1
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Li Y, Wang X, Bi Y, Zhang M, Xiong W, Hu X, Zhang Y, He F. SNX5-Rab11a protects against cardiac hypertrophy through regulating LRP6 membrane translocation. J Mol Cell Cardiol 2024; 194:46-58. [PMID: 38950816 DOI: 10.1016/j.yjmcc.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUNDS Pathological cardiac hypertrophy is considered one of the independent risk factors for heart failure, with a rather complex pathogenic machinery. Sorting nexins (SNXs), denoting a diverse family of cytoplasmic- and membrane-associated phosphoinositide-binding proteins, act as a pharmacological target against specific cardiovascular diseases including heart failure. Family member SNX5 was reported to play a pivotal role in a variety of biological processes. However, contribution of SNX5 to the development of cardiac hypertrophy, remains unclear. METHODS Mice underwent transverse aortic constriction (TAC) to induce cardiac hypertrophy and simulate pathological conditions. TAC model was validated using echocardiography and histological staining. Expression of SNX5 was assessed by western blotting. Then, SNX5 was delivered through intravenous administration of an adeno-associated virus serotype 9 carrying cTnT promoter (AAV9-cTnT-SNX5) to achieve SNX5 cardiac-specific overexpression. To assess the impact of SNX5, morphological analysis, echocardiography, histological staining, hypertrophic biomarkers, and cardiomyocyte contraction were evaluated. To unravel potential molecular events associated with SNX5, interactome analysis, fluorescence co-localization, and membrane protein profile were evaluated. RESULTS Our results revealed significant downregulated protein level of SNX5 in TAC-induced hypertrophic hearts in mice. Interestingly, cardiac-specific overexpression of SNX5 improved cardiac function, with enhanced left ventricular ejection fraction, fraction shortening, as well as reduced cardiac fibrosis. Mechanistically, SNX5 directly bound to Rab11a, increasing membrane accumulation of Rab11a (a Rab GTPase). Afterwards, this intricate molecular interaction upregulated the membrane content of low-density lipoprotein receptor-related protein 6 (LRP6), a key regulator against cardiac hypertrophy. Our comprehensive assessment of siRab11a expression in HL-1 cells revealed its role in antagonism of LRP6 membrane accumulation under SNX5 overexpression. CONCLUSIONS This study revealed that binding of SNX5 with LRP6 triggers their membrane translocation through Rab11a assisting, defending against cardiac remodeling and cardiac dysfunction under pressure overload. These findings provide new insights into the previously unrecognized role of SNX5 in the progression of cardiac hypertrophy.
Collapse
Affiliation(s)
- Yutong Li
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230601, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiang Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yaguang Bi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Mengjiao Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Weidong Xiong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiaolong Hu
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230601, China
| | - Yingmei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Fei He
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230601, China.
| |
Collapse
|
3
|
Fung SYS, Xǔ XJ, Wu M. Nonlinear dynamics in phosphoinositide metabolism. Curr Opin Cell Biol 2024; 88:102373. [PMID: 38797149 PMCID: PMC11186694 DOI: 10.1016/j.ceb.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Abstract
Phosphoinositides broadly impact membrane dynamics, signal transduction and cellular physiology. The orchestration of signaling complexity by this seemingly simple metabolic pathway remains an open question. It is increasingly evident that comprehending the complexity of the phosphoinositides metabolic network requires a systems view based on nonlinear dynamics, where the products of metabolism can either positively or negatively modulate enzymatic function. These feedback and feedforward loops may be paradoxical, leading to counterintuitive effects. In this review, we introduce the framework of nonlinear dynamics, emphasizing distinct dynamical regimes such as the excitable state, oscillations, and mixed-mode oscillations-all of which have been experimentally observed in phosphoinositide metabolisms. We delve into how these dynamical behaviors arise from one or multiple network motifs, including positive and negative feedback loops, coherent and incoherent feedforward loops. We explore the current understanding of the molecular circuits responsible for these behaviors. While mapping these circuits presents both conceptual and experimental challenges, redefining cellular behavior based on dynamical state, lipid fluxes, time delay, and network topology is likely essential for a comprehensive understanding of this fundamental metabolic network.
