1
|
Jeyananthan P, W P N M, S M R. On integrative analysis of multi-level gene expression data in Kidney cancer subgrouping. Urologia 2024:3915603241304604. [PMID: 39673207 DOI: 10.1177/03915603241304604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024]
Abstract
Kidney cancer is one of the most dangerous cancer mainly targeting men. In 2020, around 430, 000 people were diagnosed with this disease worldwide. It can be divided into three prime subgroups such as kidney renal cell carcinoma (KIRC), kidney renal papilliary cell carcinoma (KIRP) and kidney chromophobe (KICH). Correct identification of these subgroups on time is crucial for the initiation and determination of proper treatment. On-time identification of this disease and its subgroup can help both the clinicians and patients to improve the situation. Hence, this study checks the possibility of using multi-omics data in the kidney cancer subgrouping, whether integrating multiple omics data will increase the subgrouping accuracy or not. Four different molecular data such as genomics, proteomics, epigenomics and miRNA from The Cancer Genome Atlas (TCGA) are used in this study. As the data is in a very high dimension world, this study starts with selecting the relevant features of the study using Pearson's correlation coefficient. Those selected features are used with three different classification algorithms such as k-nearest neighbor (KNN), supporting vector machines (SVMs) and random forest. Performances are compared to see whether the integration of multi-omics data can improve the accuracy of kidney cancer subgrouping. This study shows that integration of multi-omics data can improve the performance of the kidney cancer subgrouping. The highest performance (accuracy value of 0.98±0.03) is gained by top 400 features selected from integrated multi-omics data, with support vector machines.
Collapse
Affiliation(s)
| | - Maduranga W P N
- Faculty of Engineering, University of Jaffna, Kilinochchi, Sri Lanka
| | - Rodrigo S M
- Faculty of Engineering, University of Jaffna, Kilinochchi, Sri Lanka
| |
Collapse
|
2
|
Jędrzejczak P, Saramowicz K, Kuś J, Barczuk J, Rozpędek-Kamińska W, Siwecka N, Galita G, Wiese W, Majsterek I. SEPT9_i1 and Septin Dynamics in Oncogenesis and Cancer Treatment. Biomolecules 2024; 14:1194. [PMID: 39334960 PMCID: PMC11430720 DOI: 10.3390/biom14091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Despite significant advancements in the field of oncology, cancers still pose one of the greatest challenges of modern healthcare. Given the cytoskeleton's pivotal role in regulating mechanisms critical to cancer development, further studies of the cytoskeletal elements could yield new practical applications. Septins represent a group of relatively well-conserved GTP-binding proteins that constitute the fourth component of the cytoskeleton. Septin 9 (SEPT9) has been linked to a diverse spectrum of malignancies and appears to be the most notable septin member in that category. SEPT9 constitutes a biomarker of colorectal cancer (CRC) and has been positively correlated with a high clinical stage in breast cancer, cervical cancer, and head and neck squamous cell carcinoma. SEPT9_i1 represents the most extensively studied isoform of SEPT9, which substantially contributes to carcinogenesis, metastasis, and treatment resistance. Nevertheless, the mechanistic basis of SEPT9_i1 oncogenicity remains to be fully elucidated. In this review, we highlight SEPT9's and SEPT9_i1's structures and interactions with Hypoxia Inducible Factor α (HIF-1 α) and C-Jun N-Terminal Kinase (JNK), as well as discuss SEPT9_i1's contribution to aneuploidy, cell invasiveness, and taxane resistance-key phenomena in the progression of malignancies. Finally, we emphasize forchlorfenuron and other septin inhibitors as potential chemotherapeutics and migrastatics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (P.J.); (K.S.); (J.K.); (J.B.); (W.R.-K.); (N.S.); (G.G.); (W.W.)
| |
Collapse
|
3
|
Hu S, Han X, Liu G, Wang S. LncRNAs as potential prognosis/diagnosis markers and factors driving drug resistance of osteosarcoma, a review. Front Endocrinol (Lausanne) 2024; 15:1415722. [PMID: 39015175 PMCID: PMC11249743 DOI: 10.3389/fendo.2024.1415722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Osteosarcoma is a common malignancy that often occurs in children, teenagers and young adults. Although the treatment strategy has improved, the results are still poor for most patients with metastatic or recurrent osteosarcomas. Therefore, it is necessary to identify new and effective prognostic biomarkers and therapeutic targets for diseases. Human genomes contain lncRNAs, transcripts with limited or insufficient capacity to encode proteins. They have been implicated in tumorigenesis, particularly regarding the onset, advancement, resistance to treatment, recurrence and remote dissemination of malignancies. Aberrant lncRNA expression in osteosarcomas has been reported by numerous researchers; lncRNAs have the potential to exhibit either oncogenic or tumor-suppressing behaviors and thus, to govern the advancement of this skeletal cancer. They are suspected to influence osteosarcoma cell growth, replication, invasion, migration, remote dissemination and programmed cell death. Additionally, they have been recognized as clinical markers, and may participate in the development of multidrug resistance. Therefore, the study of lncRNAs in the growth, metastasis, treatment and prognosis of osteosarcoma is very important for the active prevention and treatment of osteosarcoma. Consequently, this work reviews the functions of lncRNAs.
