1
|
Burke BI, Ismaeel A, Long DE, Depa LA, Coburn PT, Goh J, Saliu TP, Walton BJ, Vechetti IJ, Peck BD, Valentino TR, Mobley CB, Memetimin H, Wang D, Finlin BS, Kern PA, Peterson CA, McCarthy JJ, Wen Y. Extracellular vesicle transfer of miR-1 to adipose tissue modifies lipolytic pathways following resistance exercise. JCI Insight 2024; 9:e182589. [PMID: 39316445 PMCID: PMC11601556 DOI: 10.1172/jci.insight.182589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as important mediators of intertissue signaling and exercise adaptations. In this human study, we provide evidence that muscle-specific microRNA-1 (miR-1) was transferred to adipose tissue via EVs following an acute bout of resistance exercise. Using a multimodel machine learning automation tool, we discovered muscle primary miR-1 transcript and CD63+ EV count in circulation as top explanatory features for changes in adipose miR-1 levels in response to resistance exercise. RNA-Seq and in-silico prediction of miR-1 target genes identified caveolin 2 (CAV2) and tripartite motif containing 6 (TRIM6) as miR-1 target genes downregulated in the adipose tissue of a subset of participants with the highest increases in miR-1 levels following resistance exercise. Overexpression of miR-1 in differentiated human adipocyte-derived stem cells downregulated these miR-1 targets and enhanced catecholamine-induced lipolysis. These data identify a potential EV-mediated mechanism by which skeletal muscle communicates with adipose tissue and modulates lipolysis via miR-1.
Collapse
Affiliation(s)
- Benjamin I. Burke
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | | | - Lauren A. Depa
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Peyton T. Coburn
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Jensen Goh
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Tolulope P. Saliu
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Bonnie J. Walton
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Ivan J. Vechetti
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Bailey D. Peck
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Taylor R. Valentino
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - C. Brooks Mobley
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Hasiyet Memetimin
- Division of Endocrinology, Department of Internal Medicine, College of Medicine
| | - Dandan Wang
- Center for Muscle Biology, College of Health Sciences
- Department of Biostatistics, College of Public Health, and
| | - Brian S. Finlin
- Division of Endocrinology, Department of Internal Medicine, College of Medicine
| | - Philip A. Kern
- Center for Muscle Biology, College of Health Sciences
- Division of Endocrinology, Department of Internal Medicine, College of Medicine
| | | | - John J. McCarthy
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Yuan Wen
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Wei S, Huang X, Zhu Q, Chen T, Zhang Y, Tian J, Pan T, Zhang L, Xie T, Zhang Q, Kuang X, Lei E, Li Y. TRIM65 deficiency alleviates renal fibrosis through NUDT21-mediated alternative polyadenylation. Cell Death Differ 2024; 31:1422-1438. [PMID: 38951701 PMCID: PMC11519343 DOI: 10.1038/s41418-024-01336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
Chronic kidney disease (CKD) is a major global health concern and the third leading cause of premature death. Renal fibrosis is the primary process driving the progression of CKD, but the mechanisms behind it are not fully understood, making treatment options limited. Here, we find that the E3 ligase TRIM65 is a positive regulator of renal fibrosis. Deletion of TRIM65 results in a reduction of pathological lesions and renal fibrosis in mouse models of kidney fibrosis induced by unilateral ureteral obstruction (UUO)- and folic acid. Through screening with a yeast-hybrid system, we identify a new interactor of TRIM65, the mammalian cleavage factor I subunit CFIm25 (NUDT21), which plays a crucial role in fibrosis through alternative polyadenylation (APA). TRIM65 interacts with NUDT21 to induce K48-linked polyubiquitination of lysine 56 and proteasomal degradation, leading to the inhibition of TGF-β1-mediated SMAD and ERK1/2 signaling pathways. The degradation of NUDT21 subsequently altered the length and sequence content of the 3'UTR (3'UTR-APA) of several pro-fibrotic genes including Col1a1, Fn-1, Tgfbr1, Wnt5a, and Fzd2. Furthermore, reducing NUDT21 expression via hydrodynamic renal pelvis injection of adeno-associated virus 9 (AAV9) exacerbated UUO-induced renal fibrosis in the normal mouse kidneys and blocked the protective effect of TRIM65 deletion. These findings suggest that TRIM65 promotes renal fibrosis by regulating NUDT21-mediated APA and highlight TRIM65 as a potential target for reducing renal fibrosis in CKD patients.
