1
|
Qiu B, Zandkarimi F, Saqi A, Castagna C, Tan H, Sekulic M, Miorin L, Hibshoosh H, Toyokuni S, Uchida K, Stockwell BR. Fatal COVID-19 pulmonary disease involves ferroptosis. Nat Commun 2024; 15:3816. [PMID: 38769293 PMCID: PMC11106344 DOI: 10.1038/s41467-024-48055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
SARS-CoV-2 infection causes severe pulmonary manifestations, with poorly understood mechanisms and limited treatment options. Hyperferritinemia and disrupted lung iron homeostasis in COVID-19 patients imply that ferroptosis, an iron-dependent cell death, may occur. Immunostaining and lipidomic analysis in COVID-19 lung autopsies reveal increases in ferroptosis markers, including transferrin receptor 1 and malondialdehyde accumulation in fatal cases. COVID-19 lungs display dysregulation of lipids involved in metabolism and ferroptosis. We find increased ferritin light chain associated with severe COVID-19 lung pathology. Iron overload promotes ferroptosis in both primary cells and cancerous lung epithelial cells. In addition, ferroptosis markers strongly correlate with lung injury severity in a COVID-19 lung disease model using male Syrian hamsters. These results reveal a role for ferroptosis in COVID-19 pulmonary disease; pharmacological ferroptosis inhibition may serve as an adjuvant therapy to prevent lung damage during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Baiyu Qiu
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Fereshteh Zandkarimi
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
- Mass Spectrometry Core Facility, Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Anjali Saqi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Candace Castagna
- Institute of Comparative Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Hui Tan
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Miroslav Sekulic
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
2
|
Li C, Chen F, Lin L, Li J, Zheng Y, Chen Q. CSE triggers ferroptosis via SIRT4-mediated GNPAT deacetylation in the pathogenesis of COPD. Respir Res 2023; 24:301. [PMID: 38041059 PMCID: PMC10691148 DOI: 10.1186/s12931-023-02613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND It is now understood that ferroptosis plays a significant role in the progression of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke extract (CSE). However, the mechanisms underlying this relationship remain largely unclear. METHODS In this study, we established a COPD mouse model through exposure to cigarette smoke particulates, followed by H&E staining, analysis of bronchoalveolar lavage fluid, and immunohistochemistry assay. A549 cells were exposed to increasing concentrations of CSE, with the addition of the ferroptosis activator erastin or the inhibitor Fer-1. Cell viability, LDH (lactate dehydrogenase) release, inflammatory cytokines, total ROS (reactive oxygen species), and lipid ROS were measured using the corresponding assay kits. The acetylation level of GNPAT was determined through immunoprecipitation. We assessed the expression levels of molecules involved in plasmalogen biosynthesis (FAR1, AGPS, and GNPAT), GPX4, and SIRT4 using quantitative real-time PCR, western blot analysis, and immunofluorescence staining. RESULTS CSE-induced lung tissue damage was initially observed, accompanied by oxidative stress, ferroptosis, and increased plasmalogen biosynthesis molecules (FAR1, AGPS, and GNPAT). CSE also induced ferroptosis in A549 cells, resulting in reduced cell viability, GSH, and GPX4 levels, along with increased LDH, ROS, MDA (malondialdehyde) levels, oxidized lipids, and elevated FAR1, AGPS, and GNPAT expression. Knockdown of GNPAT mitigated CSE-induced ferroptosis. Furthermore, we found that CSE regulated the acetylation and protein levels of GNPAT by modulating SIRT4 expression. Importantly, the overexpression of GNPAT countered the inhibitory effects of SIRT4 on ferroptosis. CONCLUSIONS Our study revealed GNPAT could be deacetylated by SIRT4, providing novel insights into the mechanisms underlying the relationship between CSE-induced ferroptosis and COPD.
