1
|
Cissé YM, Montgomery KR, Zierden HC, Hill EM, Kane PJ, Huang W, Kane MA, Bale TL. Maternal preconception stress produces sex-specific effects at the maternal:fetal interface to impact offspring development and phenotypic outcomes†. Biol Reprod 2024; 110:339-354. [PMID: 37971364 PMCID: PMC10873277 DOI: 10.1093/biolre/ioad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Entering pregnancy with a history of adversity, including adverse childhood experiences and racial discrimination stress, is a predictor of negative maternal and fetal health outcomes. Little is known about the biological mechanisms by which preconception adverse experiences are stored and impact future offspring health outcomes. In our maternal preconception stress (MPS) model, female mice underwent chronic stress from postnatal days 28-70 and were mated 2 weeks post-stress. Maternal preconception stress dams blunted the pregnancy-induced shift in the circulating extracellular vesicle proteome and reduced glucose tolerance at mid-gestation, suggesting a shift in pregnancy adaptation. To investigate MPS effects at the maternal:fetal interface, we probed the mid-gestation placental, uterine, and fetal brain tissue transcriptome. Male and female placentas differentially regulated expression of genes involved in growth and metabolic signaling in response to gestation in an MPS dam. We also report novel offspring sex- and MPS-specific responses in the uterine tissue apposing these placentas. In the fetal compartment, MPS female offspring reduced expression of neurodevelopmental genes. Using a ribosome-tagging transgenic approach we detected a dramatic increase in genes involved in chromatin regulation in a PVN-enriched neuronal population in females at PN21. While MPS had an additive effect on high-fat-diet (HFD)-induced weight gain in male offspring, both MPS and HFD were necessary to induce significant weight gain in female offspring. These data highlight the preconception period as a determinant of maternal health in pregnancy and provides novel insights into mechanisms by which maternal stress history impacts offspring developmental programming.
Collapse
Affiliation(s)
- Yasmine M Cissé
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen R Montgomery
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hannah C Zierden
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Hill
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick J Kane
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Tracy L Bale
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Koohestanidehaghi Y, Khalili MA, Fesahat F, Seify M, Mangoli E, Kalantar SM, Annarita Nottola S, Macchiarelli G, Grazia Palmerini M. Detrimental effects of radiofrequency electromagnetic waves emitted by mobile phones on morphokinetics, oxidative stress, and apoptosis in mouse preimplantation embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122411. [PMID: 37598936 DOI: 10.1016/j.envpol.2023.122411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Due to the increasing use of smart mobile phones, the impact of radiofrequency electromagnetic radiation (RF-EMR) on reproductive health has become a serious concern. This study investigated the effect of mobile phone RF-EMR with frequency 900-1800 MHZ on the mouse embryo morphokinetics and genotoxic effect in laboratory conditions. After ovarian stimulation in mice, the MII oocytes were collected and underwent by in vitro fertilization (IVF) method. The generated zygotes were divided into control and exposed groups. Then, the zygotes with 30 min of exposure to mobile phone RF-EMR, and the control zygotes without exposure, were incubated in the time-lapse for 5 days. The intracellular reactive oxygen species (ROS) level, morphokinetic, embryo viability rate, and Gene expression were evaluated. Exposure of zygotes to RF-EMR by inducing ROS caused a significant decrease in blastocyst viability (87.85 ± 2.86 versus 94.23 ± 2.44), delay in cleavage development (t3-t12) and also increased the time (in hours) to reach the blastocyst stage (97.44 ± 5.21 versus 92.56 ± 6.7) compared to the control group. A significant increase observed in mRNA levels of Hsp70 in exposed animals; while Sod gene expression showed a significant down-regulation in this group compared to the controls, respectively. However, there was no significant change in the transcript level of proapoptotic and antiapoptotic genes in embryos of the exposed group compared to the controls. RF-EMR emitted by mobile phone with a frequency of 900-1800 MHZ, through inducing the production of ROS and oxidative stress, could negatively affect the growth and development as well as the transcript levels of oxidative stress associated genes in the preimplantation embryos of mice.
