1
|
Michetti C, Benfenati F. Homeostatic regulation of brain activity: from endogenous mechanisms to homeostatic nanomachines. Am J Physiol Cell Physiol 2024; 327:C1384-C1399. [PMID: 39401424 DOI: 10.1152/ajpcell.00470.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 11/12/2024]
Abstract
After the initial concepts of the constancy of the internal milieu or homeostasis, put forward by Claude Bernard and Walter Cannon, homeostasis emerged as a mechanism to control oscillations of biologically meaningful variables within narrow physiological ranges. This is a primary need in the central nervous system that is continuously subjected to a multitude of stimuli from the internal and external environments that affect its function and structure, allowing to adapt the individual to the ever-changing daily conditions. Preserving physiological levels of activity despite disturbances that could either depress neural computation or excessively stimulate neural activity is fundamental, and failure of these homeostatic mechanisms can lead to brain diseases. In this review, we cover the role and main mechanisms of homeostatic plasticity involving the regulation of excitability and synaptic strength from the single neuron to the network level. We analyze the relationships between homeostatic and Hebbian plasticity and the conditions under which the preservation of the excitatory/inhibitory balance fails, triggering epileptogenesis and eventually epilepsy. Several therapeutic strategies to cure epilepsy have been designed to strengthen homeostasis when endogenous homeostatic plasticity mechanisms have become insufficient or ineffective to contrast hyperactivity. We describe "on demand" gene therapy strategies, including optogenetics, chemogenetics, and chemo-optogenetics, and particularly focus on new closed loop sensor-actuator strategies mimicking homeostatic plasticity that can be endogenously expressed to strengthen the homeostatic defenses against brain diseases.
Collapse
Affiliation(s)
- Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
2
|
Silva-Cardoso GK, Boda VK, Li W, N'Gouemo P. Inhibition of TRPC3 channels suppresses seizure susceptibility in the genetically-epilepsy prone rats. Eur J Pharmacol 2024; 977:176722. [PMID: 38851562 PMCID: PMC11295865 DOI: 10.1016/j.ejphar.2024.176722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/27/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Transient receptor potential canonical 3 (TRPC3) channels are important in regulating Ca2+ homeostasis and have been implicated in the pathophysiology of chemically induced seizures. Inherited seizure susceptibility in genetically epilepsy-prone rats (GEPR-3s) has been linked to increased voltage-gated Ca2+ channel currents in the inferior colliculus neurons, which can affect intraneuronal Ca2+ homeostasis. However, whether TRPC3 channels also contribute to inherited seizure susceptibility in GEPR-3s is unclear. This study investigated the effects of JW-65, a potent and selective inhibitor of TRPC3 channels, on acoustically evoked seizure susceptibility in adult male and female GEPR-3s. These seizures consisted of wild running seizures (WRSs) that evolved into generalized tonic-clonic seizures (GTCSs). The results showed that acute administration of low doses of JW-65 significantly decreased by 55-89% the occurrence of WRSs and GTCSs and the seizure severity in both male and female GEPR-3s. This antiseizure effect was accompanied by increased seizure latency and decreased seizure duration. Additionally, female GEPR-3s were more responsive to JW-65's antiseizure effects than males. Moreover, JW-65 treatment for five consecutive days completely suppressed acoustically evoked seizures in male and female GEPR-3s. These findings suggest that inhibiting TRPC3 channels could be a promising antiseizure strategy targeting Ca2+ signaling mechanisms in inherited generalized tonic-clonic epilepsy.
