Zhanpin Zhu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong 226001, China
- Innovative Drug R&D Centre, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
10
|
Smith J, Field M, Sugaya K. Suppression of NANOG Expression Reduces Drug Resistance of Cancer Stem Cells in Glioblastoma. Genes (Basel) 2023; 14:1276. [PMID: 37372456 DOI: 10.3390/genes14061276] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive and incurable primary brain tumor that harbors therapy-resistant cancer stem cells (CSCs). Due to the limited effectiveness of conventional chemotherapies and radiation treatments against CSCs, there is a critical need for the development of innovative therapeutic approaches. Our previous research revealed the significant expression of embryonic stemness genes, NANOG and OCT4, in CSCs, suggesting their role in enhancing cancer-specific stemness and drug resistance. In our current study, we employed RNA interference (RNAi) to suppress the expression of these genes and observed an increased susceptibility of CSCs to the anticancer drug, temozolomide (TMZ). Suppression of NANOG expression induced cell cycle arrest in CSCs, specifically in the G0 phase, and it concomitantly decreased the expression of PDK1. Since PDK1 activates the PI3K/AKT pathway to promote cell proliferation and survival, our findings suggest that NANOG contributes to chemotherapy resistance in CSCs through PI3K/AKT pathway activation. Therefore, the combination of TMZ treatment with RNAi targeting NANOG holds promise as a therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Jonhoi Smith
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Melvin Field
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
- Orlando Neurosurgery, AdventHealth Neuroscience Institute, Orlando, FL 32803, USA
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
11
|
Li XC, Wang S, Yang XX, Li TJ, Gu JX, Zhao L, Bao YR, Meng XS. Patrinia villosa treat colorectal cancer by activating PI3K/Akt signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116264. [PMID: 36868440 DOI: 10.1016/j.jep.2023.116264] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE At present, the colorectal cancer (CRC) is a malignant tumor of the colon and rectum that is often found at the junction of the two, and it will invade many visceral organs and organizations, causing very serious damage to the body of the patient. Patrinia villosa Juss. (P.V), is a well-known traditional chinese medicine (TCM), and is recorded in the Compendium of Materia Medica as a necessary article for the treatment of intestinal carbuncle. It has been incorporated into traditional cancer treatment prescriptions in modern medicine. While the mechanism of action of P.V in the treatment of CRC remains unclear. AIM OF THE STUDY To investigate P.V in treating CRC and clarify the underlying mechanism. MATERIALS AND METHODS This study was based on Azoxymethane (AOM) combined with the Dextran Sulfate Sodium Salt (DSS)-induced CRC mouse model to clarify the pharmacological effects of P.V. The mechanism of action was found by metabolites and metabolomics. The rationality of metabolomics results was verified through the clinical target database of network pharmacology, and find the upstream and downstream target information of relevant action pathways. Apart from that, the targets of associated pathways were confirmed, and the mechanism of action was made clear, using quantitative PCR (q-PCR) and Western blot. RESULTS The number and the diameter of tumors were decreased when mice were treated with P.V. P.V group section results showed newly generated cells which improved the degree of colon cell injury. Pathological indicators presented a trend of recovery to normal cells. Compared to the model group, P.V groups had significantly lower levels of the CRC biomarkers CEA, CA19-9, and CA72-4. Through the evaluation of metabolites and metabolomics, it was found that a total of 50 endogenous metabolites had significant changes. Most of these are modulated and recovered after P.V treatment. It alters glycerol phospholipid metabolites, which are closely related to PI3K target, suggesting that P.V can treat CRC though the PI3K target and PI3K/Akt signaling pathway. q-PCR and Western blot results also verified that the expression of VEGF, PI3K, Akt, P38, JNK, ERK1/2, TP53, IL-6, TNF-α and Caspase-3 were significantly decreased, whereas that of Caspase-9 was increased after treatment. CONCLUSION P.V is dependent on PI3K target and PI3K/Akt signaling pathway for CRC treatment.