Collapse
Affiliation(s)
- Yeganeh Koohestanidehaghi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ali Khalili
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Seify
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Esmat Mangoli
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Department of Genetics, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, Rome, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
3
|
Wu Q, Ru G, Xiao W, Wang Q, Li Z. Adverse effects of ovarian cryopreservation and auto-transplantation on ovarian grafts and quality of produced oocytes in a mouse model. Clin Sci (Lond) 2023; 137:1577-1591. [PMID: 37782233 PMCID: PMC10600147 DOI: 10.1042/cs20230483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
The process of ovarian cryopreservation and transplantation is the only feasible fertility preservation method for prepubertal girls and female patients with cancer who cannot delay radiotherapy and chemotherapy. However, basic research on this technique is lacking. To better understand ovarian function and oocyte quality after ovarian tissue (OT) transplantation, we characterised the appearance, angiogenesis, and endocrine function of ovarian grafts in a murine model; the mitochondrial function and DNA damage in oocytes isolated from the OT; and the development of embryos after in vitro fertilisation. The results showed a decrease in oocyte numbers in the transplanted OT, abnormal endocrine function of ovarian grafts, as well as dysfunctional mitochondria and DNA damage in the oocytes, which could adversely affect subsequent embryonic development. However, these adverse phenotypes were partially or completely resolved within 21 days of transplantation, suggesting that ovulation induction and assisted pregnancy treatment should not be conducted too soon after OT transfer to ensure optimal patient and offspring outcomes.
Collapse
Affiliation(s)
- Que Wu
- Reproductive Center, First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou City, 515041, Guangdong, China
| | - Gaizhen Ru
- Reproductive Center, First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou City, 515041, Guangdong, China
| | - Wanfen Xiao
- Reproductive Center, First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou City, 515041, Guangdong, China
| | - Qian Wang
- Reproductive Center, First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou City, 515041, Guangdong, China
| | - Zhiling Li
- Reproductive Center, First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou City, 515041, Guangdong, China
| |
Collapse
|
4
|
Tire B, Ozturk S. Potential effects of assisted reproductive technology on telomere length and telomerase activity in human oocytes and early embryos. J Ovarian Res 2023; 16:130. [PMID: 37400833 DOI: 10.1186/s13048-023-01211-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/17/2023] [Indexed: 07/05/2023] Open
Abstract
Telomeres are repetitive DNA sequences at eukaryotic chromosome ends and function in maintaining genome integrity and stability. These unique structures undergo shortening due to various factors including biological aging, consecutive DNA replication, oxidative stress, and genotoxic agents. Shortened telomeres can be lengthened by the enzyme telomerase and alternative lengthening of telomeres in germ cells, early embryos, stem cells, and activated lymphocytes. If telomeres reach to critical length, it may lead to genomic instability, chromosome segregation defects, aneuploidy, and apoptosis. These phenotypes also occur in the oocytes and early embryos, produced using assisted reproductive technologies (ARTs). Thus, a number of studies have examined the potential effects of ART applications such as ovarian stimulation, culture conditions, and cryopreservation procedures on telomeres. Herein, we comprehensively reviewed impacts of these applications on telomere length and telomerase activity in ART-derived oocytes and embryos. Further, we discussed use of these parameters in ART centers as a biomarker in determining oocyte and embryo quality.
Collapse
Affiliation(s)
- Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
5
|
Uddin AHMM, Petrovski KR, Song Y, Garg S, Kirkwood RN. Application of Exogenous GnRH in Food Animal Production. Animals (Basel) 2023; 13:1891. [PMID: 37370402 PMCID: PMC10295615 DOI: 10.3390/ani13121891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Over several decades, exogenous GnRH and agonists have been employed for controlling reproductive cascades in animals, and treating some reproductive morbidities. The administration of GnRH is used in animals to counter ovarian dysfunction, induce ovulation, and to increase conception and pregnancy rates. GnRH and its agonists are used in the treatment of cystic ovarian degeneration and repeat breeder syndrome. The development of protocols for GnRH administration by intramuscular injection, intramuscular or subcutaneous implants, and intravaginal deposition has empowered their clinical use worldwide. Currently, exogenous GnRH products are a central part of several pre- and post-breeding programs for the enhancement of fertility, including the control of estrous cycles and timing of ovulation, development of fixed-time artificial insemination protocols, improved embryo survival, and the treatment of reproductive morbidity. The aim of the present review is to summarize the application of exogenous GnRH agonists in food animal production.