Collapse
Affiliation(s)
- Gleice K Silva-Cardoso
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Vijay K Boda
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Wei Li
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Prosper N'Gouemo
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, 20059, USA.
| |
Collapse
|
3
|
Parmar J, von Jonquieres G, Gorlamandala N, Chung B, Craig AJ, Pinyon JL, Birnbaumer L, Klugmann M, Moorhouse AJ, Power JM, Housley GD. TRPC Channels Activated by G Protein-Coupled Receptors Drive Ca 2+ Dysregulation Leading to Secondary Brain Injury in the Mouse Model. Transl Stroke Res 2024; 15:844-858. [PMID: 37462831 PMCID: PMC11226524 DOI: 10.1007/s12975-023-01173-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2024]
Abstract
Canonical transient receptor potential (TRPC) non-selective cation channels, particularly those assembled with TRPC3, TRPC6, and TRPC7 subunits, are coupled to Gαq-type G protein-coupled receptors for the major classes of excitatory neurotransmitters. Sustained activation of this TRPC channel-based pathophysiological signaling hub in neurons and glia likely contributes to prodigious excitotoxicity-driven secondary brain injury expansion. This was investigated in mouse models with selective Trpc gene knockout (KO). In adult cerebellar brain slices, application of glutamate and the class I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine to Purkinje neurons expressing the GCaMP5g Ca2+ reporter demonstrated that the majority of the Ca2+ loading in the molecular layer dendritic arbors was attributable to the TRPC3 effector channels (Trpc3KO compared with wildtype (WT)). This Ca2+ dysregulation was associated with glutamate excitotoxicity causing progressive disruption of the Purkinje cell dendrites (significantly abated in a GAD67-GFP-Trpc3KO reporter brain slice model). Contribution of the Gαq-coupled TRPC channels to secondary brain injury was evaluated in a dual photothrombotic focal ischemic injury model targeting cerebellar and cerebral cortex regions, comparing day 4 post-injury in WT mice, Trpc3KO, and Trpc1/3/6/7 quadruple knockout (TrpcQKO), with immediate 2-h (primary) brain injury. Neuroprotection to secondary brain injury was afforded in both brain regions by Trpc3KO and TrpcQKO models, with the TrpcQKO showing greatest neuroprotection. These findings demonstrate the contribution of the Gαq-coupled TRPC effector mechanism to excitotoxicity-based secondary brain injury expansion, which is a primary driver for mortality and morbidity in stroke, traumatic brain injury, and epilepsy.
Collapse
Affiliation(s)
- Jasneet Parmar
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Georg von Jonquieres
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Nagarajesh Gorlamandala
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Brandon Chung
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Amanda J Craig
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jeremy L Pinyon
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED), Pontifical Catholic University of Argentina, Av. A Moreau de Justo 1300, C1107AFF, Buenos Aires CABA, Argentina
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Andrew J Moorhouse
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - John M Power
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
4
|
Merolla A, Michetti C, Moschetta M, Vacca F, Ciano L, Emionite L, Astigiano S, Romei A, Horenkamp S, Berglund K, Gross RE, Cesca F, Colombo E, Benfenati F. A pH-sensitive closed-loop nanomachine to control hyperexcitability at the single neuron level. Nat Commun 2024; 15:5609. [PMID: 38965228 PMCID: PMC11224301 DOI: 10.1038/s41467-024-49941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Epilepsy affects 1% of the general population and 30% of patients are resistant to antiepileptic drugs. Although optogenetics is an efficient antiepileptic strategy, the difficulty of illuminating deep brain areas poses translational challenges. Thus, the search of alternative light sources is strongly needed. Here, we develop pH-sensitive inhibitory luminopsin (pHIL), a closed-loop chemo-optogenetic nanomachine composed of a luciferase-based light generator, a fluorescent sensor of intracellular pH (E2GFP), and an optogenetic actuator (halorhodopsin) for silencing neuronal activity. Stimulated by coelenterazine, pHIL experiences bioluminescence resonance energy transfer between luciferase and E2GFP which, under conditions of acidic pH, activates halorhodopsin. In primary neurons, pHIL senses the intracellular pH drop associated with hyperactivity and optogenetically aborts paroxysmal activity elicited by the administration of convulsants. The expression of pHIL in hippocampal pyramidal neurons is effective in decreasing duration and increasing latency of pilocarpine-induced tonic-clonic seizures upon in vivo coelenterazine administration, without affecting higher brain functions. The same treatment is effective in markedly decreasing seizure manifestations in a murine model of genetic epilepsy. The results indicate that pHIL represents a potentially promising closed-loop chemo-optogenetic strategy to treat drug-refractory epilepsy.