Collapse
Affiliation(s)
- Siwang Hu
- The Orthopedic Center, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| | - Xuebing Han
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shuangshuang Wang
- Department of Cardiology, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| |
Collapse
|
4
|
Chen H, Wang Z, Gong L, Wang Q, Chen W, Wang J, Ma X, Ding R, Li X, Zou X, Plass M, Lian C, Ni T, Wei GH, Li W, Deng L, Li L. A distinct class of pan-cancer susceptibility genes revealed by an alternative polyadenylation transcriptome-wide association study. Nat Commun 2024; 15:1729. [PMID: 38409266 PMCID: PMC10897204 DOI: 10.1038/s41467-024-46064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
Alternative polyadenylation plays an important role in cancer initiation and progression; however, current transcriptome-wide association studies mostly ignore alternative polyadenylation when identifying putative cancer susceptibility genes. Here, we perform a pan-cancer 3' untranslated region alternative polyadenylation transcriptome-wide association analysis by integrating 55 well-powered (n > 50,000) genome-wide association studies datasets across 22 major cancer types with alternative polyadenylation quantification from 23,955 RNA sequencing samples across 7,574 individuals. We find that genetic variants associated with alternative polyadenylation are co-localized with 28.57% of cancer loci and contribute a significant portion of cancer heritability. We further identify 642 significant cancer susceptibility genes predicted to modulate cancer risk via alternative polyadenylation, 62.46% of which have been overlooked by traditional expression- and splicing- studies. As proof of principle validation, we show that alternative alleles facilitate 3' untranslated region lengthening of CRLS1 gene leading to increased protein abundance and promoted proliferation of breast cancer cells. Together, our study highlights the significant role of alternative polyadenylation in discovering new cancer susceptibility genes and provides a strong foundational framework for enhancing our understanding of the etiology underlying human cancers.
Collapse
Affiliation(s)
- Hui Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Zeyang Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Lihai Gong
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Qixuan Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Wenyan Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Jia Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xuelian Ma
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Ruofan Ding
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xing Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xudong Zou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Mireya Plass
- Gene Regulation of Cell Identity Group, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Cheng Lian
- Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, China
| | - Gong-Hong Wei
- Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, 90410, Finland
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, The University of California, Irvine, CA, 92697, USA.
| | - Lin Deng
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Lei Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Boccacino JM, Dos Santos Peixoto R, Fernandes CFDL, Cangiano G, Sola PR, Coelho BP, Prado MB, Melo-Escobar MI, de Sousa BP, Ayyadhury S, Bader GD, Shinjo SMO, Marie SKN, da Rocha EL, Lopes MH. Integrated transcriptomics uncovers an enhanced association between the prion protein gene expression and vesicle dynamics signatures in glioblastomas. BMC Cancer 2024; 24:199. [PMID: 38347462 PMCID: PMC10863147 DOI: 10.1186/s12885-024-11914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive brain tumor that exhibits resistance to current treatment, making the identification of novel therapeutic targets essential. In this context, cellular prion protein (PrPC) stands out as a potential candidate for new therapies. Encoded by the PRNP gene, PrPC can present increased expression levels in GBM, impacting cell proliferation, growth, migration, invasion and stemness. Nevertheless, the exact molecular mechanisms through which PRNP/PrPC modulates key aspects of GBM biology remain elusive. METHODS To elucidate the implications of PRNP/PrPC in the biology of this cancer, we analyzed publicly available RNA sequencing (RNA-seq) data of patient-derived GBMs from four independent studies. First, we ranked samples profiled by bulk RNA-seq as PRNPhigh and PRNPlow and compared their transcriptomic landscape. Then, we analyzed PRNP+ and PRNP- GBM cells profiled by single-cell RNA-seq to further understand the molecular context within which PRNP/PrPC might function in this tumor. We explored an additional proteomics dataset, applying similar comparative approaches, to corroborate our findings. RESULTS Functional profiling revealed that vesicular dynamics signatures are strongly correlated with PRNP/PrPC levels in GBM. We found a panel of 73 genes, enriched in vesicle-related pathways, whose expression levels are increased in PRNPhigh/PRNP+ cells across all RNA-seq datasets. Vesicle-associated genes, ANXA1, RAB31, DSTN and SYPL1, were found to be upregulated in vitro in an in-house collection of patient-derived GBM. Moreover, proteome analysis of patient-derived samples reinforces the findings of enhanced vesicle biogenesis, processing and trafficking in PRNPhigh/PRNP+ GBM cells. CONCLUSIONS Together, our findings shed light on a novel role for PrPC as a potential modulator of vesicle biology in GBM, which is pivotal for intercellular communication and cancer maintenance. We also introduce GBMdiscovery, a novel user-friendly tool that allows the investigation of specific genes in GBM biology.
