1
|
Biegler MT, Belay K, Wang W, Szialta C, Collier P, Luo JD, Haase B, Gedman GL, Sidhu AV, Harter E, Rivera-López C, Amoako-Boadu K, Fedrigo O, Tilgner HU, Carroll T, Jarvis ED, Keyte AL. Pronounced early differentiation underlies zebra finch gonadal germ cell development. Dev Biol 2025; 517:73-90. [PMID: 39214328 DOI: 10.1016/j.ydbio.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
The diversity of germ cell developmental strategies has been well documented across many vertebrate clades. However, much of our understanding of avian primordial germ cell (PGC) specification and differentiation has derived from only one species, the chicken (Gallus gallus). Of the three major classes of birds, chickens belong to Galloanserae, representing less than 4% of species, while nearly 95% of extant bird species belong to Neoaves. This represents a significant gap in our knowledge of germ cell development across avian species, hampering efforts to adapt genome editing and reproductive technologies developed in chicken to other birds. We therefore applied single-cell RNA sequencing to investigate inter-species differences in germ cell development between chicken and zebra finch (Taeniopygia castanotis), a Neoaves songbird species and a common model of vocal learning. Analysis of early embryonic male and female gonads revealed the presence of two distinct early germ cell types in zebra finch and only one in chicken. Both germ cell types expressed zebra finch Germline Restricted Chromosome (GRC) genes, present only in songbirds among birds. One of the zebra finch germ cell types expressed the canonical PGC markers, as did chicken, but with expression differences in several signaling pathways and biological processes. The second zebra finch germ cell cluster was marked by proliferation and fate determination markers, indicating beginning of differentiation. Notably, these two zebra finch germ cell populations were present in both male and female zebra finch gonads as early as HH25. Using additional chicken developmental stages, similar germ cell heterogeneity was identified in the more developed gonads of females, but not males. Overall, our study demonstrates a substantial heterochrony in zebra finch germ cell development compared to chicken, indicating a richer diversity of avian germ cell developmental strategies than previously known.
Collapse
Affiliation(s)
| | | | - Wei Wang
- The Rockefeller University, New York NY, USA
| | | | | | - Ji-Dung Luo
- The Rockefeller University, New York NY, USA
| | | | | | | | | | | | | | | | | | | | - Erich D Jarvis
- The Rockefeller University, New York NY, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | | |
Collapse
|
2
|
Caneparo C, Carignan L, Lonina E, Goulet SM, Pellerin FA, Chabaud S, Bordeleau F, Bolduc S, Pelletier M. Impact of Endocrine Disruptors on the Genitourinary Tract. J Xenobiot 2024; 14:1849-1888. [PMID: 39728407 DOI: 10.3390/jox14040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Over the last decades, the human species has seen an increase in the incidence of pathologies linked to the genitourinary tract. Observations in animals have allowed us to link these increases, at least in part, to changes in the environment and, in particular, to an increasing presence of endocrine disruptors. These can be physical agents, such as light or heat; natural products, such as phytoestrogens; or chemicals produced by humans. Endocrine disruptors may interfere with the signaling pathways mediated by the endocrine system, particularly those linked to sex hormones. These factors and their general effects are presented before focusing on the male and female genitourinary tracts by describing their anatomy, development, and pathologies, including bladder and prostate cancer.