Collapse
Affiliation(s)
- Assunta Merolla
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Matteo Moschetta
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Vacca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Lorenzo Ciano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | - Alessandra Romei
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Simone Horenkamp
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| | - Elisabetta Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
5
|
Rezzani R, Favero G, Gianò M, Pinto D, Labanca M, van Noorden CJ, Rinaldi F. Transient Receptor Potential Channels in the Healthy and Diseased Blood-Brain Barrier. J Histochem Cytochem 2024; 72:199-231. [PMID: 38590114 PMCID: PMC11020746 DOI: 10.1369/00221554241246032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
The large family of transient receptor potential (TRP) channels are integral membrane proteins that function as environmental sensors and act as ion channels after activation by mechanical (touch), physical (heat, pain), and chemical stimuli (pungent compounds such as capsaicin). Most TRP channels are localized in the plasma membrane of cells but some of them are localized in membranes of organelles and function as intracellular Ca2+-ion channels. TRP channels are involved in neurological disorders but their precise role(s) and relevance in these disorders are not clear. Endothelial cells of the blood-brain barrier (BBB) express TRP channels such as TRP vanilloid 1-4 and are involved in thermal detection by regulating BBB permeability. In neurological disorders, TRP channels in the BBB are responsible for edema formation in the brain. Therefore, drug design to modulate locally activity of TRP channels in the BBB is a hot topic. Today, the application of TRP channel antagonists against neurological disorders is still limited.
Collapse
Affiliation(s)
- Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research Adaption and Regeneration of Tissues and Organs - ARTO, University of Brescia, Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale - SISDO), Brescia, Italy
| | - Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research Adaption and Regeneration of Tissues and Organs - ARTO, University of Brescia, Brescia, Italy
| | - Marzia Gianò
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project Institute, Milan, Italy
| | - Mauro Labanca
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale - SISDO), Brescia, Italy
| | - Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Fabio Rinaldi
- Human Microbiome Advanced Project Institute, Milan, Italy
| |
Collapse
|
6
|
Bychkova S, Bychkov M, Dordevic D, Vítězová M, Rittmann SKMR, Kushkevych I. Bafilomycin A1 Molecular Effect on ATPase Activity of Subcellular Fraction of Human Colorectal Cancer and Rat Liver. Int J Mol Sci 2024; 25:1657. [PMID: 38338935 PMCID: PMC10855383 DOI: 10.3390/ijms25031657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Bafilomycin A1 inhibits V-type H+ ATPases on the molecular level, which acidifies endo-lysosomes. The main objective of the study was to assess the effect of bafilomycin A1 on Ca2+ content, NAADP-induced Ca2+ release, and ATPase activity in rat hepatocytes and human colon cancer samples. Chlortetracycline (CTC) was used for a quantitative measure of stored calcium in permeabilized rat hepatocytes. ATPase activity was determined by orthophosphate content released after ATP hydrolysis in subcellular post-mitochondrial fraction obtained from rat liver as well as from patients' samples of colon mucosa and colorectal cancer samples. In rat hepatocytes, bafilomycin A1 decreased stored Ca2+ and prevented the effect of NAADP on stored Ca2+. This effect was dependent on EGTA-Ca2+ buffers in the medium. Bafilomycin A1 significantly increased the activity of Ca2+ ATPases of endoplasmic reticulum (EPR), but not plasma membrane (PM) Ca2+ ATPases in rat liver. Bafilomycin A1 also prevented the effect of NAADP on these pumps. In addition, bafilomycin A1 reduced Na+/K+ ATPase activity and increased basal Mg2+ ATPase activity in the subcellular fraction of rat liver. Concomitant administration of bafilomycin A1 and NAADP enhanced these effects. Bafilomycin A1 increased the activity of the Ca2+ ATPase of EPR in the subcellular fraction of normal human colon mucosa and also in colon cancer tissue samples. In contrast, it decreased Ca2+ ATPase PM activity in samples of normal human colon mucosa and caused no changes in colon cancer. Bafilomycin A1 decreased Na+/K+ ATPase activity and increased basal Mg2+ ATPase activity in normal colon mucosa samples and in human colon cancer samples. It can be concluded that bafilomycin A1 targets NAADP-sensitive acidic Ca2+ stores, effectively modulates ATPase activity, and assumes the link between acidic stores and EPR. Bafilomycin A1 may be useful for cancer therapy.