Collapse
Affiliation(s)
- Jacqueline Marcia Boccacino
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Rafael Dos Santos Peixoto
- Department of Automation and Systems, Technological Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Camila Felix de Lima Fernandes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Giovanni Cangiano
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Paula Rodrigues Sola
- Cellular and Molecular Biology Laboratory (LIM 15), Department of Neurology, Faculdade de Medicina (FMUSP), University of Sao Paulo, Sao Paulo, Brazil
| | - Bárbara Paranhos Coelho
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Mariana Brandão Prado
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Maria Isabel Melo-Escobar
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Breno Pereira de Sousa
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Shamini Ayyadhury
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gary D Bader
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Sueli Mieko Oba Shinjo
- Cellular and Molecular Biology Laboratory (LIM 15), Department of Neurology, Faculdade de Medicina (FMUSP), University of Sao Paulo, Sao Paulo, Brazil
| | - Suely Kazue Nagahashi Marie
- Cellular and Molecular Biology Laboratory (LIM 15), Department of Neurology, Faculdade de Medicina (FMUSP), University of Sao Paulo, Sao Paulo, Brazil
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology, and Parasitology, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Marilene Hohmuth Lopes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil.
| |
Collapse
|
6
|
Fabro F, Kers TV, Feller KJ, Beerens C, Ntafoulis I, Idbaih A, Verreault M, Connor K, Biswas A, Salvucci M, Prehn JHM, Byrne AT, O’Farrell AC, Lambrechts D, Dilcan G, Lodi F, Arijs I, Kremer A, Tching Chi Yen R, Chien MP, Lamfers MLM, Leenstra S. Genomic Exploration of Distinct Molecular Phenotypes Steering Temozolomide Resistance Development in Patient-Derived Glioblastoma Cells. Int J Mol Sci 2023; 24:15678. [PMID: 37958662 PMCID: PMC10647455 DOI: 10.3390/ijms242115678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Chemotherapy using temozolomide is the standard treatment for patients with glioblastoma. Despite treatment, prognosis is still poor largely due to the emergence of temozolomide resistance. This resistance is closely linked to the widely recognized inter- and intra-tumoral heterogeneity in glioblastoma, although the underlying mechanisms are not yet fully understood. To induce temozolomide resistance, we subjected 21 patient-derived glioblastoma cell cultures to Temozolomide treatment for a period of up to 90 days. Prior to treatment, the cells' molecular characteristics were analyzed using bulk RNA sequencing. Additionally, we performed single-cell RNA sequencing on four of the cell cultures to track the evolution of temozolomide resistance. The induced temozolomide resistance was associated with two distinct phenotypic behaviors, classified as "adaptive" (ADA) or "non-adaptive" (N-ADA) to temozolomide. The ADA phenotype displayed neurodevelopmental and metabolic gene signatures, whereas the N-ADA phenotype expressed genes related to cell cycle regulation, DNA repair, and protein synthesis. Single-cell RNA sequencing revealed that in ADA cell cultures, one or more subpopulations emerged as dominant in the resistant samples, whereas N-ADA cell cultures remained relatively stable. The adaptability and heterogeneity of glioblastoma cells play pivotal roles in temozolomide treatment and contribute to the tumor's ability to survive. Depending on the tumor's adaptability potential, subpopulations with acquired resistance mechanisms may arise.
Collapse
Affiliation(s)
- Federica Fabro
- Department of Neurosurgery Rotterdam, Brain Tumor Center, Erasmus Medical Center Cancer Institute, Erasmus Medical Center, Wytemaweg 80, Ee2236, 3015 CN Rotterdam, The Netherlands; (F.F.); (M.L.M.L.)
| | - Trisha V. Kers
- Department of Neurosurgery Rotterdam, Brain Tumor Center, Erasmus Medical Center Cancer Institute, Erasmus Medical Center, Wytemaweg 80, Ee2236, 3015 CN Rotterdam, The Netherlands; (F.F.); (M.L.M.L.)
| | - Kate J. Feller
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Cecile Beerens
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Ioannis Ntafoulis
- Department of Neurosurgery Rotterdam, Brain Tumor Center, Erasmus Medical Center Cancer Institute, Erasmus Medical Center, Wytemaweg 80, Ee2236, 3015 CN Rotterdam, The Netherlands; (F.F.); (M.L.M.L.)
| | - Ahmed Idbaih
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, AP-HP, Institut du Cerveau—Paris Brain Institute—ICM, CNRS, University Hospital La Pitié Salpêtrière—Charles Foix, Inserm, F-75013 Paris, France
| | - Maite Verreault
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, AP-HP, Institut du Cerveau—Paris Brain Institute—ICM, CNRS, University Hospital La Pitié Salpêtrière—Charles Foix, Inserm, F-75013 Paris, France
| | - Kate Connor
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Archita Biswas
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Annette T. Byrne
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Alice C. O’Farrell
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Diether Lambrechts
- Department of Human Genetics, Laboratory for Translational Genetics, VIB Center for Cancer Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Gonca Dilcan
- Department of Human Genetics, Laboratory for Translational Genetics, VIB Center for Cancer Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Francesca Lodi
- Department of Human Genetics, Laboratory for Translational Genetics, VIB Center for Cancer Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Ingrid Arijs
- Department of Human Genetics, Laboratory for Translational Genetics, VIB Center for Cancer Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Andreas Kremer
- Information Technologies for Translational Medicine, L-4354 Esch-Sur-Alzette, Luxembourg
| | - Romain Tching Chi Yen
- Information Technologies for Translational Medicine, L-4354 Esch-Sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-Belval Esch-Sur-Alzette, Luxembourg
| | - Miao-Ping Chien
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Martine L. M. Lamfers
- Department of Neurosurgery Rotterdam, Brain Tumor Center, Erasmus Medical Center Cancer Institute, Erasmus Medical Center, Wytemaweg 80, Ee2236, 3015 CN Rotterdam, The Netherlands; (F.F.); (M.L.M.L.)