Collapse
Affiliation(s)
- Christophe Caneparo
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, Geneva University Hospitals, University of Geneva, CH-1205 Geneva, Switzerland
| | - Laurence Carignan
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - Elena Lonina
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Sarah-Maude Goulet
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Felix-Antoine Pellerin
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - Stéphane Chabaud
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - François Bordeleau
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Stéphane Bolduc
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
- Department of Surgery, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
3
|
Lengyel K, Rudra M, Berghof TVL, Leitão A, Frankl-Vilches C, Dittrich F, Duda D, Klinger R, Schleibinger S, Sid H, Trost L, Vikkula H, Schusser B, Gahr M. Unveiling the critical role of androgen receptor signaling in avian sexual development. Nat Commun 2024; 15:8970. [PMID: 39419984 PMCID: PMC11487053 DOI: 10.1038/s41467-024-52989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Gonadal hormone activities mediated by androgen and estrogen receptors, along with cell-autonomous mechanisms arising from the absence of sex-chromosome dosage compensation, are key factors in avian sexual development. In this study, we generate androgen receptor (AR) knockout chickens (AR-/-) to explore the role of androgen signaling in avian sexual development. Despite developing sex-typical gonads and gonadal hormone production, AR-/- males and females are infertile. While few somatic sex-specific traits persist (body size, spurs, and tail feathers), crucial sexual attributes such as comb, wattles and sexual behaviors remain underdeveloped in both sexes. Testosterone treatment of young AR-/- males fails to induce crow behavior, comb development, or regression of the bursa of Fabricius, which are testosterone-dependent phenotypes. These findings highlight the significance of androgen receptor mechanisms in fertility and sex-specific traits in chickens, challenging the concept of a default sex in birds and emphasizing the dominance of androgen signaling in avian sexual development.
Collapse
Affiliation(s)
- Kamila Lengyel
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mekhla Rudra
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Tom V L Berghof
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Albertine Leitão
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Carolina Frankl-Vilches
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Falk Dittrich
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Denise Duda
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Romina Klinger
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Sabrina Schleibinger
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Hicham Sid
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lisa Trost
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Hanna Vikkula
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Benjamin Schusser
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany.
| |
Collapse
|
4
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
5
|
Moses E, Atlan T, Sun X, Franěk R, Siddiqui A, Marinov GK, Shifman S, Zucker DM, Oron-Gottesman A, Greenleaf WJ, Cohen E, Ram O, Harel I. The killifish germline regulates longevity and somatic repair in a sex-specific manner. NATURE AGING 2024; 4:791-813. [PMID: 38750187 DOI: 10.1038/s43587-024-00632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
Classical evolutionary theories propose tradeoffs among reproduction, damage repair and lifespan. However, the specific role of the germline in shaping vertebrate aging remains largely unknown. In this study, we used the turquoise killifish (Nothobranchius furzeri) to genetically arrest germline development at discrete stages and examine how different modes of infertility impact life history. We first constructed a comprehensive single-cell gonadal atlas, providing cell-type-specific markers for downstream phenotypic analysis. We show here that germline depletion-but not arresting germline differentiation-enhances damage repair in female killifish. Conversely, germline-depleted males instead showed an extension in lifespan and rejuvenated metabolic functions. Through further transcriptomic analysis, we highlight enrichment of pro-longevity pathways and genes in germline-depleted male killifish and demonstrate functional conservation of how these factors may regulate longevity in germline-depleted Caenorhabditis elegans. Our results, therefore, demonstrate that different germline manipulation paradigms can yield pronounced sexually dimorphic phenotypes, implying alternative responses to classical evolutionary tradeoffs.
Collapse
Affiliation(s)
- Eitan Moses
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Tehila Atlan
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Xue Sun
- Department of Biochemistry, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Roman Franěk
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Atif Siddiqui
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University School of Medicine, Jerusalem, Israel
| | | | - Sagiv Shifman
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - David M Zucker
- Department of Statistics and Data Science, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Oron-Gottesman
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University School of Medicine, Jerusalem, Israel
| | - Oren Ram
- Department of Biochemistry, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Itamar Harel
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel.