Collapse
Affiliation(s)
- Congping Li
- Pulmonary and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, 570311, China
| | - Fei Chen
- Department of Laboratory, AffIliated to Shanghai Jiao Tong University School of Medicine Shanghai Children's Medical Center, Hainan Branch, Sanya City, Hainan Province, 572000, China
| | - Liangfen Lin
- Pulmonary and Critical Care Medicine, DingAn People's Hospital, Dingan City, Hainan Province, 571200, China
| | - Jiwei Li
- Pulmonary and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19 Xiuhua Road, Xiuying District, Haikou City, Hainan Province, 570311, China
| | - Yamei Zheng
- Pulmonary and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19 Xiuhua Road, Xiuying District, Haikou City, Hainan Province, 570311, China
| | - Qingyun Chen
- Pulmonary and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19 Xiuhua Road, Xiuying District, Haikou City, Hainan Province, 570311, China.
| |
Collapse
|
3
|
Xu Y, Cheng C, Zheng F, Saiyin H, Zhang P, Zeng W, Liu X, Liu G. An audit of autopsy-confirmed diagnostic errors in perinatal deaths: What are the most common major missed diagnoses. Heliyon 2023; 9:e19984. [PMID: 37809936 PMCID: PMC10559671 DOI: 10.1016/j.heliyon.2023.e19984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/21/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Perinatal autopsies are essential to establish the cause of stillbirth or neonatal death and improve clinical practice. Limited studies have provided detailed major missed diagnoses of perinatal deaths in current clinical practice. In this retrospective audit of 177 perinatal autopsies including 99 stillbirths and 78 neonatal deaths with complete pathologic evaluation, 66 cases (21 Class I and 45 Class II diagnostic errors) were revealed as major discrepancies (37.3%), with complete agreements in 80 cases (45.2%). The difference in major discrepancies between stillbirth and neonatal death groups was significant (P < 0.001), with neonatal deaths being more prone to Class I errors. Various respiratory diseases (25/66, 37.9%) and congenital malformations (16/66, 24.2%) accounted for the majority of missed diagnoses (41/66, 62.1%). More importantly, neonatal respiratory distress syndrome (NRDS) was the most common type I missed diagnosis (7/8, 87.5%), markedly higher than the average 11.9% of all Class I errors. Our findings suggest that there are high disparities between clinical diagnoses and autopsy findings in perinatal deaths, and that various respiratory diseases are mostly inclined to cause major diagnostic errors. We first demonstrated that NRDS is the most common type I missed diagnosis in perinatal deaths, which clinicians should pay special attention to in practice.
Collapse
Affiliation(s)
- Yinwen Xu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chenchen Cheng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fengyun Zheng
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hexige Saiyin
- The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Pingzhao Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenjiao Zeng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiuping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guoyuan Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Garavaglia ML, Bodega F, Porta C, Milzani A, Sironi C, Dalle-Donne I. Molecular Impact of Conventional and Electronic Cigarettes on Pulmonary Surfactant. Int J Mol Sci 2023; 24:11702. [PMID: 37511463 PMCID: PMC10380520 DOI: 10.3390/ijms241411702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The alveolar epithelium is covered by a non-cellular layer consisting of an aqueous hypophase topped by pulmonary surfactant, a lipo-protein mixture with surface-active properties. Exposure to cigarette smoke (CS) affects lung physiology and is linked to the development of several diseases. The macroscopic effects of CS are determined by several types of cell and molecular dysfunction, which, among other consequences, lead to surfactant alterations. The purpose of this review is to summarize the published studies aimed at uncovering the effects of CS on both the lipid and protein constituents of surfactant, discussing the molecular mechanisms involved in surfactant homeostasis that are altered by CS. Although surfactant homeostasis has been the topic of several studies and some molecular pathways can be deduced from an analysis of the literature, it remains evident that many aspects of the mechanisms of action of CS on surfactant homeostasis deserve further investigation.