Collapse
Affiliation(s)
- Xiao-Chen Li
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Shuai Wang
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Xin-Xin Yang
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Tian-Jiao Li
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Jia-Xing Gu
- Beijing Sihuan Pharmaceutical Co., Ltd., Beijing, 101100, China.
| | - Lin Zhao
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Yong-Rui Bao
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Xian-Sheng Meng
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| |
Collapse
|
12
|
Zhang Y, Mu T, Deng X, Guo R, Xia B, Jiang L, Wu Z, Liu M. New Insights of Biological Functions of Natural Polyphenols in Inflammatory Intestinal Diseases. Int J Mol Sci 2023; 24:ijms24119581. [PMID: 37298531 DOI: 10.3390/ijms24119581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The intestine is critically crucial for nutrient absorption and host defense against exogenous stimuli. Inflammation-related intestinal diseases, including enteritis, inflammatory bowel disease (IBD), and colorectal cancer (CRC), are heavy burdens for human beings due to their high incidence and devastating clinical symptoms. Current studies have confirmed that inflammatory responses, along with oxidative stress and dysbiosis as critical pathogenesis, are involved in most intestinal diseases. Polyphenols are secondary metabolites derived from plants, which possess convincible anti-oxidative and anti-inflammatory properties, as well as regulation of intestinal microbiome, indicating the potential applications in enterocolitis and CRC. Actually, accumulating studies based on the biological functions of polyphenols have been performed to investigate the functional roles and underlying mechanisms over the last few decades. Based on the mounting evidence of literature, the objective of this review is to outline the current research progress regarding the category, biological functions, and metabolism of polyphenols within the intestine, as well as applications for the prevention and treatment of intestinal diseases, which might provide ever-expanding new insights for the utilization of natural polyphenols.
Collapse
Affiliation(s)
- Yunchang Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Tianqi Mu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Xiong Deng
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ruiting Guo
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Bing Xia
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Linshu Jiang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ming Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
13
|
De S, Paul S, Manna A, Majumder C, Pal K, Casarcia N, Mondal A, Banerjee S, Nelson VK, Ghosh S, Hazra J, Bhattacharjee A, Mandal SC, Pal M, Bishayee A. Phenolic Phytochemicals for Prevention and Treatment of Colorectal Cancer: A Critical Evaluation of In Vivo Studies. Cancers (Basel) 2023; 15:993. [PMID: 36765950 PMCID: PMC9913554 DOI: 10.3390/cancers15030993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed and second leading cause of cancer-related death worldwide. Limitations with existing treatment regimens have demanded the search for better treatment options. Different phytochemicals with promising anti-CRC activities have been reported, with the molecular mechanism of actions still emerging. This review aims to summarize recent progress on the study of natural phenolic compounds in ameliorating CRC using in vivo models. This review followed the guidelines of the Preferred Reporting Items for Systematic Reporting and Meta-Analysis. Information on the relevant topic was gathered by searching the PubMed, Scopus, ScienceDirect, and Web of Science databases using keywords, such as "colorectal cancer" AND "phenolic compounds", "colorectal cancer" AND "polyphenol", "colorectal cancer" AND "phenolic acids", "colorectal cancer" AND "flavonoids", "colorectal cancer" AND "stilbene", and "colorectal cancer" AND "lignan" from the reputed peer-reviewed journals published over the last 20 years. Publications that incorporated in vivo experimental designs and produced statistically significant results were considered for this review. Many of these polyphenols demonstrate anti-CRC activities by inhibiting key cellular factors. This inhibition has been demonstrated by antiapoptotic effects, antiproliferative effects, or by upregulating factors responsible for cell cycle arrest or cell death in various in vivo CRC models. Numerous studies from independent laboratories have highlighted different plant phenolic compounds for their anti-CRC activities. While promising anti-CRC activity in many of these agents has created interest in this area, in-depth mechanistic and well-designed clinical studies are needed to support the therapeutic use of these compounds for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Samhita De
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Sourav Paul
- Department of Biotechnology, National Institute of Technology, Durgapur 713 209, India
| | - Anirban Manna
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | | | - Koustav Pal
- Jawaharlal Institute Post Graduate Medical Education and Research, Puducherry 605 006, India
| | - Nicolette Casarcia
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India
| | - Vinod Kumar Nelson
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Anantapur 515 721, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology, Chennai 600 036, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur 713 209, India
| | | | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
14
|
Xu C, Zhang W, Liu C. FAK downregulation suppresses stem-like properties and migration of human colorectal cancer cells. PLoS One 2023; 18:e0284871. [PMID: 37083591 PMCID: PMC10121060 DOI: 10.1371/journal.pone.0284871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic protein tyrosine kinase, which is overexpressed in colorectal cancer cells. FAK could be activated by phosphorylation to participate in the transduction of multiple signaling pathways and self-renewal of cancer stem cells. Whether the downregulation of FAK inhibits the metastasis in colorectal cancer through the weakening of stem cell-like properties and its mechanisms has yet to be established. CD44, CD133, c-Myc, Nanog, and OCT4 were known to mark colorectal cancer stem cell properties. In this study, AKT inhibitor (MK-2206 2HCl) or FAK inhibitor (PF-562271) decreased the expression of stem cell markers (Nanog, OCT4, CD133, CD44, c-Myc) and spheroid formation in colorectal cancer. Moreover, FAK and AKT protein was shown to interact verified by co-immunoprecipitation. Furthermore, downregulation of FAK, transfected Lenti-FAK-EGFP-miR to colorectal cancer cells, reduced p-AKT but not AKT and decreased the expression of stem cell markers and spheroid formation in colorectal cancer. In conclusion, we demonstrated that downregulation of FAK inhibited stem cell-like properties and migration of colorectal cancer cells partly due to altered modulation of AKT phosphorylation by FAK.