| |
Collapse
|
6
|
Wei M, Liu H, Wang Y, Sun M, Shang P. Mechanisms of Male Reproductive Sterility Triggered by Dysbiosis of Intestinal Microorganisms. Life (Basel) 2024; 14:694. [PMID: 38929676 PMCID: PMC11204708 DOI: 10.3390/life14060694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
The intestinal microbiota, comprised of bacteria, archaea, and phages, inhabits the gastrointestinal tract of the organism. Male reproductive sterility is currently a prominent topic in medical research. Increasing research suggests that gut microbiota dysbiosis can result in various reproductive health problems. This article specifically investigates the impact of gut microbiota dysbiosis on male reproductive infertility development. Gut microbiota imbalances can disrupt the immune system and immune cell metabolism, affecting testicular growth and sperm production. This dysfunction can compromise the levels of hormones produced and secreted by the endocrine glands, affecting male reproductive health. Furthermore, imbalance of the gut microbiota can disrupt the gut-brain-reproductive axis, resulting in male reproductive infertility. This article explores how the imbalance of the gut microbiota impacts male reproductive infertility through immune regulation, endocrine regulation, and interactions of the gut-brain-reproductive axis, concluding with recommendations for prevention and treatment.
Collapse
Affiliation(s)
- Mingbang Wei
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Huaizhi Liu
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Yu Wang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Mingyang Sun
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| |
Collapse
|
7
|
Suen HC, Ou F, Miu KK, Wang Z, Chan WY, Liao J. The single-cell chromatin landscape in gonadal cell lineage specification. BMC Genomics 2024; 25:464. [PMID: 38741085 DOI: 10.1186/s12864-024-10376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Gonad development includes sex determination and divergent maturation of the testes and ovaries. Recent advances in measuring gene expression in single cells are providing new insights into this complex process. However, the underlying epigenetic regulatory mechanisms remain unclear. Here, we profiled chromatin accessibility in mouse gonadal cells of both sexes from embryonic day 11.5 to 14.5 using single-cell assay for transposase accessible chromatin by sequencing (scATAC-seq). Our results showed that individual cell types can be inferred by the chromatin landscape, and that cells can be temporally ordered along developmental trajectories. Integrative analysis of transcriptomic and chromatin-accessibility maps identified multiple putative regulatory elements proximal to key gonadal genes Nr5a1, Sox9 and Wt1. We also uncover cell type-specific regulatory factors underlying cell type specification. Overall, our results provide a better understanding of the epigenetic landscape associated with the progressive restriction of cell fates in the gonad.
Collapse
Affiliation(s)
- Hoi Ching Suen
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Fanghong Ou
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kai-Kei Miu
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhangting Wang
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wai-Yee Chan
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jinyue Liao
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
8
|
Li J, Zhang X, Wang X, Wang Z, Li X, Zheng J, Li J, Xu G, Sun C, Yi G, Yang N. Single-nucleus transcriptional and chromatin accessible profiles reveal critical cell types and molecular architecture underlying chicken sex determination. J Adv Res 2024:S2090-1232(24)00185-1. [PMID: 38734369 DOI: 10.1016/j.jare.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/23/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
INTRODUCTION Understanding the sex determination mechanisms in birds has great significance for the biological sciences and production in the poultry industry. Sex determination in chickens is a complex process that involves fate decisions of supporting cells such as granulosa or Sertoli cells. However, a systematic understanding of the genetic regulation and cell commitment process underlying sex determination in chickens is still lacking. OBJECTIVES We aimed to dissect the molecular characteristics associated with sex determination in the gonads of chicken embryos. METHODS Single-nucleus RNA-seq (snRNA-seq) and ATAC-seq (snATAC-seq) analysis were conducted on the gonads of female and male chickens at embryonic day 3.5 (E3.5), E4.5, and E5.5. RESULTS Here, we provided a time-course transcriptional and chromatin accessible profiling of gonads during chicken sex determination at single-cell resolution. We uncovered differences in cell composition and developmental trajectories between female and male gonads and found that the divergence of transcription and accessibility in gonadal cells first emerged at E5.5. Furthermore, we revealed key cell-type-specific transcription factors (TFs) and regulatory networks that drive lineage commitment. Sex determination signaling pathways, dominated by BMP signaling, are preferentially activated in males during gonadal development. Further pseudotime analysis of the supporting cells indicated that granulosa cells were regulated mainly by the TEAD gene family and that Sertoli cells were driven by the DMRT1 regulons. Cross-species analysis suggested high conservation of both cell types and cell-lineage-specific TFs across the six vertebrates. CONCLUSIONS Overall, our study will contribute to accelerating the development of sex manipulation technology in the poultry industry and the application of chickens as a unique model for studying cell fate decisions.