Collapse
Affiliation(s)
| | - Francesca Bodega
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristina Porta
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Aldo Milzani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Sironi
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
5
|
Denisenko Y, Novgorodtseva T, Antonyuk M, Yurenko A, Gvozdenko T, Kasyanov S, Ermolenko E, Sultanov R. 1- O-alkyl-glycerols from Squid Berryteuthis magister Reduce Inflammation and Modify Fatty Acid and Plasmalogen Metabolism in Asthma Associated with Obesity. Mar Drugs 2023; 21:351. [PMID: 37367676 DOI: 10.3390/md21060351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Asthma associated with obesity is considered the most severe phenotype and can be challenging to manage with standard medications. Marine-derived 1-O-alkyl-glycerols (AGs), as precursors for plasmalogen synthesis, have high biological activity, making them a promising substance for pharmacology. This study aimed to investigate the effect of AGs from squid Berryteuthis magister on lung function, fatty acid and plasmalogen levels, and cytokine and adipokine production in obese patients with asthma. The investigational trial included 19 patients with mild asthma associated with obesity who received 0.4 g of AGs daily for three months in addition to their standard treatment. The effects of AGs were evaluated at one and three months of treatment. The results of the study demonstrated that intake of AGs increased the FEV1 and FEV1/VC ratios, and significantly decreased the ACQ score in 17 of the 19 patients after three months of treatment. The intake of AGs increased concentration of plasmalogen and n-3 PUFA in plasma, and modified leptin/adiponectin production by adipose tissue. The supplementation of AGs decreased the plasma levels of inflammatory cytokines (TNF-α, IL-4, and IL-17a), and oxylipins (TXB2 and LTB4), suggesting an anti-inflammatory property of AGs. In conclusion, 1-O-alkyl-glycerols could be a promising dietary supplement for improving pulmonary function and reducing inflammation in obese asthma patients, and a natural source for plasmalogen synthesis. The study highlighted that the beneficial effects of AG consumption can be observed after one month of treatment, with gradual improvement after three months of supplementation.
Collapse
Affiliation(s)
- Yulia Denisenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, 690105 Vladivostok, Russia
| | - Tatyana Novgorodtseva
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, 690105 Vladivostok, Russia
| | - Marina Antonyuk
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, 690105 Vladivostok, Russia
| | - Alla Yurenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, 690105 Vladivostok, Russia
| | - Tatyana Gvozdenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, 690105 Vladivostok, Russia
| | - Sergey Kasyanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology (Far Eastern Branch), Russian Academy of Sciences, 17 Palchevskogo Str., 690041 Vladivostok, Russia
| | - Ekaterina Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology (Far Eastern Branch), Russian Academy of Sciences, 17 Palchevskogo Str., 690041 Vladivostok, Russia
| | - Ruslan Sultanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology (Far Eastern Branch), Russian Academy of Sciences, 17 Palchevskogo Str., 690041 Vladivostok, Russia
| |
Collapse
|
6
|
Shakya S, Pyles KD, Albert CJ, Patel RP, McCommis KS, Ford DA. Myeloperoxidase-derived hypochlorous acid targets human airway epithelial plasmalogens liberating protein modifying electrophilic 2-chlorofatty aldehydes. Redox Biol 2023; 59:102557. [PMID: 36508858 PMCID: PMC9763693 DOI: 10.1016/j.redox.2022.102557] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Neutrophil and airway epithelial cell interactions are critical in the inflammatory response to viral infections including respiratory syncytial virus, Sendai virus, and SARS-CoV-2. Airway epithelial cell dysfunction during viral infections is likely mediated by the interaction of virus and recruited neutrophils at the airway epithelial barrier. Neutrophils are key early responders to viral infection. Neutrophil myeloperoxidase catalyzes the conversion of hydrogen peroxide to hypochlorous acid (HOCl). Previous studies have shown HOCl targets host neutrophil and endothelial cell plasmalogen lipids, resulting in the production of the chlorinated lipid, 2-chlorofatty aldehyde (2-ClFALD). We have previously shown that the oxidation product of 2-ClFALD, 2-chlorofatty acid (2-ClFA) is present in bronchoalveolar lavage fluid of Sendai virus-infected mice, which likely results from the attack of the epithelial plasmalogen by neutrophil-derived HOCl. Herein, we demonstrate small airway epithelial cells contain plasmalogens enriched with oleic acid at the sn-2 position unlike endothelial cells which contain arachidonic acid