Collapse
Affiliation(s)
- Solomiia Bychkova
- Department of Human and Animal Physiology, Faculty of Biology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine;
| | - Mykola Bychkov
- Department of Therapy No. 1, Medical Diagnostic and Hematology and Transfusiology of Faculty of Postgraduate Education, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Dani Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic;
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic;
| | - Simon K.-M. R. Rittmann
- Department of Functional and Evolutionary Ecology, Archaea Physiology & Biotechnology Group, Universität Wien, 1030 Wien, Austria
| | - Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic;
| |
Collapse
|
7
|
Porseva VV, Preobrazhensky ND. Neuronal nitric oxide synthase and calbindin expression in sympathetic preganglionic neurons following capsaicin treatment. Anat Rec (Hoboken) 2023; 306:2264-2275. [PMID: 35717590 DOI: 10.1002/ar.25012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/19/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022]
Abstract
Along with well-known data on the neurochemical mechanisms of nociceptor activation, there are still no clear data regarding changes in the cellular composition and morphological characteristics of spinal preganglionic neurons (SPN) after capsaicin treatment. The mechanism of capsaicin toxicity differs in developing and mature nerve cells. This study aimed to determine the number of SPN in the autonomic nuclei on spinal cord (SC) sections and their cross-sectional area, the localization, percentage, and profile area of SPN containing neuronal nitric oxide synthase (nNOS) and calbindin (CB) in the thoracic SC of rats of different ages (from birth to 1-year-old) after capsaicin treatment. Neonatal capsaicin treatment generally decreased the cross-sectional area of the SPN pericarya. However, the cross-sectional area of the CB-immunoreactive (IR) SPN increased in the central autonomic area in rats aged 10-30 days old after capsaicin treatment. The number of SPN decreased only in the central autonomic area of rats aged <20 days. The proportion of nNOS-IR neurons remained steady and did not change during development. The cross-sectional area of nNOS-IR SPN in capsaicin-treated rats was less than that in control rats. The results obtained will promote further studies on the mechanisms of sensory processing in the SC and the development of the sympathetic nervous system.
Collapse
Affiliation(s)
- Valentina V Porseva
- Department of Pathophysiology, Yaroslavl State Medical University, Yaroslavl, Russia
| | | |
Collapse
|
8
|
Tian L, Yu T. An integrated deep learning framework for the interpretation of untargeted metabolomics data. Brief Bioinform 2023; 24:bbad244. [PMID: 37369636 DOI: 10.1093/bib/bbad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Untargeted metabolomics is gaining widespread applications. The key aspects of the data analysis include modeling complex activities of the metabolic network, selecting metabolites associated with clinical outcome and finding critical metabolic pathways to reveal biological mechanisms. One of the key roadblocks in data analysis is not well-addressed, which is the problem of matching uncertainty between data features and known metabolites. Given the limitations of the experimental technology, the identities of data features cannot be directly revealed in the data. The predominant approach for mapping features to metabolites is to match the mass-to-charge ratio (m/z) of data features to those derived from theoretical values of known metabolites. The relationship between features and metabolites is not one-to-one since some metabolites share molecular composition, and various adduct ions can be derived from the same metabolite. This matching uncertainty causes unreliable metabolite selection and functional analysis results. Here we introduce an integrated deep learning framework for metabolomics data that take matching uncertainty into consideration. The model is devised with a gradual sparsification neural network based on the known metabolic network and the annotation relationship between features and metabolites. This architecture characterizes metabolomics data and reflects the modular structure of biological system. Three goals can be achieved simultaneously without requiring much complex inference and additional assumptions: (1) evaluate metabolite importance, (2) infer feature-metabolite matching likelihood and (3) select disease sub-networks. When applied to a COVID metabolomics dataset and an aging mouse brain dataset, our method found metabolic sub-networks that were easily interpretable.