Collapse
Affiliation(s)
- Jianbo Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Xiuan Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Xiqiong Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Zhen Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Junying Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Guiyun Xu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China.
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Halgrain M, Bernardet N, Hennequet-Antier C, Réhault-Godbert S. Sex-specific transcriptome of the chicken chorioallantoic membrane. Genomics 2024; 116:110754. [PMID: 38061480 DOI: 10.1016/j.ygeno.2023.110754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
Dimorphism between male and female embryos has been demonstrated in many animal species, including chicken species. Likewise, extraembryonic membranes such as the chorioallantoic membrane (CAM) are likely to exhibit a sex-specific profile. Analysis of the previously published RNA-seq data of the chicken CAM sampled at two incubation times, revealed 783 differentially expressed genes between the CAM of male and female embryos. The expression of some of these genes is sex-dependant only at one or other stage of development, while 415 genes are sex-dependant at both developmental stages. These genes include well-known sex-determining and sex-differentiation genes (DMRT1, HEGM, etc.), and are mainly located on sex chromosomes. This study provides evidence that gene expression of extra-embryonic membranes is differentially regulated between male and female embryos. As such, a better characterisation of associated mechanisms should facilitate the identification of new sex-specific biomarkers.
Collapse
Affiliation(s)
| | | | - Christelle Hennequet-Antier
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas 78350, France; Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Jouy-en-Josas 78350, France
| | | |
Collapse
|
10
|
Yin Z, Ding G, Xue Y, Yu X, Dong J, Huang J, Ma J, He F. A postmeiotically bifurcated roadmap of honeybee spermatogenesis marked by phylogenetically restricted genes. PLoS Genet 2023; 19:e1011081. [PMID: 38048317 PMCID: PMC10721206 DOI: 10.1371/journal.pgen.1011081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/14/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
Haploid males of hymenopteran species produce gametes through an abortive meiosis I followed by meiosis II that can either be symmetric or asymmetric in different species. Thus, one spermatocyte could give rise to two spermatids with either equal or unequal amounts of cytoplasm. It is currently unknown what molecular features accompany these postmeiotic sperm cells especially in species with asymmetric meiosis II such as bees. Here we present testis single-cell RNA sequencing datasets from the honeybee (Apis mellifera) drones of 3 and 14 days after emergence (3d and 14d). We show that, while 3d testes exhibit active, ongoing spermatogenesis, 14d testes only have late-stage spermatids. We identify a postmeiotic bifurcation in the transcriptional roadmap during spermatogenesis, with cells progressing toward the annotated spermatids (SPT) and small spermatids (sSPT), respectively. Despite an overall similarity in their transcriptomic profiles, sSPTs express the fewest genes and the least RNA content among all the sperm cell types. Intriguingly, sSPTs exhibit a relatively high expression level for Hymenoptera-restricted genes and a high mutation load, suggesting that the special meiosis II during spermatogenesis in the honeybee is accompanied by phylogenetically young gene activities.