enrichment at the sn-2 position of plasmalogen. We also show neutrophil-derived HOCl targets epithelial cell plasmalogens to produce 2-ClFALD. Further, proteomics and over-representation analysis using the ω-alkyne analog of the 2-ClFALD molecular species, 2-chlorohexadecanal (2-ClHDyA) showed cell adhesion molecule binding and cell-cell junction enriched categories similar to that observed previously in endothelial cells. However, in contrast to endothelial cells, proteins in distinct metabolic pathways were enriched with 2-ClFALD modification, particularly pyruvate metabolism was enriched in epithelial cells and mitochondrial pyruvate respiration was reduced. Collectively, these studies demonstrate, for the first time, a novel plasmalogen molecular species distribution in airway epithelial cells that are targeted by myeloperoxidase-derived hypochlorous acid resulting in electrophilic 2-ClFALD, which potentially modifies epithelial physiology by modifying proteins.
Collapse
Affiliation(s)
- Shubha Shakya
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Kelly D Pyles
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Carolyn J Albert
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kyle S McCommis
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| |
Collapse
|
7
|
Ninham B, Reines B, Battye M, Thomas P. Pulmonary surfactant and COVID-19: A new synthesis. QRB DISCOVERY 2022; 3:e6. [PMID: 37564950 PMCID: PMC10411325 DOI: 10.1017/qrd.2022.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022] Open
Abstract
Chapter 1 COVID-19 pathogenesis poses paradoxes difficult to explain with traditional physiology. For instance, since type II pneumocytes are considered the primary cellular target of SARS-CoV-2; as these produce pulmonary surfactant (PS), the possibility that insufficient PS plays a role in COVID-19 pathogenesis has been raised. However, the opposite of predicted high alveolar surface tension is found in many early COVID-19 patients: paradoxically normal lung volumes and high compliance occur, with profound hypoxemia. That 'COVID anomaly' was quickly rationalised by invoking traditional vascular mechanisms-mainly because of surprisingly preserved alveolar surface in early hypoxemic cases. However, that quick rejection of alveolar damage only occurred because the actual mechanism of gas exchange has long been presumed to be non-problematic, due to diffusion through the alveolar surface. On the contrary, we provide physical chemical evidence that gas exchange occurs by an process of expansion and contraction of the three-dimensional structures of PS and its associated proteins. This view explains anomalous observations from the level of cryo-TEM to whole individuals. It encompasses results from premature infants to the deepest diving seals. Once understood, the COVID anomaly dissolves and is straightforwardly explained as covert viral damage to the 3D structure of PS, with direct treatment implications. As a natural experiment, the SARS-CoV-2 virus itself has helped us to simplify and clarify not only the nature of dyspnea and its relationship to pulmonary compliance, but also the fine detail of the PS including such features as water channels which had heretofore been entirely unexpected. Chapter 2 For a long time, physical, colloid and surface chemistry have not intersected with physiology and cell biology as much as we might have hoped. The reasons are starting to become clear. The discipline of physical chemistry suffered from serious unrecognised omissions that rendered it ineffective. These foundational defects included omission of specific ion molecular forces and hydration effects. The discipline lacked a predictive theory of self-assembly of lipids and proteins. Worse, theory omitted any role for dissolved gases, O2, N2, CO2, and their existence as stable nanobubbles above physiological salt concentration. Recent developments have gone some way to explaining the foam-like lung surfactant structures and function. It delivers O2/N2 as nanobubbles, and efflux of CO2, and H2O nanobubbles at the alveolar surface. Knowledge of pulmonary surfactant structure allows an explanation of the mechanism of corona virus entry, and differences in infectivity of different variants. CO2 nanobubbles, resulting from metabolism passing through the molecular frit provided by the glycocalyx of venous tissue, forms the previously unexplained foam which is the endothelial surface layer. CO2 nanobubbles turn out to be lethal to viruses, providing a plausible explanation for the origin of 'Long COVID'. Circulating nanobubbles, stable above physiological 0.17 M salt drive various enzyme-like activities and chemical reactions. Awareness of the microstructure of Pulmonary Surfactant and that nanobubbles of (O2/N2) and CO2 are integral to respiratory and circulatory physiology provides new insights to the COVID-19 and other pathogen activity.