Collapse
Affiliation(s)
- Leqi Tian
- School of Data Science, The Chinese University of Hong Kong - Shenzhen, Guangdong, China
- Shenzhen Research Institute of Big Data, Guangdong, China
| | - Tianwei Yu
- School of Data Science, The Chinese University of Hong Kong - Shenzhen, Guangdong, China
- Shenzhen Research Institute of Big Data, Guangdong, China
- Guangdong Provincial Key Laboratory of Big Data Computing, Guangdong, China
| |
Collapse
|
9
|
Baracaldo-Santamaría D, Avendaño-Lopez SS, Ariza-Salamanca DF, Rodriguez-Giraldo M, Calderon-Ospina CA, González-Reyes RE, Nava-Mesa MO. Role of Calcium Modulation in the Pathophysiology and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24109067. [PMID: 37240413 DOI: 10.3390/ijms24109067] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease and the most frequent cause of progressive dementia in senior adults. It is characterized by memory loss and cognitive impairment secondary to cholinergic dysfunction and N-methyl-D-aspartate (NMDA)-mediated neurotoxicity. Intracellular neurofibrillary tangles, extracellular plaques composed of amyloid-β (Aβ), and selective neurodegeneration are the anatomopathological hallmarks of this disease. The dysregulation of calcium may be present in all the stages of AD, and it is associated with other pathophysiological mechanisms, such as mitochondrial failure, oxidative stress, and chronic neuroinflammation. Although the cytosolic calcium alterations in AD are not completely elucidated, some calcium-permeable channels, transporters, pumps, and receptors have been shown to be involved at the neuronal and glial levels. In particular, the relationship between glutamatergic NMDA receptor (NMDAR) activity and amyloidosis has been widely documented. Other pathophysiological mechanisms involved in calcium dyshomeostasis include the activation of L-type voltage-dependent calcium channels, transient receptor potential channels, and ryanodine receptors, among many others. This review aims to update the calcium-dysregulation mechanisms in AD and discuss targets and molecules with therapeutic potential based on their modulation.
Collapse
Affiliation(s)
- Daniela Baracaldo-Santamaría
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Sara Sofia Avendaño-Lopez
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Daniel Felipe Ariza-Salamanca
- Medical and Health Sciences Education Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mateo Rodriguez-Giraldo
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| | - Carlos A Calderon-Ospina
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- Grupo de Investigación en Ciencias Biomédicas Aplicadas (UR Biomed), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mauricio O Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| |
Collapse
|
10
|
Sekaran K, Alsamman AM, George Priya Doss C, Zayed H. Bioinformatics investigation on blood-based gene expressions of Alzheimer's disease revealed ORAI2 gene biomarker susceptibility: An explainable artificial intelligence-based approach. Metab Brain Dis 2023; 38:1297-1310. [PMID: 36809524 PMCID: PMC9942063 DOI: 10.1007/s11011-023-01171-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/23/2023]
Abstract
The progressive, chronic nature of Alzheimer's disease (AD), a form of dementia, defaces the adulthood of elderly individuals. The pathogenesis of the condition is primarily unascertained, turning the treatment efficacy more arduous. Therefore, understanding the genetic etiology of AD is essential to identifying targeted therapeutics. This study aimed to use machine-learning techniques of expressed genes in patients with AD to identify potential biomarkers that can be used for future therapy. The dataset is accessed from the Gene Expression Omnibus (GEO) database (Accession Number: GSE36980). The subgroups (AD blood samples from frontal, hippocampal, and temporal regions) are individually investigated against non-AD models. Prioritized gene cluster analyses are conducted with the STRING database. The candidate gene biomarkers were trained with various supervised machine-learning (ML) classification algorithms. The interpretation of the model prediction is perpetrated with explainable artificial intelligence (AI) techniques. This experiment revealed 34, 60, and 28 genes as target biomarkers of AD mapped from the frontal, hippocampal, and temporal regions. It is identified ORAI2 as a shared biomarker in all three areas strongly associated with AD's progression. The pathway analysis showed that STIM1 and TRPC3 are strongly associated with ORAI2. We found three hub genes, TPI1, STIM1, and TRPC3, in the network of the ORAI2 gene that might be involved in the molecular pathogenesis of AD. Naive Bayes classified the samples of different groups by fivefold cross-validation with 100% accuracy. AI and ML are promising tools in identifying disease-associated genes that will advance the field of targeted therapeutics against genetic diseases.