Collapse
Affiliation(s)
- Zhiyong Yin
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guiling Ding
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingdi Xue
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xianghui Yu
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaxing Huang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Ma
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang, China
| | - Feng He
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Mizia PC, Rams-Pociecha I, Podmokła E, Piprek RP. Histological analysis of early gonadal development in three bird species reveals gonad asymmetry from the beginning of gonadal ridge formation and a similar course of sex differentiation. Ann Anat 2023; 250:152151. [PMID: 37574173 DOI: 10.1016/j.aanat.2023.152151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
The developing gonads constitute a valuable model for studying developmental mechanisms because the testes and ovaries, while originating from the same primordia, undergo two different patterns of development. So far, gonadal development among birds has been described in detail in chickens, but literature on the earliest stages of gonadogenesis is scarce. This study presents changes in the structure of the gonads in three species of breeding birds (chicken, duck, and pigeon), starting from the first signs of gonadal ridge formation, that is, the thickenings of the coelomic epithelium. It appears that both gonads show asymmetry from the very beginning of gonadal ridge formation in both genetic sexes. The left gonadal ridge is thicker than the right one, and it is invaded by a higher number of primordial germ cells. Undifferentiated gonads, both left and right, consist of the primitive cortex and the medulla. The primitive cortex develops from the thickened coelomic epithelium, while the primitive medulla - by the aggregation of mesenchymal cells. This study also describes the process of sex differentiation of the testes and ovaries, which is initiated at the same embryonic stage in all three studied species. The first sign of gonadal sex differentiation is the decrease in the number of cortical germ cells and a reduction in cortical thickness in the differentiating testes. This is followed by an increase in the number of germ cells in the medulla. The cortical asymmetry and difference in size between the left and right testes diminishes during later development. However, the differentiating left ovary shows an increase in the number of cortical germ cells and cortical thickness. No regression is seen in the right ovary, although its development is slower. The right ovarian cortex undergoes testis-specific reduction, while the medulla undergoes ovary-specific development. The process of gonadogenesis is similar in the three studied species, with only slight differences in gonadal structure.
Collapse
Affiliation(s)
- Paulina C Mizia
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Izabela Rams-Pociecha
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Edyta Podmokła
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
12
|
Bhat IA, Dubiel MM, Rodriguez E, Jónsson ZO. Insights into Early Ontogenesis of Salmo salar: RNA Extraction, Housekeeping Gene Validation and Transcriptional Expression of Important Primordial Germ Cell and Sex-Determination Genes. Animals (Basel) 2023; 13:ani13061094. [PMID: 36978635 PMCID: PMC10044239 DOI: 10.3390/ani13061094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The challenge in extracting high-quality RNA impedes the investigation of the transcriptome of developing salmonid embryos. Furthermore, the mRNA expression pattern of important PGC and SD genes during the initial embryonic development of Salmo salar is yet to be studied. So, in the present study, we aimed to isolate high-quality RNA from eggs and developing embryos to check vasa, dnd1, nanos3a, sdf1, gsdf, amh, cyp19a, dmrt1 and foxl2 expression by qPCR. Additionally, four HKGs (GAPDH, UB2L3, eEf1a and β-actin) were validated to select the best internal control for qPCR. High-quality RNA was extracted, which was confirmed by spectrophotometer, agarose gel electrophoresis and Agilent TapeStation analysis. UB2L3 was chosen as a reference gene because it exhibited lower intra- and inter-sample variation. vasa transcripts were expressed in all the developmental stages, while dnd1 was expressed only up to 40 d°C. Nanos3a was expressed in later stages and remained at its peak for a shorter period, while sdf1 showed an irregular pattern of mRNA expression. The mRNA expression levels of SD genes were observed to be upregulated during the later stages of development, prior to hatching. This study presents a straightforward methodology for isolating high-quality RNA from salmon eggs, and the resulting transcript profiles of significant PGC and SD genes in S. salar could aid in improving our comprehension of reproductive development in this commercially important species.