| | - Sieger Leenstra
- Department of Neurosurgery Rotterdam, Brain Tumor Center, Erasmus Medical Center Cancer Institute, Erasmus Medical Center, Wytemaweg 80, Ee2236, 3015 CN Rotterdam, The Netherlands; (F.F.); (M.L.M.L.)
| |
Collapse
|
7
|
Yadav M, Uikey BN, Rathore SS, Gupta P, Kashyap D, Kumar C, Shukla D, Vijayamahantesh, Chandel AS, Ahirwar B, Singh AK, Suman SS, Priyadarshi A, Amit A. Role of cytokine in malignant T-cell metabolism and subsequent alternation in T-cell tumor microenvironment. Front Oncol 2023; 13:1235711. [PMID: 37746258 PMCID: PMC10513393 DOI: 10.3389/fonc.2023.1235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
T cells are an important component of adaptive immunity and T-cell-derived lymphomas are very complex due to many functional sub-types and functional elasticity of T-cells. As with other tumors, tissues specific factors are crucial in the development of T-cell lymphomas. In addition to neoplastic cells, T- cell lymphomas consist of a tumor micro-environment composed of normal cells and stroma. Numerous studies established the qualitative and quantitative differences between the tumor microenvironment and normal cell surroundings. Interaction between the various component of the tumor microenvironment is crucial since tumor cells can change the microenvironment and vice versa. In normal T-cell development, T-cells must respond to various stimulants deferentially and during these courses of adaptation. T-cells undergo various metabolic alterations. From the stage of quiescence to attention of fully active form T-cells undergoes various stage in terms of metabolic activity. Predominantly quiescent T-cells have ATP-generating metabolism while during the proliferative stage, their metabolism tilted towards the growth-promoting pathways. In addition to this, a functionally different subset of T-cells requires to activate the different metabolic pathways, and consequently, this regulation of the metabolic pathway control activation and function of T-cells. So, it is obvious that dynamic, and well-regulated metabolic pathways are important for the normal functioning of T-cells and their interaction with the microenvironment. There are various cell signaling mechanisms of metabolism are involved in this regulation and more and more studies have suggested the involvement of additional signaling in the development of the overall metabolic phenotype of T cells. These important signaling mediators include cytokines and hormones. The impact and role of these mediators especially the cytokines on the interplay between T-cell metabolism and the interaction of T-cells with their micro-environments in the context of T-cells lymphomas are discussed in this review article.
Collapse
Affiliation(s)
- Megha Yadav
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Blessi N. Uikey
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Priyanka Gupta
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Diksha Kashyap
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Chanchal Kumar
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Vijayamahantesh
- Department of Immunology and Microbiology, University of Missouri, Columbia, SC, United States
| | - Arvind Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Bharti Ahirwar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Shashi Shekhar Suman
- Department of Zoology, Udayana Charya (UR) College, Lalit Narayan Mithila University, Darbhanga, India
| | - Amit Priyadarshi
- Department of Zoology, Veer Kunwar Singh University, Arrah, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| |
Collapse
|
8
|
Lavoro A, Falzone L, Tomasello B, Conti GN, Libra M, Candido S. In silico analysis of the solute carrier (SLC) family in cancer indicates a link among DNA methylation, metabolic adaptation, drug response, and immune reactivity. Front Pharmacol 2023; 14:1191262. [PMID: 37397501 PMCID: PMC10308049 DOI: 10.3389/fphar.2023.1191262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction: The oncogenic transformation is driven by genetic and epigenetic alterations influencing cancer cell fate. These alterations also result in metabolic reprogramming by modulating the expression of membrane Solute Carrier (SLC) transporters involved in biomolecules trafficking. SLCs act as tumor suppressors or promoters influencing cancer methylome, tumor growth, immune-escape, and chemoresistance. Methods: This in silico study aimed to identify the deregulated SLCs in various tumor types compared to normal tissues by analyzing the TCGA Target GTEx dataset. Furthermore, the relationship between SLCs expression and the most relevant tumor features was tackled along with their genetic regulation mediated by DNA methylation. Results: We identified 62 differentially expressed SLCs, including the downregulated SLC25A27 and SLC17A7, as well as the upregulated SLC27A2 and SLC12A8. Notably, SLC4A4 and SLC7A11 expression was associated with favorable and unfavorable outcome, respectively. Moreover, SLC6A14, SLC34A2, and SLC1A2 were linked to tumor immune responsiveness. Interestingly, SLC24A5 and SLC45A2 positively correlated with anti-MEK and anti-RAF sensitivity. The expression of relevant SLCs was correlated with hypo- and hyper-methylation of promoter and body region, showing an established DNA methylation pattern. Noteworthy, the positive association of cg06690548 (SLC7A11) methylation with cancer outcome suggests the independent predictive role of DNA methylation at a single nucleotide resolution. Discussion: Although our in silico overview revealed a wide heterogeneity depending on different SLCs functions and tumor types, we identified key SLCs and pointed out the role of DNA methylation as regulatory mechanism of their expression. Overall, these findings deserve further studies to identify novel cancer biomarkers and promising therapeutic targets.