Collapse
Affiliation(s)
- Barry Ninham
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
- School of Science, University of New South Wales, Northcott Drive, Campbell, Canberra, ACT2612, Australia
| | - Brandon Reines
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 5607 Baum Blvd, Pittsburgh, PA15206, USA
| | | | - Paul Thomas
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
| |
Collapse
|
8
|
Rong P, Wang JL, Angelova A, Almsherqi ZA, Deng Y. Plasmalogenic Lipid Analogs as Platelet-Activating Factor Antagonists: A Potential Novel Class of Anti-inflammatory Compounds. Front Cell Dev Biol 2022; 10:859421. [PMID: 35493091 PMCID: PMC9048793 DOI: 10.3389/fcell.2022.859421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
Plasmalogens and Platelet-Activating Factor (PAF) are both bioactive ether phospholipids. Whereas plasmalogens are recognized for their important antioxidant function and modulatory role in cell membrane structure and dynamics, PAF is a potent pro-inflammatory lipid mediator known to have messenger functions in cell signaling and inflammatory response. The relationship between these two types of lipids has been rarely studied in terms of their metabolic interconversion and reciprocal modulation of the pro-inflammation/anti-inflammation balance. The vinyl-ether bonded plasmalogen lipid can be the lipid sources for the precursor of the biosynthesis of ether-bonded PAF. In this opinion paper, we suggest a potential role of plasmalogenic analogs of PAF as modulators and PAF antagonists (anti-PAF). We discuss that the metabolic interconversion of these two lipid kinds may be explored towards the development of efficient preventive and relief strategies against PAF-mediated pro-inflammation. We propose that plasmalogen analogs, acting as anti-PAF, may be considered as a new class of bioactive anti-inflammatory drugs. Despite of the scarcity of available experimental data, the competition between PAF and its natural plasmalogenic analogs for binding to the PAF receptor (PAF-R) can be proposed as a mechanistic model and potential therapeutic perspective against multiple inflammatory diseases (e.g., cardiovascular and neurodegenerative disorders, diabetes, cancers, and various manifestations in coronavirus infections such as COVID-19).
Collapse
Affiliation(s)
- Pu Rong
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Jie-Li Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Angelina Angelova
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, Châtenay-Malabry, France
| | - Zakaria A. Almsherqi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Zakaria A. Almsherqi, ; Yuru Deng,
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- *Correspondence: Zakaria A. Almsherqi, ; Yuru Deng,
| |
Collapse
|
9
|
Dei Cas M, Ottolenghi S, Morano C, Rinaldo R, Roda G, Chiumello D, Centanni S, Samaja M, Paroni R. Link between serum lipid signature and prognostic factors in COVID-19 patients. Sci Rep 2021; 11:21633. [PMID: 34737330 PMCID: PMC8568966 DOI: 10.1038/s41598-021-00755-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/14/2021] [Indexed: 01/08/2023] Open
Abstract
Although the serum lipidome is markedly affected by COVID-19, two unresolved issues remain: how the severity of the disease affects the level and the composition of serum lipids and whether serum lipidome analysis may identify specific lipids impairment linked to the patients' outcome. Sera from 49 COVID-19 patients were analyzed by untargeted lipidomics. Patients were clustered according to: inflammation (C-reactive protein), hypoxia (Horowitz Index), coagulation state (D-dimer), kidney function (creatinine) and age. COVID-19 patients exhibited remarkable and distinctive dyslipidemia for each prognostic factor associated with reduced defense against oxidative stress. When patients were clustered by outcome (7 days), a peculiar lipidome signature was detected with an overall increase of 29 lipid species, including-among others-four ceramide and three sulfatide species, univocally related to this analysis. Considering the lipids that were affected by all the prognostic factors, we found one sphingomyelin related to inflammation and viral infection of the respiratory tract and two sphingomyelins, that are independently related to patients' age, and they appear as candidate biomarkers to monitor disease progression and severity. Although preliminary and needing validation, this report pioneers the translation of lipidome signatures to link the effects of five critical clinical prognostic factors with the patients' outcomes.