Collapse
Affiliation(s)
- Chunyan Xu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute of Digestive Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wenlu Zhang
- Department of Respiratory, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chengxia Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute of Digestive Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
15
|
Cui G, Wang Z, Liu H, Pang Z. Cytokine-mediated crosstalk between cancer stem cells and their inflammatory niche from the colorectal precancerous adenoma stage to the cancerous stage: Mechanisms and clinical implications. Front Immunol 2022; 13:1057181. [PMID: 36466926 PMCID: PMC9714270 DOI: 10.3389/fimmu.2022.1057181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/03/2022] [Indexed: 10/15/2023] Open
Abstract
The majority of colorectal cancers (CRCs) are thought to arise from precancerous adenomas. Upon exposure to diverse microenvironmental factors, precancerous stem cells (pCSCs) undergo complex genetic/molecular changes and gradually progress to form cancer stem cells (CSCs). Accumulative evidence suggests that the pCSC/CSC niche is an inflammatory dominated milieu that contains different cytokines that function as the key communicators between pCSCs/CSCs and their niche and have a decisive role in promoting CRC development, progression, and metastasis. In view of the importance and increasing data about cytokines in modulating pCSCs/CSC stemness properties and their significance in CRC, this review summarizes current new insights of cytokines, such as interleukin (IL)-4, IL-6, IL-8, IL-17A, IL-22, IL-23, IL-33 and interferon (IFN)-γ, involving in the modulation of pCSC/CSC properties and features in precancerous and cancerous lesions and discusses the possible mechanisms of adenoma progression to CRCs and their therapeutic potential.
Collapse
Affiliation(s)
- Guanglin Cui
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Faculty of Health Science, Nord University, Levanger, Norway
| | - Ziqi Wang
- College of Medical Imaging, Mudanjiang Medical University, Mudanjiang, China
| | - Hanzhe Liu
- School of Stomatology, Wuhan University, Wuhan, China
| | - Zhigang Pang
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Hernández-Caballero ME, Sierra-Ramírez JA, Villalobos-Valencia R, Seseña-Méndez E. Potential of Kalanchoe pinnata as a Cancer Treatment Adjuvant and an Epigenetic Regulator. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196425. [PMID: 36234962 PMCID: PMC9573125 DOI: 10.3390/molecules27196425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 02/05/2023]
Abstract
Cancer is a global public health problem that is related to different environmental and lifestyle factors. Although the combination of screening, prevention, and treatment of cancer has resulted in increased patient survival, conventional treatments sometimes have therapeutic limitations such as resistance to drugs or severe side effects. Oriental culture includes herbal medicine as a complementary therapy in combination with chemotherapy or radiotherapy. This study aimed to identify the bioactive ingredients in Kalanchoe pinnata, a succulent herb with ethnomedical applications for several diseases, including cancer, and reveal its anticancer mechanisms through a molecular approach. The herb contains gallic acid, caffeic acid, coumaric acid, quercetin, quercitrin, isorhamnetin, kaempferol, bersaldegenin, bryophyllin a, bryophyllin c, bryophynol, bryophyllol and bryophollone, stigmasterol, campesterol, and other elements. Its phytochemicals participate in the regulation of proliferation, apoptosis, cell migration, angiogenesis, metastasis, oxidative stress, and autophagy. They have the potential to act as epigenetic drugs by reverting the acquired epigenetic changes associated with tumor resistance to therapy-such as the promoter methylation of suppressor genes, inhibition of DNMT1 and DNMT3b activity, and HDAC regulation-through methylation, thereby regulating the expression of genes involved in the PI3K/Akt/mTOR, Nrf2/Keap1, MEK/ERK, and Wnt/β-catenin pathways. All of the data support the use of K. pinnata as an adjuvant in cancer treatment.