Collapse
Affiliation(s)
- Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Giuseppe Nicolò Conti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Li Y, Fang Y, Chang HC, Gorczyca M, Liu P, Tseng GC. Adaptively Integrative Association between Multivariate Phenotypes and Transcriptomic Data for Complex Diseases. Genes (Basel) 2023; 14:genes14040798. [PMID: 37107556 PMCID: PMC10138055 DOI: 10.3390/genes14040798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Phenotype–gene association studies can uncover disease mechanisms for translational research. Association with multiple phenotypes or clinical variables in complex diseases has the advantage of increasing statistical power and offering a holistic view. Existing multi-variate association methods mostly focus on SNP-based genetic associations. In this paper, we extend and evaluate two adaptive Fisher’s methods, namely AFp and AFz, from the p-value combination perspective for phenotype–mRNA association analysis. The proposed method effectively aggregates heterogeneous phenotype–gene effects, allows association with different data types of phenotypes, and performs the selection of the associated phenotypes. Variability indices of the phenotype–gene effect selection are calculated by bootstrap analysis, and the resulting co-membership matrix identifies gene modules clustered by phenotype–gene effect. Extensive simulations demonstrate the superior performance of AFp compared to existing methods in terms of type I error control, statistical power and biological interpretation. Finally, the method is separately applied to three sets of transcriptomic and clinical datasets from lung disease, breast cancer, and brain aging and generates intriguing biological findings.
Collapse
Affiliation(s)
- Yujia Li
- Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Yusi Fang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hung-Ching Chang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael Gorczyca
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Peng Liu
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence:
| |
Collapse
|
10
|
Liu DH, Wen GM, Song CL, Ji LJ, Xia P. Amino acid profiles in the tissue and serum of patients with liver cancer. Open Med (Wars) 2022; 17:1797-1802. [PMID: 36447523 PMCID: PMC9675036 DOI: 10.1515/med-2022-0589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 01/31/2024] Open
Abstract
Most patients with liver cancer were found late and lost the chance of surgery. Liquid biopsy can monitor the risk of tumor recurrence and metastasis, quickly evaluate the curative effect of tumor treatment, and is conducive to early screening and auxiliary diagnosis of high-risk groups. Amino acid (AA) profiling has been used to the diagnosis and the prognosis for cancers. However, little was known about the profiles of AA of liver cancer. In this study, we used tRNA in Cancer database to analyze the AA levels in liver cancer tissues. Blood samples of patients with liver cancer were collected and analyzed using the automatic AA analyzer. We found that valine, isoleucine, and leucine were decreased significantly both in the plasma and the tumor tissues of patients with liver cancer. However, upregulation of methionine was observed in tissues and plasma of patients with liver cancer. Interestingly, tyrosine, and phenylalanine were decreased in tumor tissue but increased in the plasma of patients with liver cancer. This is the first report provided an overview of AA profile in both plasma and tissue for patients with liver cancer. AA levels can be used as diagnostic and prognostic markers of patients with liver cancer.
Collapse
Affiliation(s)
- Da-Hua Liu
- Biological Anthropology Institute, Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Gui-Min Wen
- Department of Basic Nursing, College of Nursing, Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Chang-Liang Song
- Department of Radiotherapy, Center Hospital of Handan, Handan, Hebei, P.R. China
| | - Li-Jun Ji
- Office of Library, Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Pu Xia
- Biological Anthropology Institute, Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| |
Collapse
|
11
|
IK Ca channels control breast cancer metabolism including AMPK-driven autophagy. Cell Death Dis 2022; 13:902. [PMID: 36302750 PMCID: PMC9613901 DOI: 10.1038/s41419-022-05329-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022]
Abstract
Ca2+-activated K+ channels of intermediate conductance (IK) are frequently overexpressed in breast cancer (BC) cells, while IK channel depletion reduces BC cell proliferation and tumorigenesis. This raises the question, of whether and mechanistically how IK activity interferes with the metabolic activity and energy consumption rates, which are fundamental for rapidly growing cells. Using BC cells obtained from MMTV-PyMT tumor-bearing mice, we show that both, glycolysis and mitochondrial ATP-production are reduced in cells derived from IK-deficient breast tumors. Loss of IK altered the sub-/cellular K+- and Ca2+- homeostasis and mitochondrial membrane potential, ultimately resulting in reduced ATP-production and metabolic activity. Consequently, we find that BC cells lacking IK upregulate AMP-activated protein kinase activity to induce autophagy compensating the glycolytic and mitochondrial energy shortage. Our results emphasize that IK by modulating cellular Ca2+- and K+-dynamics contributes to the remodeling of metabolic pathways in cancer. Thus, targeting IK channel might disturb the metabolic activity of BC cells and reduce malignancy.