Collapse
Affiliation(s)
- Karthik Sekaran
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Alsamman M Alsamman
- Department of Genome Mapping, Molecular Genetics and Genome Mapping Laboratory, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
11
|
Dolder N, Müller P, von Ballmoos C. Experimental platform for the functional investigation of membrane proteins in giant unilamellar vesicles. SOFT MATTER 2022; 18:5877-5893. [PMID: 35916307 PMCID: PMC9364335 DOI: 10.1039/d2sm00551d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Giant unilamellar vesicles (GUVs) are micrometer-sized model membrane systems that can be viewed directly under the microscope. They serve as scaffolds for the bottom-up creation of synthetic cells, targeted drug delivery and have been widely used to study membrane related phenomena in vitro. GUVs are also of interest for the functional investigation of membrane proteins that carry out many key cellular functions. A major hurdle to a wider application of GUVs in this field is the diversity of existing protocols that are optimized for individual proteins. Here, we compare PVA assisted and electroformation techniques for GUV formation under physiologically relevant conditions, and analyze the effect of immobilization on vesicle structure and membrane tightness towards small substrates and protons. There, differences in terms of yield, size, and leakage of GUVs produced by PVA assisted swelling and electroformation were found, dependent on salt and buffer composition. Using fusion of oppositely charged membranes to reconstitute a model membrane protein, we find that empty vesicles and proteoliposomes show similar fusion behavior, which allows for a rapid estimation of protein incorporation using fluorescent lipids.
Collapse
Affiliation(s)
- Nicolas Dolder
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Philipp Müller
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Christoph von Ballmoos
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| |
Collapse
|
12
|
Hwang SM, Jo YY, Cohen CF, Kim YH, Berta T, Park CK. Venom Peptide Toxins Targeting the Outer Pore Region of Transient Receptor Potential Vanilloid 1 in Pain: Implications for Analgesic Drug Development. Int J Mol Sci 2022; 23:ijms23105772. [PMID: 35628583 PMCID: PMC9147560 DOI: 10.3390/ijms23105772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) ion channel plays an important role in the peripheral nociceptive pathway. TRPV1 is a polymodal receptor that can be activated by multiple types of ligands and painful stimuli, such as noxious heat and protons, and contributes to various acute and chronic pain conditions. Therefore, TRPV1 is emerging as a novel therapeutic target for the treatment of various pain conditions. Notably, various peptides isolated from venomous animals potently and selectively control the activation and inhibition of TRPV1 by binding to its outer pore region. This review will focus on the mechanisms by which venom-derived peptides interact with this portion of TRPV1 to control receptor functions and how these mechanisms can drive the development of new types of analgesics.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea; (S.-M.H.); (Y.-H.K.)
| | - Youn-Yi Jo
- Gil Medical Center, Department of Anesthesiology and Pain Medicine, Gachon University, Incheon 21565, Korea;
| | - Cinder Faith Cohen
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45242, USA;
| | - Yong-Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea; (S.-M.H.); (Y.-H.K.)
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45242, USA;
- Correspondence: (T.B.); (C.-K.P.)
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea; (S.-M.H.); (Y.-H.K.)
- Correspondence: (T.B.); (C.-K.P.)
| |
Collapse
|
13
|
Berrocal M, Mata AM. The Plasma Membrane Ca 2+-ATPase, a Molecular Target for Tau-induced Cytosolic Calcium Dysregulation. Neuroscience 2022; 518:112-118. [PMID: 35469971 DOI: 10.1016/j.neuroscience.2022.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/04/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
Disruption of calcium (Ca2+) homeostasis is emerging as a prevalent feature of aging and aging-associated neurodegenerative diseases, including Alzheimer's disease (AD), the most common type of tauopathy. This disease is characterized by the combined presence of extracellular neuritic plaques composed by amyloid β-peptides (Aβ) and neurofibrillary tangles of tau. The association of calcium dyshomeostasis with Aβ has been extensively studied, however its link with tau has been less investigated. Thus, this review will concentrate on the functional link between tau and the plasma membrane Ca2+ pump (PMCA) and other membrane proteins involved in the regulation of intracellular calcium and/or its association with neurodegeneration.