Collapse
Affiliation(s)
- Marta Elena Hernández-Caballero
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Biomedicina, 13 sur 2702 Col. Volcanes, Puebla C.P. 72410, Mexico
- Correspondence: or
| | - José Alfredo Sierra-Ramírez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico
| | - Ricardo Villalobos-Valencia
- UMAE Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Cd México C.P. 06725, Mexico
| | - Emmanuel Seseña-Méndez
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Biomedicina, 13 sur 2702 Col. Volcanes, Puebla C.P. 72410, Mexico
| |
Collapse
|
17
|
Xie J, Chen R, Wang Q, Mao H. Exploration and validation of Taraxacum mongolicum anti-cancer effect. Comput Biol Med 2022; 148:105819. [PMID: 35810695 DOI: 10.1016/j.compbiomed.2022.105819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 11/03/2022]
Abstract
Taraxacum mongolicum gained a lot of concern and was applied in 93 formulas in China due to its fame as a traditional Chinese medicine. The earliest recorded application of Taraxacum mongolicum was traced back to the Han dynasty. Generations of doctors boosted the usage and enriched the pharmacological mechanism. Clinical application of the Taraxacum mongolicum is flourishing as it treats multiple diseases. This study aims to explore the anti-cancer effect, retrieve the active ingredients and screen the key targets of Taraxacum mongolicum in cancer therapy. We collected and evaluated 10 key active compounds to investigate the anti-cancer effect via 69 significant targets and a variety of biological processes and pathways. Gene Ontology (GO) enrichment analysis uncovered targets associated with protein phosphorylation, cell proliferation and apoptotic processes via regulation of kinases, ATP and enzyme binding activities. Half of the top 20 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were directly involved in cancer. Based on standard selection criteria, seven hub targets were obtained. These targets functioned through distinct patterns and pathways in realizing the anti-cancer effect. Molecular docking was conducted to validate the potential combination between compounds and hub targets to explore the pharmacological mechanism of key compounds in Taraxacum mongolicum against cancer. In summary, our findings indicate that the famous and widely used Chinese herb, Taraxacum mongolicum, shows good anti-cancer effect through its active compounds, targeted genes, and multiple involved biological processes. The results may provide a theoretical basis for subsequent experimental validation and drug development of Taraxacum mongolicum extract against cancer.
Collapse
Affiliation(s)
- Jumin Xie
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, Huangshi, Hubei, 435003, PR China
| | - Ruxi Chen
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, Huangshi, Hubei, 435003, PR China
| | - Qingzhi Wang
- Medical College of YiChun University, Xuefu Road No 576, Yichun, Jiangxi, 336000, PR China.
| | - Hui Mao
- Department of Dermatology, Huangshi Central Hospital, Huangshi, Hubei, 435000, PR China.
| |
Collapse
|
18
|
Liu T, Zhang ZQ, Xiao X, Li XQ. Bioassay-guided isolation of anti-tumor polyprenylphloroglucinols from Calophyllum polyanthum and primary mechanism. Biomed Pharmacother 2022; 151:113129. [PMID: 35594705 DOI: 10.1016/j.biopha.2022.113129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022] Open
Abstract
Five compounds were isolated from Calophyllum polyanthum leaves (10.09 g) by bioassay-guided fractionation to evaluate their anti-tumor activity. Among these compounds, apetalic acid (1) demonstrated significant inhibitory activity against 8 types of tumor cells (MHCC97H, CNE1, CNE2, B16, LOVO, SW480, A549, 1299), especially against two colon cancer cells (LOVO, SW480). Apetalic acid could inhibit cell proliferation, migration, invasion and induce apoptosis. It could significantly up-regulate the expression levels of apoptosis-related genes (BAX, Caspase-9,) and proteins (BAX, Cleaved-caspase-9, Cleaved-caspase-3) and down-regulated the expression of inhibitor of apoptosis gene (Bcl-2) and proteins (Bcl-2, phosphorylated AKT). Possible mechanism of the antitumor activity of apetalic acid derived from Calophyllum polyanthum supports its use in the prevention and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Tie Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhuang-Qin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Xia Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Xiao-Qian Li
- The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Scientific Research Center, Guizhou 563002, People's Republic of China.