Collapse
Affiliation(s)
- Irfan Ahmad Bhat
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavik, Iceland
| | - Milena Malgorzata Dubiel
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavik, Iceland
| | | | - Zophonías Oddur Jónsson
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
13
|
Neirijnck Y, Sararols P, Kühne F, Mayère C, Weerasinghe Arachchige LC, Regard V, Nef S, Schedl A. Single-cell transcriptomic profiling redefines the origin and specification of early adrenogonadal progenitors. Cell Rep 2023; 42:112191. [PMID: 36862551 DOI: 10.1016/j.celrep.2023.112191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/13/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Adrenal cortex and gonads represent the two major steroidogenic organs in mammals. Both tissues are considered to share a common developmental origin characterized by the expression of Nr5a1/Sf1. The precise origin of adrenogonadal progenitors and the processes driving differentiation toward the adrenal or gonadal fate remain, however, elusive. Here, we provide a comprehensive single-cell transcriptomic atlas of early mouse adrenogonadal development including 52 cell types belonging to twelve major cell lineages. Trajectory reconstruction reveals that adrenogonadal cells emerge from the lateral plate rather than the intermediate mesoderm. Surprisingly, we find that gonadal and adrenal fates have already diverged prior to Nr5a1 expression. Finally, lineage separation into gonadal and adrenal fates involves canonical versus non-canonical Wnt signaling and differential expression of Hox patterning genes. Thus, our study provides important insights into the molecular programs of adrenal and gonadal fate choice and will be a valuable resource for further research into adrenogonadal ontogenesis.
Collapse
Affiliation(s)
- Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; Université Côte d'Azur, CNRS, INSERM, IBV, 06108 Nice, France.
| | - Pauline Sararols
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | - Françoise Kühne
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | - Chloé Mayère
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | | | - Violaine Regard
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland.
| | - Andreas Schedl
- Université Côte d'Azur, CNRS, INSERM, IBV, 06108 Nice, France.
| |
Collapse
|
14
|
Frost ER, Ford EA, Peters AE, Lovell-Badge R, Taylor G, McLaughlin EA, Sutherland JM. A New Understanding, Guided by Single-Cell Sequencing, of the Establishment and Maintenance of the Ovarian Reserve in Mammals. Sex Dev 2022; 17:145-155. [PMID: 36122567 DOI: 10.1159/000526426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Oocytes are a finite and non-renewable resource that are maintained in primordial follicle structures. The ovarian reserve is the totality of primordial follicles, present from birth, within the ovary and its establishment, size, and maintenance dictates the duration of the female reproductive lifespan. Understanding the cellular and molecular dynamics relevant to the establishment and maintenance of the reserve provides the first steps necessary for modulating both individual human and animal reproductive health as well as population dynamics. SUMMARY This review details the key stages of establishment and maintenance of the ovarian reserve, encompassing germ cell nest formation, germ cell nest breakdown, and primordial follicle formation and activation. Furthermore, we spotlight several formative single-cell sequencing studies that have significantly advanced our knowledge of novel molecular regulators of the ovarian reserve, which may improve our ability to modulate female reproductive lifespans. KEY MESSAGES The application of single-cell sequencing to studies of ovarian development in mammals, especially when leveraging genetic and environmental models, offers significant insights into fertility and its regulation. Moreover, comparative studies looking at key stages in the development of the ovarian reserve across species has the potential to impact not just human fertility, but also conservation biology, invasive species management, and agriculture.
Collapse
Affiliation(s)
- Emily R Frost
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, UK
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Emmalee A Ford
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Alexandra E Peters
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, UK
| | - Güneş Taylor
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, UK
| | - Eileen A McLaughlin
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Faculty of Science, Medicine & Health, University of Wollongong, Wollongong, New South Wales, Australia
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
15
|
Smirnov AF, Leoke DY, Trukhina AV. Natural and Experimental Sex Reversal in Birds and Other Groups of Vertebrates, with the Exception of Mammals. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Casto KV, Leininger EC, Tan T. Teaching About Sex and Gender in Neuroscience: More Than Meets the "XY". JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2022; 20:A191-A206. [PMID: 38323054 PMCID: PMC10653250 DOI: 10.59390/azvz2988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/06/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2024]
Abstract
Offering courses on the neuroscience of sex and gender can help support an inclusive curriculum in neuroscience. At the same time, developing and teaching such courses can be daunting to even the most enthusiastic educators, given the subject's complexities, nuances, and the difficult conversations that it invites. The authors of this article have all developed and taught such courses from different perspectives. Our aim is to provide educators with an overview of important conceptual topics as well as a comprehensive, but non-exhaustive, guide to resources for teaching about sex/gender in neuroscience based on our collective experience teaching courses on the topic. After defining vital terminology and briefly reviewing the biology of sex and sex determination, we describe some common topics within the field and contrast our current nuanced understandings from outdated misconceptions in the field. We review how (mis)representation of the neuroscience of sex/gender serves as a case study for how scientific results are communicated and disseminated. We consider how contextualization of sex/gender neuroscience research within a broader historical and societal framework can give students a wider perspective on the enterprise of science. Finally, we conclude with a brief discussion on how to choose learning goals for your course and implementation notes.