Collapse
Affiliation(s)
- A. H. M. Musleh Uddin
- School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia;
| | - Kiro R. Petrovski
- Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia;
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Yunmei Song
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (Y.S.); (S.G.)
| | - Sanjay Garg
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (Y.S.); (S.G.)
| | - Roy N. Kirkwood
- School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia;
| |
Collapse
|
6
|
Chen HH, Lee CI, Huang CC, Cheng EH, Lee TH, Lin PY, Chen CH, Lee MS. Biphasic oxygen tension promotes the formation of transferable blastocysts in patients without euploid embryos in previous monophasic oxygen cycles. Sci Rep 2023; 13:4330. [PMID: 36922540 PMCID: PMC10017668 DOI: 10.1038/s41598-023-31472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
This study evaluated whether the concentration of biphasic O2 (5-2%) promotes the formation of qualified blastocysts (QBs) and euploid blastocysts and the probability of cycles with transferable blastocysts. The paired experimental design included a total 90 patients (180 cycles) without euploid blastocysts in previous monophasic O2 (5%) cycles were enrolled for an additional cycle of biphasic O2 (5-2%). In the biphasic O2 (5-2%) group, the QB rate (35.8%, 225/628) was significantly higher than that in the monophasic O2 (5%) group (23.5%, 137/582; p < 0.001). In addition, the euploid blastocyst number (0.5 ± 0.8) and the percentage of cycles with transferable blastocysts were significantly higher in the biphasic O2 (5-2%) group (57.8%, 52/90) than those in the monophasic O2 (5%) group (0 and 35.6%, 32/90, respectively; p < 0.01). Multivariable regression analysis also indicated that the QB rate and the probability of cycles with transferable blastocysts correlated with O2 tension (OR 1.535, 95% CI 1.325-1.777, and OR 3.191, 95% CI 1.638-5.679, respectively; p < 0.001). Biphasic O2 culture can be used as an alternative strategy to increase the euploid QBs and the probability of cycles with transferable blastocysts in patients with a poor prognosis.
Collapse
Affiliation(s)
- Hsiu-Hui Chen
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan.,Post Baccalaureate Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Chun-I Lee
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.,Post Baccalaureate Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Chun-Chia Huang
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan.,Post Baccalaureate Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - En-Hui Cheng
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan.,Post Baccalaureate Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Tsung-Hsien Lee
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pin Yao Lin
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan.,Post Baccalaureate Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Chien-Hong Chen
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan. .,Post Baccalaureate Medicine, National Chung-Hsing University, Taichung, Taiwan.
| | - Maw-Sheng Lee
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan. .,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan. .,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan. .,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan. .,Post Baccalaureate Medicine, National Chung-Hsing University, Taichung, Taiwan.