Collapse
|
12
|
FANG L, QI H, WANG P, WANG S, LI T, XIA T, PIAO H, GU C. UPF1 increases amino acid levels and promotes cell proliferation in lung adenocarcinoma via the eIF2α-ATF4 axis. J Zhejiang Univ Sci B 2022; 23:863-875. [PMID: 36226539 PMCID: PMC9561404 DOI: 10.1631/jzus.b2200144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Up-frameshift 1 (UPF1), as the most critical factor in nonsense-mediated messenger RNA (mRNA) decay (NMD), regulates tumor-associated molecular pathways in many cancers. However, the role of UPF1 in lung adenocarcinoma (LUAD) amino acid metabolism remains largely unknown. In this study, we found that UPF1 was significantly correlated with a portion of amino acid metabolic pathways in LUAD by integrating bioinformatics and metabolomics. We further confirmed that UPF1 knockdown inhibited activating transcription factor 4 (ATF4) and Ser51 phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), the core proteins in amino acid metabolism reprogramming. In addition, UPF1 promotes cell proliferation by increasing the amino-acid levels of LUAD cells, which depends on the function of ATF4. Clinically, UPF1 mRNA expression is abnormal in LUAD tissues, and higher expression of UPF1 and ATF4 was significantly correlated with poor overall survival (OS) in LUAD patients. Our findings reveal that UPF1 is a potential regulator of tumor-associated amino acid metabolism and may be a therapeutic target for LUAD.
Collapse
Affiliation(s)
- Lei FANG
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Huan QI
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Peng WANG
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Shiqing WANG
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Tianjiao LI
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Tian XIA
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Hailong PIAO
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China,Hailong PIAO,
| | - Chundong GU
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China,Chundong GU,
| |
Collapse
|
13
|
Neutrophil Transcriptional Deregulation by the Periodontal Pathogen Fusobacterium nucleatum in Gastric Cancer: A Bioinformatic Study. DISEASE MARKERS 2022; 2022:9584507. [PMID: 36033825 PMCID: PMC9410804 DOI: 10.1155/2022/9584507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
Background Infection with the periodontal pathogen Fusobacterium nucleatum (F. nucleatum) has been associated with gastric cancer. The present study is aimed at uncovering the putative biological mechanisms underlying effects of F. nucleatum–mediated neutrophil transcriptional deregulation in gastric cancer. Materials and Methods A gene expression dataset pertaining to F. nucleatum-infected human neutrophils was utilized to identify differentially expressed genes (DEGs) using the GEO2R tool. Candidate genes associated with gastric cancer were sourced from the “Candidate Cancer Gene Database” (CCGD). Overlapping genes among these were identified as link genes. Functional profiling of the link genes was performed using “g:Profiler” tool to identify enriched Gene Ontology (GO) terms, pathways, miRNAs, transcription factors, and human phenotype ontology terms. Protein-protein interaction (PPI) network was constructed for the link genes using the “STRING” tool, hub nodes were identified as key candidate genes, and functionally enriched terms were determined. Results The gene expression dataset GEO20151 was downloaded, and 589 DEGs were identified through differential analysis. 886 candidate gastric cancer genes were identified in the CGGD database. Among these, 36 overlapping genes were identified as the link genes. Enriched GO terms included molecular function “enzyme building,” biological process “protein folding,'” cellular components related to membrane-bound organelles, transcription factors ER71 and Sp1, miRNAs miR580 and miR155, and several human phenotype ontology terms including squamous epithelium of esophagus. The PPI network contained 36 nodes and 53 edges, where the top nodes included PH4 and CANX, and functional terms related to intracellular membrane trafficking were enriched. Conclusion F nucleatum-induced neutrophil transcriptional activation may be implicated in gastric cancer via several candidate genes including DNAJB1, EHD1, IER2, CANX, and PH4B. Functional analysis revealed membrane-bound organelle dysfunction, intracellular trafficking, transcription factors ER71 and Sp1, and miRNAs miR580 and miR155 as other candidate mechanisms, which should be investigated in experimental studies.
Collapse
|
14
|
Kuo IY, Hsieh CH, Kuo WT, Chang CP, Wang YC. Recent advances in conventional and unconventional vesicular secretion pathways in the tumor microenvironment. J Biomed Sci 2022; 29:56. [PMID: 35927755 PMCID: PMC9354273 DOI: 10.1186/s12929-022-00837-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
All cells in the changing tumor microenvironment (TME) need a class of checkpoints to regulate the balance among exocytosis, endocytosis, recycling and degradation. The vesicular trafficking and secretion pathways regulated by the small Rab GTPases and their effectors convey cell growth and migration signals and function as meditators of intercellular communication and molecular transfer. Recent advances suggest that Rab proteins govern conventional and unconventional vesicular secretion pathways by trafficking widely diverse cargoes and substrates in remodeling TME. The mechanisms underlying the regulation of conventional and unconventional vesicular secretion pathways, their action modes and impacts on the cancer and stromal cells have been the focus of much attention for the past two decades. In this review, we discuss the current understanding of vesicular secretion pathways in TME. We begin with an overview of the structure, regulation, substrate recognition and subcellular localization of vesicular secretion pathways. We then systematically discuss how the three fundamental vesicular secretion processes respond to extracellular cues in TME. These processes are the conventional protein secretion via the endoplasmic reticulum-Golgi apparatus route and two types of unconventional protein secretion via extracellular vesicles and secretory autophagy. The latest advances and future directions in vesicular secretion-involved interplays between tumor cells, stromal cell and host immunity are also described.