Collapse
Affiliation(s)
- María Berrocal
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Ana M Mata
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain.
| |
Collapse
|
14
|
Chen R, Kang R, Tang D. The mechanism of HMGB1 secretion and release. Exp Mol Med 2022; 54:91-102. [PMID: 35217834 PMCID: PMC8894452 DOI: 10.1038/s12276-022-00736-w] [Citation(s) in RCA: 291] [Impact Index Per Article: 145.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nonhistone nuclear protein that has multiple functions according to its subcellular location. In the nucleus, HMGB1 is a DNA chaperone that maintains the structure and function of chromosomes. In the cytoplasm, HMGB1 can promote autophagy by binding to BECN1 protein. After its active secretion or passive release, extracellular HMGB1 usually acts as a damage-associated molecular pattern (DAMP) molecule, regulating inflammation and immune responses through different receptors or direct uptake. The secretion and release of HMGB1 is fine-tuned by a variety of factors, including its posttranslational modification (e.g., acetylation, ADP-ribosylation, phosphorylation, and methylation) and the molecular machinery of cell death (e.g., apoptosis, pyroptosis, necroptosis, alkaliptosis, and ferroptosis). In this minireview, we introduce the basic structure and function of HMGB1 and focus on the regulatory mechanism of HMGB1 secretion and release. Understanding these topics may help us develop new HMGB1-targeted drugs for various conditions, especially inflammatory diseases and tissue damage. A nuclear protein that gets released after cell death or is actively secreted by immune cells offers a promising therapeutic target for treating diseases linked to excessive inflammation. Daolin Tang from the University of Texas Southwestern Medical Center in Dallas, USA, and colleagues review how cellular stresses can trigger the accumulation of HMGB1, a type of alarm signal protein that promotes the recruitment and activation of inflammation-promoting immune cells. The researchers discuss various mechanisms that drive both passive and active release of HMGB1 into the space around cells. These processes, which include enzymatic modifications of the HMGB1 protein, cell–cell interactions and molecular pathways of cell death, could be targeted by drugs to lessen tissue damage and inflammatory disease caused by HMGB1-induced immune responses
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Cotman SL, Lefrancois S. CLN3, at the crossroads of endocytic trafficking. Neurosci Lett 2021; 762:136117. [PMID: 34274435 DOI: 10.1016/j.neulet.2021.136117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022]
Abstract
The CLN3 gene was identified over two decades ago, but the primary function of the CLN3 protein remains unknown. Recessive inheritance of loss of function mutations in CLN3 are responsible for juvenile neuronal ceroid lipofuscinosis (Batten disease, or CLN3 disease), a fatal childhood onset neurodegenerative disease causing vision loss, seizures, progressive dementia, motor function loss and premature death. CLN3 is a multipass transmembrane protein that primarily localizes to endosomes and lysosomes. Defects in endocytosis, autophagy, and lysosomal function are common findings in CLN3-deficiency model systems. However, the molecular mechanisms underlying these defects have not yet been fully elucidated. In this mini-review, we will summarize the current understanding of the CLN3 protein interaction network and discuss how this knowledge is starting to delineate the molecular pathogenesis of CLN3 disease. Accumulating evidence strongly points towards CLN3 playing a role in regulation of the cytoskeleton and cytoskeletal associated proteins to tether cellular membranes, regulation of membrane complexes such as channels/transporters, and modulating the function of small GTPases to effectively mediate vesicular movement and membrane dynamics.
Collapse
Affiliation(s)
- Susan L Cotman
- Center for Genomic Medicine, Department of Neurology, Mass General Research Institute, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, United States.
| | - Stéphane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval H7V 1B7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Canada.
| |
Collapse
|