| |
Collapse
|
7
|
Hashem NM, El-Hawy AS, El-Bassiony MF, El-Hamid ISA, Gonzalez-Bulnes A, Martinez-Ros P. Use of GnRH-Encapsulated Chitosan Nanoparticles as an Alternative to eCG for Induction of Estrus and Ovulation during Non-Breeding Season in Sheep. BIOLOGY 2023; 12:351. [PMID: 36979043 PMCID: PMC10045856 DOI: 10.3390/biology12030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
This study is aimed at determining the reproductive performance of anestrous ewes treated with nanoencapsulated GnRH after a progesterone-based protocol for estrus induction was proposed as a way of replacing eCG. A total of sixty anestrous, multiparous, non-lactating Barki ewes were randomly allocated into three homogenous groups and subjected to a CIDR-based estrus induction protocol. The first group (eCG) received an intramuscular (i.m.) injection of 350 IU of eCG at CIDR removal. The second (LNGnRH) and third (HLNGnR) groups received either 25 µg or 50 µg of encapsulated GnRH nanoparticles by the i.m. route in the form of spherical GnRH-encapsulated chitosan-TPP nanoparticles (which were 490.8 nm and had a 13.6 mV positive charge) 48 h after CIDR removal. Follicular dynamics, estrous behavior, luteal activity, and pregnancy outcomes were evaluated. Three days after CIDR removal, the number of large follicles increased by similar amounts in the LNGnRH and eCG groups and were significantly higher in both groups than in the HNGnRH group. However, no differences were observed in the numbers and diameters of CLs among the experimental groups and, on the other hand, treatment with HNGnRH significantly increased blood serum progesterone levels compared with eCG and LNGnRH. Treatment with HNGnRH increased conception, lambing, and fecundity rates (p < 0.05), with the trend of a higher litter size (p = 0.081) compared with eCG, whereas LNGnRH resulted in intermediate values. In conclusion, a dose of 50 µg of GnRH encapsulated in chitosan-TPP nanoparticles can be used as an alternative to eCG in progesterone-based estrus induction protocols in sheep.
Collapse
Affiliation(s)
- Nesrein M. Hashem
- Department of Animal and Fish Production, Agriculture Faculty (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| | - Ahmed S. El-Hawy
- Animal and Poultry Physiology Department, Desert Research Center (DRC), Cairo 11753, Egypt
| | | | | | - Antonio Gonzalez-Bulnes
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal, Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Paula Martinez-Ros
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal, Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| |
Collapse
|
8
|
Sharif B, Hassan M, Arshad U, Tahir MZ, Ahmad E, Khan MI, Shahzad M, Mohsin I, Sosa F, Rehman A. Effect of eCG dose on ovarian haemodynamics, hormonal profiles and prolificacy rate when oestrus was induced during low-breeding season in Beetal goats. Reprod Domest Anim 2023; 58:48-59. [PMID: 36102495 DOI: 10.1111/rda.14257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/12/2022] [Indexed: 01/07/2023]
Abstract
The objectives of the experiment were to determine the effect of two doses of equine chorionic gonadotropin (eCG) in a standard synchronization protocol based on a short-term progesterone (P4 ) priming on ovarian structures and haemodynamics, concentrations of steroid hormones and prolificacy rate when oestrus was induced during low-breeding season (LBS) in Beetal dairy goats. We hypothesized that inclusion of eCG in a short-term P4 priming-based synchronization protocol would increase the blood perfusion to ovarian structures leading to enhance oestrous and ovulatory responses and prolificacy rate in goats. Forty-two multiparous acyclic goats were blocked by body condition and, within block, assigned randomly to receive saline as control (CON), low eCG (L-eCG; 300 IU) or high eCG (H-eCG; 600 IU) dose. Initially, a controlled internal drug release (CIDR) device was placed in the anterior vagina on d -8, followed by removal of CIDR on d -3, concurrent with the administration of PGF2α and eCG according to their respective treatments. Goats were monitored for oestrous response. B-mode and Doppler ultrasonography was performed with 12-h interval, starting from day -3 until natural breeding (day 0), and then on days 5, 10, 15 and 20 post-breeding to monitor follicular and luteal dynamics and blood flow, respectively. Blood was sampled at 0, 12, 24, 36 and 60 h after CIDR removal to quantify plasma concentrations of estradiol-17β (E2 ), whereas plasma concentrations of P4 were assayed