Collapse
Grants
- This research was funded by Dipartimento di Scienze della Salute, Università degli Studi di Milano (Piano di Sostegno alla Ricerca LINEA 2: Dotazione annuale per attività istituzionali within a project entitled “FeOx. Iron handling in patients exposed to acute and chronic hypoxia", by Ministero dell'Istruzione, dell'Università e della Ricerca (Programma Nazionale di Ricerca in Antartide, PNRA18_00071-F within a project entitled “Concorde. Impact of the Antarctic environments on human homeostasis, psychology, physiology and immunity”), by Ministero dell'Istruzione, dell'Università e della Ricerca (FISR-COVID-19 Project FISR2020IP_01583, within a project entitled “HITCoA. Impact of Hypoxia, Iron Toxicity and oxidative stress on COvid19 Anemia”).
Collapse
Affiliation(s)
- Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, Milan, Italy
| | - Sara Ottolenghi
- Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, Milan, Italy
| | - Camillo Morano
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rocco Rinaldo
- Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, Milan, Italy
- Respiratory Unit, San Paolo University Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Davide Chiumello
- Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, Milan, Italy
- Department of Anesthesia and Intensive Care, San Paolo University Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Stefano Centanni
- Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, Milan, Italy
- Respiratory Unit, San Paolo University Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Michele Samaja
- Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, Milan, Italy
| | - Rita Paroni
- Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, Milan, Italy.
| |
Collapse
|
10
|
Deng Y, Angelova A. Coronavirus-Induced Host Cubic Membranes and Lipid-Related Antiviral Therapies: A Focus on Bioactive Plasmalogens. Front Cell Dev Biol 2021; 9:630242. [PMID: 33791293 PMCID: PMC8006408 DOI: 10.3389/fcell.2021.630242] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Coronaviruses have lipid envelopes required for their activity. The fact that coronavirus infection provokes the formation of cubic membranes (CM) (denoted also as convoluted membranes) in host cells has not been rationalized in the development of antiviral therapies yet. In this context, the role of bioactive plasmalogens (vinyl ether glycerophospholipids) is not completely understood. These lipid species display a propensity for non-lamellar phase formation, facilitating membrane fusion, and modulate the activity of membrane-bound proteins such as enzymes and receptors. At the organism level, plasmalogen deficiency is associated with cardiometabolic disorders including obesity and type 2 diabetes in humans. A straight link is perceived with the susceptibility of such patients to SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) infection, the severity of illness, and the related difficulty in treatment. Based on correlations between the coronavirus-induced modifications of lipid metabolism in host cells, plasmalogen deficiency in the lung surfactant of COVID-19 patients, and the alterations of lipid membrane structural organization and composition including the induction of CM, we emphasize the key role of plasmalogens in the coronavirus (SARS-CoV-2, SARS-CoV, or MERS-CoV) entry and replication in host cells. Considering that plasmalogen-enriched lung surfactant formulations may improve the respiratory process in severe infected individuals, plasmalogens can be suggested as an anti-viral prophylactic, a lipid biomarker in SARS-CoV and SARS-CoV-2 infections, and a potential anti-viral therapeutic component of lung surfactant development for COVID-19 patients.
Collapse
Affiliation(s)
- Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay UMR 8612, Châtenay-Malabry, France
| |
Collapse
|