Collapse
Affiliation(s)
- I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsiung Hsieh
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan
| | - Wan-Ting Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
15
|
Targeting metabolic reprogramming in chronic lymphocytic leukemia. Exp Hematol Oncol 2022; 11:39. [PMID: 35761419 PMCID: PMC9235173 DOI: 10.1186/s40164-022-00292-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022] Open
Abstract
Metabolic reprogramming, fundamentally pivotal in carcinogenesis and progression of cancer, is considered as a promising therapeutic target against tumors. In chronic lymphocytic leukemia (CLL) cells, metabolic abnormalities mediate alternations in proliferation and survival compared with normal B cells. However, the role of metabolic reprogramming is still under investigation in CLL. In this review, the critical metabolic processes of CLL were summarized, particularly glycolysis, lipid metabolism and oxidative phosphorylation. The effects of T cells and stromal cells in the microenvironment on metabolism of CLL were also elucidated. Besides, the metabolic alternation is regulated by some oncogenes and tumor suppressor regulators, especially TP53, MYC and ATM. Thus, the agents targeting metabolic enzymes or signal pathways may impede the progression of CLL. Both the inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) statins and the lipoprotein lipase inhibitor orlistat induce the apoptosis of CLL cells. In addition, a series of oxidative phosphorylation inhibitors play important roles in decreasing the proliferation of CLL cells. We epitomized recent advancements in metabolic reprogramming in CLL and discussed their clinical potentiality for innovative therapy options. Metabolic reprogramming plays a vital role in the initiation and progression of CLL. Therapeutic approaches targeting metabolism have their advantages in improving the survival of CLL patients. This review may shed novel light on the metabolism of CLL, leading to the development of targeted agents based on the reshaping metabolism of CLL cells.
Collapse
|
16
|
Jiang H, Jing Q, Yang Q, Qiao C, Liao Y, Liu W, Xing Y. Efficient Simultaneous Introduction of Premature Stop Codons in Three Tumor Suppressor Genes in PFFs via a Cytosine Base Editor. Genes (Basel) 2022; 13:genes13050835. [PMID: 35627220 PMCID: PMC9140995 DOI: 10.3390/genes13050835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
Base editing is an efficient and precise gene-editing technique, by which a single base can be changed without introducing double-strand breaks, and it is currently widely used in studies of various species. In this study, we used hA3A-BE3-Y130F to simultaneously introduce premature stop codons (TAG, TGA, and TAA) into three tumor suppressor genes, TP53, PTEN, and APC, in large white porcine fetal fibroblasts (PFFs). Among the isolated 290 single-cell colonies, 232 (80%) had premature stop codons in all the three genes. C−to−T conversion was found in 98.6%, 92.8%, and 87.2% of these cell colonies for TP53, PTEN, and APC, respectively. High frequencies of bystander C−to−T edits were observed within the editing window (positions 3−8), and there were nine (3.01%) clones with the designed simultaneous three-gene C−to−T conversion without bystander conversion. C−to−T conversion outside the editing window was found in 9.0%, 14.1%, and 26.2% of the 290 cell colonies for TP53, PTEN, and APC, respectively. Low-frequency C−to−G or C−to−A transversion occurred in APC. The mRNA levels of the three genes showed significant declines in triple-gene-mutant (Tri-Mut) cells as expected. No PTEN and a significantly lower (p < 0.05) APC protein expression were detected in Tri-Mut cells. Interestingly, the premature stop codon introduced into the TP53 gene did not eliminate the expression of its full-length protein in the Tri-Mut cells, suggesting that stop codon read-through occurred. Tri-Mut cells showed a significantly higher (p < 0.05) proliferation rate than WT cells. Furthermore, we identified 1418 differentially expressed genes (DEGs) between the Tri-Mut and WT groups, which were mainly involved in functions such as tumor progression, cell cycle, and DNA repair. This study indicates that hA3A-BE3-Y130F can be a powerful tool to create diverse knockout cell models without double-strand breaks (DSBs), with further possibilities to produce porcine models with various purposes.