at days 5, 10, 15 and 20 after breeding. Pregnancy and prolificacy rates were determined at day 30 and 150 after breeding, respectively. Data were analysed with mixed-effects models, and orthogonal contrasts were used to evaluate the effect of treatment [Con vs. (½ L-eCG + ½ H-eCG)] and dose of eCG (L-eCG vs. H-eCG). Data are presented in sequence as CON, L-eCG, H-eCG (LSM ± SEM). The oestrous intensity score (152.9 vs. 182.7 vs. 186.5 ± 15.1; p = .02) was greater in eCG-treated goats as compared to CON. Administration of eCG reduced the intervals to standing oestrus (66.2 vs. 41.8 vs. 48.9 h ± 5.5; p = .05), breeding (70.2 vs. 44.4 vs. 45.4 h ± 4.5; p = .03) and ovulation (84.5 vs. 61.2 vs. 63.4 h ± 6.2; p = .05) compared with CON goats. The mean growth rate of pre-ovulatory follicle was greater (1.11 vs. 1.49 vs. 1.45 mm ± 0.08; p = .01) in eCG-treated goats resulting in an increased diameter of pre-ovulatory follicle (6.27 vs. 7.20 vs. 7.31 mm ± 0.07; p < .01) and corpora lutea (6.75 vs. 8.26 vs. 8.07 mm ± 0.42; p = .04) than CON. The mean follicular blood flow did not differ among treatments; however, the mean luteal blood flow was greater in L-eCG-treated goats (0.81 vs. 1.61 vs. 1.07 cm2 ± 0.12; p = .001). The mean concentrations of E2 (4.03 vs. 5.21 vs. 4.78 pg/ml ± 0.42; p = .04) and P4 (4.85 vs. 6.39 vs. 6.22 ng/ml ± 0.34; p = .04) were greater in eCG-treated goats. The twinning rate did not differ between treatments; nevertheless, prolificacy rate was greater (p = .04) in L-eCG-treated goats. Collectively, our data suggest that the administration of eCG improves the induction of oestrous and ovarian dynamics. Administration of L-eCG enhances prolificacy rate, therefore, a low dose of eCG might be practically beneficial to improve reproduction during LBS in acyclic Beetal dairy goats.
Collapse
Affiliation(s)
- Babar Sharif
- Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mubbashar Hassan
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Pakistan
| | - Usman Arshad
- Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan.,Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Muhammad Z Tahir
- Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ejaz Ahmad
- Department of Clinical Sciences, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad I Khan
- Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Shahzad
- Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Imran Mohsin
- Department of Livestock Production, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Froylan Sosa
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Abdul Rehman
- Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
9
|
Impact of superovulation and in vitro fertilization on LINE-1 copy number and telomere length in C57BL/6 J mice blastocysts. Mol Biol Rep 2022; 49:4909-4917. [PMID: 35316424 DOI: 10.1007/s11033-022-07351-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/09/2022] [Indexed: 12/09/2022]
Abstract
OBJECTIVE Millions of babies have been conceived by IVF, yet debate about its safety to offspring continues. We hypothesized that superovulation and in vitro fertilization (IVF) promote genomic changes, including altered telomere length (TL) and activation of the retrotransposon LINE-1 (L1), and tested this hypothesis in a mouse model. MATERIAL AND METHODS Experimental study analyzing TL and L1 copy number in C57BL/6 J mouse blastocysts in vivo produced from natural mating cycles (N), in vivo produced following superovulation (S), or in vitro produced following superovulation (IVF). We also examined the effects of prolonged culture on TL and L1 copy number in the IVF group comparing blastocysts cultured 96 h versus blastocysts cultured 120 h. TL and L1 copy number were measured by Real Time PCR. RESULTS TL in S (n = 77; Mean: 1.50 ± 1.15; p = 0.0007) and IVF (n = 82; Mean: 1.72 ± 1.44; p < 0.0001) exceeded that in N (n = 16; Mean: 0.61 ± 0.27). TL of blastocysts cultured 120 h (n = 15, Mean: 2.14 ± 1.05) was significantly longer than that of embryos cultured for 96 h (n = 67, Mean: 1.63 ± 1.50; p = 0.0414). L1 copy number of blastocysts cultured for 120 h (n = 15, Mean: 1.71 ± 1.49) exceeded that of embryos cultured for 96 h (n = 67, Mean: 0.95 ± 1.03; p = 0.0162). CONCLUSIONS Intriguingly ovarian stimulation, alone or followed by IVF, produced embryos with significantly longer telomeres compared to in vivo, natural cycle-produced embryos. The significance of this enriched telomere endowment for the health and longevity of offspring born from IVF merit future studies.