Collapse
Affiliation(s)
- Sisi Wei
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qing Zhu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Tao Chen
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yan Zhang
- Department of Biological Sciences, College of Sciences and Arts, Michigan Technological University, Houghton, MI, 49931-1295, USA
| | - Juan Tian
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Tingyu Pan
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lv Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Tao Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qi Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Xian Kuang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Enjun Lei
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
3
|
Guo J, Wang J, Zhang P, Wen P, Zhang S, Dong X, Dong J. TRIM6 promotes glioma malignant progression by enhancing FOXO3A ubiquitination and degradation. Transl Oncol 2024; 46:101999. [PMID: 38759605 PMCID: PMC11127279 DOI: 10.1016/j.tranon.2024.101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024] Open
Abstract
PURPOSE TRIM6, an E3 ubiquitin ligase with tripartite motif, directly targets protein substrates for degradation through ubiquitination. Studies have shown that TRIM6 plays a significant role in tumor development in various human malignancies. Thus, the aim of this study was to investigate the importance of TRIM6 and its associated mechanism in promoting the progression of glioma. METHODS The expression of TRIM6 and its prognostic value in glioma patients were collected from the TCGA and CGGA databases. The effects of TRIM6 on glioma were investigated in vitro by CCK8, colony formation, wound healing, and transwell assays. Co-IP and western blot analysis were used to detect the interaction between TRIM6 and FOXO3A. The effects of TRIM6 were verified in vivo in subcutaneously xenograft models, and tumor size, and immunohistochemical changes were observed. RESULTS Our analysis of TRIM6 expression in glioma tissues revealed a high level of expression, and the heightened expression of TRIM6 showed a positive correlation with the unfavorable prognosis among glioma/GBM patients. Through loss-of-function and gain-of-function experiments, we observed a profound impact on the proliferation, invasion, and migration abilities of glioma cells both in vitro and in vivo upon deletion of TRIM6. Conversely, the overexpression of TRIM6 intensified the malignant characteristics of glioma. Additionally, our findings revealed a significant interaction between TRIM6 and FOXO3A, wherein TRIM6 contributed to the destabilization of FOXO3A protein by promoting its ubiquitination and subsequent degradation. Experiments conducted in the rescue study affirmed that the promotion of glioma cell proliferation, invasion, and migration is facilitated by TRIM6 through the suppression of FOXO3A protein levels. CONCLUSIONS These observations imply that the TRIM6-FOXO3A axis could potentially serve as an innovative focus for intervening in glioma.
Collapse
Affiliation(s)
- Jingpeng Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China; Department of Neurosurgery, Fuyang People's Hospital, Fuyang, Anhui 236000, China
| | - Ji Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Peng Zhang
- Department of Neurosurgery, The People's Hospital of Rugao, Nantong, Jiangsu 226500, China
| | - Ping Wen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Shoudan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xuchen Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.
| |
Collapse
|
4
|
Jian J, Liu Y, Zheng Q, Wang J, Jiang Z, Liu X, Chen Z, Wan S, Liu H, Wang L. The E3 ubiquitin ligase TRIM39 modulates renal fibrosis induced by unilateral ureteral obstruction through regulating proteasomal degradation of PRDX3. Cell Death Discov 2024; 10:17. [PMID: 38195664 PMCID: PMC10776755 DOI: 10.1038/s41420-023-01785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Renal fibrosis is considered to be the ultimate pathway for various chronic kidney disease, with a complex etiology and great therapeutic challenges. Tripartite motif-containing (TRIM) family proteins have been shown to be involved in fibrotic diseases, but whether TRIM39 plays a role in renal fibrosis remain unexplored. In this study, we investigated the role of TRIM39 in renal fibrosis and its molecular mechanism. TRIM39 expression was analyzed in patients' specimens, HK-2 cells and unilateral ureteral obstruction (UUO) mice were used for functional and mechanistic studies. We found an upregulated expression of TRIM39 in renal fibrosis human specimens and models. In addition, TRIM39 knockdown was found efficient for alleviating renal fibrosis in both UUO mice and HK-2 cells. Mechanistically, we demonstrated that TRIM39 interacted with PRDX3 directly and induced ubiquitination degradation of PRDX3 at K73 and K149 through the K48 chain, which resulted in ROS accumulation and increased inflammatory cytokine generation, and further aggravated renal fibrosis. It provided an emerging potential target for the therapies of renal fibrosis.
Collapse
Affiliation(s)
- Jun Jian
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yunxun Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qingyuan Zheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jingsong Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhengyu Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Shanshan Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Hao Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Department of Urology, The first affiliated hospital of Zhengzhou university, Zhengzhou, 450052, Henan, China.