Collapse
|
17
|
Reyes-Alvarez E, Walker TJ, Mulligan LM. Evaluating Cell Membrane Localization and Intracellular Transport of Proteins by Biotinylation. Methods Mol Biol 2022; 2508:197-209. [PMID: 35737242 DOI: 10.1007/978-1-0716-2376-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein translocation to the cell membrane and transport through intracellular compartments are dynamic processes frequently altered in cancer cells. Abnormal protein localization can affect key cell functions, including transduction of extracellular signals and organization of the cytoskeleton, significantly affecting oncogenicity and therapeutic responses. In this chapter, we describe a surface protein biotinylation method that allows the study of membrane localization and endosomal transport of membrane-associated proteins. Surface biotinylation can be used to evaluate baseline protein levels at the membrane, and other processes such as internalization, recycling, and degradation of proteins in response to different treatments or as a consequence of oncogenic mutations. Further, the combination of this technique with other strategies, such as treatments with transport inhibitors, allows investigation of specific steps of protein trafficking through the cell.
Collapse
Affiliation(s)
- Eduardo Reyes-Alvarez
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Timothy J Walker
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Lois M Mulligan
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
18
|
Zhang Z, Zhang HJ. Glycometabolic rearrangements-aerobic glycolysis in pancreatic ductal adenocarcinoma (PDAC): roles, regulatory networks, and therapeutic potential. Expert Opin Ther Targets 2021; 25:1077-1093. [PMID: 34874212 DOI: 10.1080/14728222.2021.2015321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Glycometabolic rearrangements (aerobic glycolysis) is a hallmark of pancreatic ductal adenocarcinoma (PDAC) and contributes to tumorigenesis and progression through numerous mechanisms. The targeting of aerobic glycolysis is recognized as a potential therapeutic strategy which offers the possibility of improving treatment outcomes for PDAC patients. AREAS COVERED In this review, the role of aerobic glycolysis and its regulatory networks in PDAC are discussed. The targeting of aerobic glycolysis in PDAC is examined, and its therapeutic potential is evaluated. The relevant literature published from 2001 to 2021 was searched in databases including PubMed, Scopus, and Embase. EXPERT OPINION Regulatory networks of aerobic glycolysis in PDAC are based on key factors such as c-Myc, hypoxia-inducible factor 1α, the mammalian target of rapamycin pathway, and non-coding RNAs. Experimental evidence suggests that modulators or inhibitors of aerobic glycolysis promote therapeutic effects in preclinical tumor models. Nevertheless, successful clinical translation of drugs that target aerobic glycolysis in PDAC is an obstacle. Moreover, it is necessary to identify the potential targets for future interventions from regulatory networks to design efficacious and safer agents.
Collapse
Affiliation(s)
- Zhong Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, People's Republic of China
| | - Hai-Jun Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
19
|
Czegle I, Gray AL, Wang M, Liu Y, Wang J, Wappler-Guzzetta EA. Mitochondria and Their Relationship with Common Genetic Abnormalities in Hematologic Malignancies. Life (Basel) 2021; 11:1351. [PMID: 34947882 PMCID: PMC8707674 DOI: 10.3390/life11121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Hematologic malignancies are known to be associated with numerous cytogenetic and molecular genetic changes. In addition to morphology, immunophenotype, cytochemistry and clinical characteristics, these genetic alterations are typically required to diagnose myeloid, lymphoid, and plasma cell neoplasms. According to the current World Health Organization (WHO) Classification of Tumors of Hematopoietic and Lymphoid Tissues, numerous genetic changes are highlighted, often defining a distinct subtype of a disease, or providing prognostic information. This review highlights how these molecular changes can alter mitochondrial bioenergetics, cell death pathways, mitochondrial dynamics and potentially be related to mitochondrial genetic changes. A better understanding of these processes emphasizes potential novel therapies.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary;
| | - Austin L. Gray
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Minjing Wang
- Independent Researcher, Diamond Bar, CA 91765, USA;
| | - Yan Liu
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Jun Wang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Edina A. Wappler-Guzzetta
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| |
Collapse
|
20
|
He J, Ling L, Liu Z, Ren X, Wan L, Tu C, Li Z. Functional interplay between long non-coding RNAs and the Wnt signaling cascade in osteosarcoma. Cancer Cell Int 2021; 21:313. [PMID: 34130697 PMCID: PMC8207720 DOI: 10.1186/s12935-021-02013-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma is a common and highly malignant bone tumor among children, adolescents and young adults. However, the underlying molecular mechanisms remain largely unexplored. LncRNAs are transcripts with no or limited protein-coding capacity in human genomes, and have been demonstrated to play crucial functions in initiation, progression, therapeutic resistance, recurrence and metastasis of tumor. Considerable studies revealed a dysregulated lncRNA expression pattern in osteosarcoma, which may act as oncogenes or suppressors to regulate osteosarcoma progression. Wnt signaling pathway is an important cascade in tumorigenesis by modulation of pleiotropic biological functions including cell proliferation, apoptosis, differentiation, stemness, genetic stability and chemoresistance. Hyperactivation or deficiency of key effectors in Wnt cascade is a common event in many osteosarcoma patients. Recently, increasing evidences have suggested that lncRNAs could interplay with component of Wnt pathway, and thereby contribute to osteosarcoma onset, progression and dissemination. In this review, we briefly summarize Wnt signaling-related lncRNAs in osteosarcoma progression, aiming to gain insights into their underlying crosstalk as well as clinical application in osteosarcoma therapeutic modalities.
Collapse
Affiliation(s)
- Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lin Ling
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lu Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|