Collapse
Affiliation(s)
- Kathleen V Casto
- Division of Social Sciences, New College of Florida, Sarasota, FL 34243
| | | | - Taralyn Tan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- PhD Program in Neuroscience, Harvard University, Cambridge, MA 02138
| |
Collapse
|
17
|
Yang CX, Yang YW, Mou Q, Chen L, Wang C, Du ZQ. Proteomic changes induced by ascorbic acid treatment on porcine immature Sertoli cells. Theriogenology 2022; 188:13-21. [DOI: 10.1016/j.theriogenology.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/24/2022] [Accepted: 05/13/2022] [Indexed: 01/08/2023]
|
18
|
Estermann MA, Major AT, Smith CA. Genetic Regulation of Avian Testis Development. Genes (Basel) 2021; 12:1459. [PMID: 34573441 PMCID: PMC8470383 DOI: 10.3390/genes12091459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022] Open
Abstract
As in other vertebrates, avian testes are the site of spermatogenesis and androgen production. The paired testes of birds differentiate during embryogenesis, first marked by the development of pre-Sertoli cells in the gonadal primordium and their condensation into seminiferous cords. Germ cells become enclosed in these cords and enter mitotic arrest, while steroidogenic Leydig cells subsequently differentiate around the cords. This review describes our current understanding of avian testis development at the cell biology and genetic levels. Most of this knowledge has come from studies on the chicken embryo, though other species are increasingly being examined. In chicken, testis development is governed by the Z-chromosome-linked DMRT1 gene, which directly or indirectly activates the male factors, HEMGN, SOX9 and AMH. Recent single cell RNA-seq has defined cell lineage specification during chicken testis development, while comparative studies point to deep conservation of avian testis formation. Lastly, we identify areas of future research on the genetics of avian testis development.
Collapse
Affiliation(s)
| | | | - Craig Allen Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (M.A.E.); (A.T.M.)
| |
Collapse
|
19
|
Soygur B, Laird DJ. Ovary Development: Insights From a Three-Dimensional Imaging Revolution. Front Cell Dev Biol 2021; 9:698315. [PMID: 34381780 PMCID: PMC8351467 DOI: 10.3389/fcell.2021.698315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
The ovary is an indispensable unit of female reproduction and health. However, the study of ovarian function in mammals is hindered by unique challenges, which include the desynchronized development of oocytes, irregular distribution and vast size discrepancy of follicles, and dynamic tissue remodeling during each hormonal cycle. Overcoming the limitations of traditional histology, recent advances in optical tissue clearing and three-dimensional (3D) visualization offer an advanced platform to explore the architecture of intact organs at a single cell level and reveal new relationships and levels of organization. Here we summarize the development and function of ovarian compartments that have been delineated by conventional two-dimensional (2D) methods and the limits of what can be learned by these approaches. We compare types of optical tissue clearing, 3D analysis technologies, and their application to the mammalian ovary. We discuss how 3D modeling of the ovary has extended our knowledge and propose future directions to unravel ovarian structure toward therapeutic applications for ovarian disease and extending female reproductive lifespan.
Collapse
Affiliation(s)
| | - Diana J. Laird
- Department of Obstetrics, Gynecology & Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|