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
5
|
TRIM6 Reduces Ferroptosis and Chemosensitivity by Targeting SLC1A5 in Lung Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9808100. [PMID: 36654781 PMCID: PMC9842414 DOI: 10.1155/2023/9808100] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 01/11/2023]
Abstract
Objective Ferroptosis, a newly identified form of cell death, plays critical roles in the development and chemoresistance of lung cancer. Tripartite motif 6 (TRIM6) acts as an E3-ubiquitin ligase and can promote the progression of human colorectal cancer. The present study is aimed at investigating its role and potential mechanisms in lung cancer. Methods Lentiviral vectors were used to overexpress or knock down TRIM6 in human lung cancer cells. Cell survival, colony formation, lipid peroxidation, intracellular iron levels, and other ferroptotic markers were examined. The role of TRIM6 on ferroptosis and chemosensitivity was further tested in mouse tumor xenograft models. Results TRIM6 was highly expressed in human lung cancer tissues and cells, and its expression in the lung cancer cells was further increased by ferroptotic stimulation. TRIM6 overexpression inhibited, while TRIM6 silence promoted erastin- and RSL3-induced glutaminolysis and ferroptosis in the lung cancer cells. Mechanistically, TRIM6 directly interacted with solute carrier family 1 member 5 to promote its ubiquitination and degradation, thereby inhibiting glutamine import, glutaminolysis, lipid peroxidation, and ferroptotic cell death. Moreover, we observed that TRIM6 overexpression reduced the chemotherapeutic effects of cisplatin and paclitaxel. In contrast, TRIM6 silence sensitized human lung cancer cells to cisplatin and paclitaxel in vivo and in vitro. Conclusion Our findings for the first time define TRIM6 as a negative regulator of ferroptosis in the lung cancer cells, and TRIM6 overexpression enhances the resistance of human lung cancer cells to chemotherapeutic drugs. Overall, targeting TRIM6 may help to establish novel strategies to treat lung cancer.
Collapse
|
6
|
Deng L, Xu G, Huang Q. Comprehensive analyses of the microRNA-messenger RNA-transcription factor regulatory network in mouse and human renal fibrosis. Front Genet 2022; 13:925097. [PMID: 36457754 PMCID: PMC9705735 DOI: 10.3389/fgene.2022.925097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/14/2022] [Indexed: 09/19/2023] Open
Abstract
Objective: The aim of this study was to construct a microRNA (miRNA)-messenger RNA (mRNA)-transcription factor (TF) regulatory network and explore underlying molecular mechanisms, effective biomarkers, and drugs in renal fibrosis (RF). Methods: A total of six datasets were downloaded from Gene Expression Omnibus. "Limma" and "DESeq2" packages in R software and GEO2R were applied to identify the differentially expressed miRNAs and mRNAs (DEmiRNAs and DEmRNAs, respectively). The determination and verification of DEmiRNAs and DEmRNAs were performed through the integrated analysis of datasets from five mouse 7 days of unilateral ureteral obstruction datasets and one human chronic kidney disease dataset and the Human Protein Atlas (http://www.proteinatlas.org). Target mRNAs of DEmiRNAs and TFs were predicted by prediction databases and the iRegulon plugin in Cytoscape, respectively. A protein-protein interaction network was constructed using STRING, Cytoscape v3.9.1, and CytoNCA. Functional enrichment analysis was performed by DIANA-miRPath v3.0 and R package "clusterProfiler." A miRNA-mRNA-TF network was established using Cytoscape. Receiver operating characteristic (ROC) curve analysis was used to examine the diagnostic value of the key hub genes. Finally, the Comparative Toxicogenomics Database and Drug-Gene Interaction database were applied to identify potential drugs. Results: Here, 4 DEmiRNAs and 11 hub genes were determined and confirmed in five mouse datasets, of which Bckdha and Vegfa were further verified in one human dataset and HPA, respectively. Moreover, Bckdha and Vegfa were also predicted by miR-125a-3p and miR-199a-5p, respectively, in humans as in mice. The sequences of miR-125a-3p and miR-199a-5p in mice were identical to those in humans. A total of 6 TFs were predicted to regulate Bckdha and Vegfa across mice and humans; then, a miRNA-mRNA-TF regulatory network was built. Subsequently, ROC curve analysis showed that the area under the curve value of Vegfa was 0.825 (p = 0.002). Finally, enalapril was identified to target Vegfa for RF therapy. Conclusion: Pax2, Pax5, Sp1, Sp2, Sp3, and Sp4 together with Bckdha-dependent miR-125a-3p/Vegfa-dependent miR-199a-5p formed a co-regulatory network enabling Bckdha/Vegfa to be tightly controlled in the underlying pathogenesis of RF across mice and humans. Vegfa could act as a potential novel diagnostic marker and might be targeted by enalapril for RF therapy.