Collapse
|
10
|
Taher L, Israel S, Drexler HCA, Makalowski W, Suzuki Y, Fuellen G, Boiani M. The proteome, not the transcriptome, predicts that oocyte superovulation affects embryonic phenotypes in mice. Sci Rep 2021; 11:23731. [PMID: 34887460 PMCID: PMC8660899 DOI: 10.1038/s41598-021-03054-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022] Open
Abstract
Superovulation is the epitome for generating oocytes for molecular embryology in mice, and it is used to model medically assisted reproduction in humans. However, whether a superovulated oocyte is normal, is an open question. This study establishes for the first time that superovulation is associated with proteome changes that affect phenotypic traits in mice, whereas the transcriptome is far less predictive. The proteins that were differentially expressed in superovulated mouse oocytes and embryos compared to their naturally ovulated counterparts were enriched in ontology terms describing abnormal mammalian phenotypes: a thinner zona pellucida, a smaller oocyte diameter, increased frequency of cleavage arrest, and defective blastocyst formation, which could all be verified functionally. Moreover, our findings indicate that embryos with such abnormalities are negatively selected during preimplantation, and ascribe these abnormalities to incomplete ovarian maturation during the time of the conventional superovulation, since they could be corrected upon postponement of the ovulatory stimulus by 24 h. Our data place constraints on the common view that superovulated oocytes are suitable for drawing general conclusions about developmental processes, and underscore the importance of including the proteins in a modern molecular definition of oocyte quality.
Collapse
Affiliation(s)
- Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16/I, 8010, Graz, Austria.
| | - Steffen Israel
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Hannes C A Drexler
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Wojciech Makalowski
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Niels Stensen Str. 14, 48149, Münster, Germany
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Rostock University Medical Center, Ernst-Heydemann-Strasse 8, 18057, Rostock, Germany.
| | - Michele Boiani
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany.
| |
Collapse
|
11
|
Huang Y, Li Z, Lin E, He P, Ru G. Oxidative damage-induced hyperactive ribosome biogenesis participates in tumorigenesis of offspring by cross-interacting with the Wnt and TGF-β1 pathways in IVF embryos. Exp Mol Med 2021; 53:1792-1806. [PMID: 34848840 PMCID: PMC8640061 DOI: 10.1038/s12276-021-00700-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
In vitro fertilization (IVF) increases the risk of tumorigenesis in offspring. The increased oxidative damage during IVF may be involved in tumor formation. However, the molecular mechanisms underlying this phenomenon remain largely unclear. Using a well-established model of oxidatively damaged IVF mouse embryos, we applied the iTRAQ method to identify proteins differentially expressed between control and oxidatively damaged zygotes and explored the possible tumorigenic mechanisms, especially with regard to the effects of oxidative damage on ribosome biogenesis closely related to tumorigenesis. The iTRAQ results revealed that ribosomal proteins were upregulated by oxidative stress through the Nucleolin/β-Catenin/n-Myc pathway, which stimulated ribosomes to synthesize an abundance of repair proteins to correct the damaged DNA/chromosomes in IVF-derived embryos. However, the increased percentages of γH2AX-positive cells and apoptotic cells in the blastocyst suggested that DNA repair was insufficient, resulting in aberrant ribosome biogenesis. Overexpression of ribosomal proteins, particularly Rpl15, which gradually increased from the 1-cell to 8-cell stages, indicated persistent hyperactivation of ribosome biogenesis, which promoted tumorigenesis in offspring derived from oxidatively damaged IVF embryos by selectively enhancing the translation of β-Catenin and TGF-β1. The antioxidant epigallocatechin-3-gallate (EGCG) was added to the in vitro culture medium to protect embryos from oxidative damage, and the expression of ribosome-/tumor-related proteins returned to normal after EGCG treatment. This study suggests that regulation of ribosome biogenesis by EGCG may be a means of preventing tumor formation in human IVF-derived offspring, providing a scientific basis for optimizing in vitro culture conditions and improving human-assisted reproductive technology.
Collapse
Affiliation(s)
- Yue Huang
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
| | - Zhiling Li
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China.
| | - En Lin
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, 518000, Shenzhen, Guangdong, China
| | - Pei He
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
| | - Gaizhen Ru
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
| |
Collapse
|