| |
Collapse
|
19
|
Molecular Mechanisms of Coffee on Prostate Cancer Prevention. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3254420. [PMID: 35496060 PMCID: PMC9054433 DOI: 10.1155/2022/3254420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common types of cancer among men, and coffee is associated with a reduced risk of developing PCa. Therefore, we aim to review possible coffee molecular mechanisms that contribute to PCa prevention. Coffee has an important antioxidant capacity that reduces oxidative stress, leading to a reduced mutation in cells. Beyond direct antioxidant activity, coffee stimulates phase II enzymatic activity, which is related to the detoxification of reactive metabolites. The anti-inflammatory effects of coffee reduce tissue damage related to PCa development. Coffee induces autophagy, regulates the NF-κB pathway, and reduces the expression of iNOS and inflammatory mediators, such as TNF-α, IL-6, IL-8, and CRP. Also, coffee modulates transcriptional factors and pathways. It has been shown that coffee increases testosterone and reduces sex hormone-binding globulin, estrogen, and prostate-specific antigen. Coffee also enhances insulin resistance and glucose metabolism. All these effects may contribute to protection against PCa development.
Collapse
|
20
|
Noor S, Mohammad T, Rub MA, Raza A, Azum N, Yadav DK, Hassan MI, Asiri AM. Biomedical features and therapeutic potential of rosmarinic acid. Arch Pharm Res 2022; 45:205-228. [PMID: 35391712 PMCID: PMC8989115 DOI: 10.1007/s12272-022-01378-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/18/2022] [Indexed: 12/17/2022]
Abstract
For decades, the use of secondary metabolites of various herbs has been an attractive strategy in combating human diseases. Rosmarinic acid (RA) is a bioactive phenolic compound commonly found in plants of Lamiaceae and Boraginaceae families. RA is biosynthesized using amino acids tyrosine and phenylalanine via enzyme-catalyzed reactions. However, the chemical synthesis of RA involves an esterification reaction between caffeic acid and 3,4-dihydroxy phenyl lactic acid contributing two phenolic rings to the structure of RA. Several studies have ascertained multiple therapeutic benefits of RA in various diseases, including cancer, diabetes, inflammatory disorders, neurodegenerative disorders, and liver diseases. Many previous scientific papers indicate that RA can be used as an anti-plasmodic, anti-viral and anti-bacterial drug. In addition, due to its high anti-oxidant capacity, this natural polyphenol has recently gained attention for its possible application as a nutraceutical compound in the food industry. Here we provide state-of-the-art, flexible therapeutic potential and biomedical features of RA, its implications and multiple uses. Along with various valuable applications in safeguarding human health, this review further summarizes the therapeutic advantages of RA in various human diseases, including cancer, diabetes, neurodegenerative diseases. Furthermore, the challenges associated with the clinical applicability of RA have also been discussed.