Collapse
Affiliation(s)
- Le Deng
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Qipeng Huang
- Department of Nephrology, The Fifth Affiliated Hospital of Jinan University, Heyuan, China
| |
Collapse
|
7
|
Zhang Y, Zhang W, Zheng L, Guo Q. The roles and targeting options of TRIM family proteins in tumor. Front Pharmacol 2022; 13:999380. [PMID: 36249749 PMCID: PMC9561884 DOI: 10.3389/fphar.2022.999380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Tripartite motif (TRIM) containing proteins are a class of E3 ubiquitin ligases, which are critically implicated in the occurrence and development of tumors. They can function through regulating various aspects of tumors, such as tumor proliferation, metastasis, apoptosis and the development of drug resistance during tumor therapy. Some members of TRIM family proteins can mediate protein ubiquitination and chromosome translocation via modulating several signaling pathways, like p53, NF-κB, AKT, MAPK, Wnt/β-catenin and other molecular regulatory mechanisms. The multi-domain nature/multi-functional biological role of TRIMs implies that blocking just one function or one domain might not be sufficient to obtain the desired therapeutic outcome, therefore, a detailed and systematic understanding of the biological functions of the individual domains of TRIMs is required. This review mainly described their roles and underlying mechanisms in tumorigenesis and progression, and it might shade light on a potential targeting strategy for TRIMs in tumor treatment, especially using PROTACs.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
- *Correspondence: Lufeng Zheng, ; Qianqian Guo,
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
- *Correspondence: Lufeng Zheng, ; Qianqian Guo,
| |
Collapse
|
8
|
Ferreri A, Lang V, Kaufmann R, Buerger C. mTORC1 Activity in Psoriatic Lesions Is Mediated by Aberrant Regulation through the Tuberous Sclerosis Complex. Cells 2022; 11:cells11182847. [PMID: 36139422 PMCID: PMC9497233 DOI: 10.3390/cells11182847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
In the basal, proliferative layer of healthy skin, the mTOR complex 1 (mTORC1) is activated, thus regulating proliferation while preventing differentiation. When cells leave the proliferative, basal compartment, mTORC1 signaling is turned off, which allows differentiation. Under inflammatory conditions, this switch is hijacked by cytokines and prevents proper differentiation. It is currently unknown how mTORC1 is regulated to mediate these effects on keratinocyte differentiation. In other tissues, mTORC1 activity is controlled through various pathways via the tuberous sclerosis complex (TSC). Thus, we investigated whether the TS complex is regulated by proinflammatory cytokines and contributes to the pathogenesis of psoriasis. TNF-α as well as IL-1β induced the phosphorylation of TSC2, especially on S939 via the PI3-K/AKT and MAPK pathway. Surprisingly, increased TSC2 phosphorylation could not be detected in psoriasis patients. Instead, TSC2 was strongly downregulated in lesional psoriatic skin compared to non-lesional skin of the same patients or healthy skin. In vitro inflammatory cytokines induced dissociation of TSC2 from the lysosome, followed by destabilization of the TS complex and degradation. Thus, we assume that in psoriasis, inflammatory cytokines induce strong TSC2 phosphorylation, which in turn leads to its degradation. Consequently, chronic mTORC1 activity impairs ordered keratinocyte differentiation and contributes to the phenotypical changes seen in the psoriatic epidermis.
Collapse
|
9
|
Zhang T, Chen Z, Zhu M, Jing X, Xu X, Yuan X, Zhou M, Zhang Y, Lu M, Chen D, Xu S, Song J. Extracellular vesicles derived from human dental mesenchymal stem cells stimulated with low-intensity pulsed ultrasound alleviate inflammation-induced bone loss in a mouse model of periodontitis. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
10
|
Exosome-mediated miR-7-5p delivery enhances the anticancer effect of Everolimus via blocking MNK/eIF4E axis in non-small cell lung cancer. Cell Death Dis 2022; 13:129. [PMID: 35136028 PMCID: PMC8827062 DOI: 10.1038/s41419-022-04565-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/25/2021] [Accepted: 01/20/2022] [Indexed: 11/08/2022]
Abstract
Everolimus is a kind of mammalian target of rapamycin (mTOR) inhibitors. Activated mitogen-activated protein kinase interacting kinases/eukaryotic translation initiation factor 4E (MNK/eIF4E) axis plays a crucial role in resistance to Everolimus in non-small cell lung cancer (NSCLC). The eIF4E phosphorylation increased by mTOR inhibitors is mainly mediated by MNKs. However, the mechanisms are poorly understood. Recently, extensive reprogramming of miRNA profiles has also been found after long-term mTOR inhibitor exposure. Our previous studies have confirmed that tumor suppressor miR-7-5p is decreased in A549 cells after treatment with Everolimus. Exactly, MNK1 is the target of miR-7-5p. In this study, we investigated the biological functions and potential molecular mechanisms of miR-7-5p in the NSCLC undergoing treatment with Everolimus. We confirmed that Everolimus targeted mTORC1 inducing NSCLC cells to secrete miR-7-5p-loaded exosomes in Rab27A and Rab27B-dependent manners. Loss of intracellular miR-7-5p induced phosphorylation of MNK/eIF4E axis, but a supplement of extra exosomal miR-7-5p could reverse it. Of note, both low expression of miR-7-5p and elevated MNK1 protein were associated with a poor prognosis of NSCLC. Both endogenous miR-7-5p and exo-miR-7-5p enhanced the therapeutic efficacy of Everolimus by inhibiting the proliferation, migration, and metastasis of NSCLC in vitro and in vivo. The combination of miR-7-5p with Everolimus induced apoptosis to exhibit a synergistic anticancer therapeutic efficacy through dual abrogation of MNK/eIF4E and mTOR in NSCLC. In conclusion, Everolimus decreases the intracellular miR-7-5p by releasing of miR-7-5p loaded exosomes from NSCLC cells in Rab27A and Rab27B dependent manners. Either endogenous miR-7-5p or exo-miR-7-5p combined with Everolimus can enhance the anticancer efficacy by targeting MNK/eIF4E axis and mTOR. Besides, both low levels of miR-7-5p and positive expression of MNK1 act as independent poor prognostic biomarkers for NSCLC. Therefore, restoring miR-7-5p carried by exosome may be a promising novel combined therapeutic strategy with Everolimus for NSCLC.
Collapse
|
11
|
Zhao H, Huang J, Chen M, Li B, Chen X, Zhou M. Tripartite Motif Protein 6 Promotes Colorectal Cancer Cell Migration and Metastasis via SOCS2-STAT3 Signaling. Front Oncol 2021; 11:695525. [PMID: 34589421 PMCID: PMC8473888 DOI: 10.3389/fonc.2021.695525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide, with most mortalities being caused by metastases. However, the underlying molecular mechanism of CRC metastases remains largely unknown. Emerging evidence has shown the role of the tripartite motif family, especially tripartite motif protein 6 (TRIM6), in carcinogenesis. In this study, we used CRC cell lines with TRIM6 knockdown and overexpression to investigate the function of TRIM6 in CRC metastasis. We found that TRIM6 promotes CRC cell migration and invasion both in vitro and in vivo. TRIM6 knockdown slows down the migration and invasion processes, whereas TRIM6 overexpression accelerates CRC cell migration and invasion. TRIM6 is potentially the upstream regulatory factor for signal transducer and activator of transcription 3 (STAT3) via the suppressor of cytokine signaling 2 (SOCS2). A total of 70 samples from patients with CRC further confirmed that TRIM6 expression level is positively correlated with STAT3 phosphorylation and negatively correlated with SOCS2 expression. Therefore, TRIM6 could be a potential therapeutic target for CRC metastasis.
Collapse
Affiliation(s)
- Hongjian Zhao
- Department of General Surgery, Zhabei Central Hospital of Jing'an District, Shanghai, China
| | - Junjun Huang
- Department of General Surgery, Zhabei Central Hospital of Jing'an District, Shanghai, China
| | - Ming Chen
- Department of General Surgery, Zhabei Central Hospital of Jing'an District, Shanghai, China
| | - Baoru Li
- Department of General Surgery, Zhabei Central Hospital of Jing'an District, Shanghai, China
| | - Xinran Chen
- Department of General Surgery, Zhabei Central Hospital of Jing'an District, Shanghai, China
| | - Mingqing Zhou
- Department of General Surgery, Zhabei Central Hospital of Jing'an District, Shanghai, China
| |
Collapse
|