Collapse
Affiliation(s)
- Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Malik Abdul Rub
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ali Raza
- Department of Medical Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Naved Azum
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsugu, Incheon, 21924, Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
21
|
Pashirzad M, Sathyapalan T, Sheikh A, Kesharwani P, Sahebkar A. Cancer stem cells: An overview of the pathophysiological and prognostic roles in colorectal cancer. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Shadbad MA, Asadzadeh Z, Derakhshani A, Hosseinkhani N, Mokhtarzadeh A, Baghbanzadeh A, Hajiasgharzadeh K, Brunetti O, Argentiero A, Racanelli V, Silvestris N, Baradaran B. A scoping review on the potentiality of PD-L1-inhibiting microRNAs in treating colorectal cancer: Toward single-cell sequencing-guided biocompatible-based delivery. Biomed Pharmacother 2021; 143:112213. [PMID: 34560556 DOI: 10.1016/j.biopha.2021.112213] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Tumoral programmed cell death ligand 1 (PD-L1) has been implicated in the immune evasion and development of colorectal cancer. Although monoclonal immune checkpoint inhibitors can exclusively improve the prognosis of patients with microsatellite instability-high (MSI-H) and tumor mutational burden-high (TMB-H) colorectal cancer, specific tumor-suppressive microRNAs (miRs) can regulate multiple oncogenic pathways and inhibit the de novo expression of oncoproteins, like PD-L1, both in microsatellite stable (MSS) and MSI-H colorectal cancer cells. This scoping review aimed to discuss the currently available evidence regarding the therapeutic potentiality of PD-L1-inhibiting miRs for colorectal cancer. For this purpose, the Web of Science, Scopus, and PubMed databases were systematically searched to obtain peer-reviewed studies published before 17 March 2021. We have found that miR-191-5p, miR-382-3p, miR-148a-3p, miR-93-5p, miR-200a-3p, miR-200c-3p, miR-138-5p, miR-140-3p, and miR-15b-5p can inhibit tumoral PD-L1 in colorectal cancer cells. Besides inhibiting PD-L1, miR-140-3p, miR-382-3p, miR-148a-3p, miR-93-5p, miR-200a-3p, miR-200c-3p, miR-138-5p, and miR-15b-5p can substantially reduce tumor migration, inhibit tumor development, stimulate anti-tumoral immune responses, decrease tumor viability, and enhance the chemosensitivity of colorectal cancer cells regardless of the microsatellite state. Concerning the specific, effective, and safe delivery of these miRs, the single-cell sequencing-guided biocompatible-based delivery of these miRs can increase the specificity of miR delivery, decrease the toxicity of traditional nanoparticles, transform the immunosuppressive tumor microenvironment into the proinflammatory one, suppress tumor development, decrease tumor migration, and enhance the chemosensitivity of tumoral cells regardless of the microsatellite state.
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | | | - Oronzo Brunetti
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), Bari, Italy
| | - Antonella Argentiero
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Nicola Silvestris
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), Bari, Italy; Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
23
|
Targeting Cancer Stem Cells by Dietary Agents: An Important Therapeutic Strategy against Human Malignancies. Int J Mol Sci 2021; 22:ijms222111669. [PMID: 34769099 PMCID: PMC8584029 DOI: 10.3390/ijms222111669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
As a multifactorial disease, treatment of cancer depends on understanding unique mechanisms involved in its progression. The cancer stem cells (CSCs) are responsible for tumor stemness and by enhancing colony formation, proliferation as well as metastasis, and these cells can also mediate resistance to therapy. Furthermore, the presence of CSCs leads to cancer recurrence and therefore their complete eradication can have immense therapeutic benefits. The present review focuses on targeting CSCs by natural products in cancer therapy. The growth and colony formation capacities of CSCs have been reported can be attenuated by the dietary agents. These compounds can induce apoptosis in CSCs and reduce tumor migration and invasion via EMT inhibition. A variety of molecular pathways including STAT3, Wnt/β-catenin, Sonic Hedgehog, Gli1 and NF-κB undergo down-regulation by dietary agents in suppressing CSC features. Upon exposure to natural agents, a significant decrease occurs in levels of CSC markers including CD44, CD133, ALDH1, Oct4 and Nanog to impair cancer stemness. Furthermore, CSC suppression by dietary agents can enhance sensitivity of tumors to chemotherapy and radiotherapy. In addition to in vitro studies, as well as experiments on the different preclinical models have shown capacity of natural products in suppressing cancer stemness. Furthermore, use of nanostructures for improving therapeutic impact of dietary agents is recommended to rapidly translate preclinical findings for clinical use.
Collapse
|
24
|
Xia ZK, Wang W, Qiu JG, Shi XN, Li HJ, Chen R, Ke KB, Dong C, Zhu Y, Wu SG, Zhang RP, Meng ZR, Zhao H, Gu P, Leung KS, Wong MH, Liu XD, Zhou FM, Zhang JY, Yao YT, Wang SJ, Zhang CY, Qin YR, Lin MCM, Jiang BH. Discovery of a New CDK4/6 and PI3K/AKT Multiple Kinase Inhibitor Aminoquinol for the Treatment of Hepatocellular Carcinoma. Front Pharmacol 2021; 12:691769. [PMID: 34335258 PMCID: PMC8320333 DOI: 10.3389/fphar.2021.691769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a lethal malignancy lacking effective treatment. The Cyclin-dependent kinases 4/6 (CDK4/6) and PI3K/AKT signal pathways play pivotal roles in carcinogenesis and are promising therapeutic targets for HCC. Here we identified a new CDK4/6 and PI3K/AKT multi-kinase inhibitor for the treatment of HCC. Methods: Using a repurposing and ensemble docking methodology, we screened a library of worldwide approved drugs to identify candidate CDK4/6 inhibitors. By MTT, apoptosis, and flow cytometry analysis, we investigated the effects of candidate drug in reducing cell-viability,inducing apoptosis, and causing cell-cycle arrest. The drug combination and thermal proteomic profiling (TPP) method were used to investigate whether the candidate drug produced antagonistic effect. The in vivo anti-cancer effect was performed in BALB/C nude mice subcutaneously xenografted with Huh7 cells. Results: We demonstrated for the first time that the anti-plasmodium drug aminoquinol is a new CDK4/6 and PI3K/AKT inhibitor. Aminoquinol significantly decreased cell viability, induced apoptosis, increased the percentage of cells in G1 phase. Drug combination screening indicated that aminoquinol could produce antagonistic effect with the PI3K inhibitor LY294002. TPP analysis confirmed that aminoquinol significantly stabilized CDK4, CDK6, PI3K and AKT proteins. Finally, in vivo study in Huh7 cells xenografted nude mice demonstrated that aminoquinol exhibited strong anti-tumor activity, comparable to that of the leading cancer drug 5-fluorouracil with the combination treatment showed the highest therapeutic effect. Conclusion: The present study indicates for the first time the discovery of a new CDK4/6 and PI3K/AKT multi-kinase inhibitor aminoquinol. It could be used alone or as a combination therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Zhong-Kun Xia
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Jian-Ge Qiu
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xi-Nan Shi
- Department of Pathology, Yunnan University of Chinese Medicine, Kunming, China.,XingYi People' Hospital, Xingyi, China
| | - Hong-Jian Li
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Rong Chen
- Department of Physiology, Yunnan University of Chinese Medicine, Kunming, China
| | - Kun-Bin Ke
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chao Dong
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, China
| | - Ying Zhu
- Department of Cadre Medical Branch, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shi-Guo Wu
- Department of Teaching and Research Section of Formulas of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Rong-Ping Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine,Kunming, China
| | - Zhuo-Ran Meng
- Department of Pathology, Yunnan University of Chinese Medicine, Kunming, China
| | - Hui Zhao
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Peng Gu
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kwong-Sak Leung
- Department of Computer Science and Engineering, Chinese University of Hong Kong, Hong Kong, China
| | - Man-Hon Wong
- Department of Computer Science and Engineering, Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Dong Liu
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Feng-Mei Zhou
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Jian-Ying Zhang
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Ya-Ting Yao
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Si-Jia Wang
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Yan-Ru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marie Chia-Mi Lin
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
25
|
Mirzaei S, Gholami MH, Zabolian A, Saleki H, Farahani MV, Hamzehlou S, Far FB, Sharifzadeh SO, Samarghandian S, Khan H, Aref AR, Ashrafizadeh M, Zarrabi A, Sethi G. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol Res 2021; 171:105759. [PMID: 34245864 DOI: 10.1016/j.phrs.2021.105759] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
As a phenolic acid compound, caffeic acid (CA) can be isolated from different sources such as tea, wine and coffee. Caffeic acid phenethyl ester (CAPE) is naturally occurring derivative of CA isolated from propolis. This medicinal plant is well-known due to its significant therapeutic impact including its effectiveness as hepatoprotective, neuroprotective and anti-diabetic agent. Among them, anti-tumor activity of CA has attracted much attention, and this potential has been confirmed both in vitro and in vivo. CA can induce apoptosis in cancer cells via enhancing ROS levels and impairing mitochondrial function. Molecular pathways such as PI3K/Akt and AMPK with role in cancer progression, are affected by CA and its derivatives in cancer therapy. CA is advantageous in reducing aggressive behavior of tumors via suppressing metastasis by inhibiting epithelial-to-mesenchymal transition mechanism. Noteworthy, CA and CAPE can promote response of cancer cells to chemotherapy, and sensitize them to chemotherapy-mediated cell death. In order to improve capacity of CA and CAPE in cancer suppression, it has been co-administered with other anti-tumor compounds such as gallic acid and p-coumaric acid. Due to its poor bioavailability, nanocarriers have been developed for enhancing its ability in cancer suppression. These issues have been discussed in the present review with a focus on molecular pathways to pave the way for rapid translation of CA for clinical use.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | | - Fatemeh Bakhtiari Far
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA, 02210, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|