Collapse
Affiliation(s)
- Suet Yin Sarah Fung
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8002, USA
| | - X J Xǔ
- Department of Physics, Yale University, New Haven, CT, 06511, USA
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8002, USA.
| |
Collapse
|
4
|
Paclet MH, Laurans S, Dupré-Crochet S. Regulation of Neutrophil NADPH Oxidase, NOX2: A Crucial Effector in Neutrophil Phenotype and Function. Front Cell Dev Biol 2022; 10:945749. [PMID: 35912108 PMCID: PMC9329797 DOI: 10.3389/fcell.2022.945749] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS), produced by the phagocyte NADPH oxidase, NOX2, are involved in many leukocyte functions. An excessive or inappropriate ROS production can lead to oxidative stress and tissue damage. On the other hand, an absence of ROS production due to a lack of a functional NADPH oxidase is associated with recurrent infections as well as inflammation disorders. Thus, it is clear that the enzyme NADPH oxidase must be tightly regulated. The NOX2 complex bears both membrane and cytosolic subunits. The membrane subunits constitute the flavocytochrome b558, consisting of gp91phox (Nox2) and p22phox subunits. The cytosolic subunits form a complex in resting cells and are made of three subunits (p47phox, p40phox, p67phox). Upon leukocyte stimulation, the cytosolic subunits and the small GTPase Rac assemble with the flavocytochrome b558 in order to make a functional complex. Depending on the stimulus, the NADPH oxidase can assemble either at the phagosomal membrane or at the plasma membrane. Many studies have explored NOX2 activation; however, how this activation is sustained and regulated is still not completely clear. Here we review the multiple roles of NOX2 in neutrophil functions, with a focus on description of its components and their assembly mechanisms. We then explain the role of energy metabolism and phosphoinositides in regulating NADPH oxidase activity. In particular, we discuss: 1) the link between metabolic pathways and NOX2 activity regulation through neutrophil activation and the level of released ROS, and 2) the role of membrane phosphoinositides in controlling the duration of NOX2 activity.
Collapse
Affiliation(s)
- Marie-Hélène Paclet
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, T-RAIG, Grenoble, France
| | - Salomé Laurans
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, Orsay, France
| | - Sophie Dupré-Crochet
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, Orsay, France
- *Correspondence: Sophie Dupré-Crochet,
| |
Collapse
|
5
|
Arora GK, Palamiuc L, Emerling BM. Expanding role of PI5P4Ks in cancer: A promising druggable target. FEBS Lett 2022; 596:3-16. [PMID: 34822164 PMCID: PMC9154051 DOI: 10.1002/1873-3468.14237] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
Cancer cells are challenged by a myriad of microenvironmental stresses, and it is their ability to efficiently adapt to the constantly changing nutrient, energy, oxidative, and/or immune landscape that allows them to survive and proliferate. Such adaptations, however, result in distinct vulnerabilities that are attractive therapeutic targets. Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are a family of druggable stress-regulated phosphoinositide kinases that become conditionally essential as a metabolic adaptation, paving the way to targeting cancer cell dependencies. Further, PI5P4Ks have a synthetic lethal interaction with the tumor suppressor p53, the loss of which is one of the most prevalent genetic drivers of malignant transformation. PI5P4K's emergence as a crucial axis in the expanding landscape of phosphoinositide signaling in cancer has already stimulated the development of specific inhibitors. Thus, a better understanding of the biology of the PI5P4Ks will allow for targeted and effective therapeutic interventions. Here, we attempt to summarize the mounting roles of the PI5P4Ks in cancer, including evidence that targeting them is a therapeutic vulnerability and promising next-in-line treatment for multiple cancer subtypes.
Collapse
Affiliation(s)
- Gurpreet K Arora
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Lavinia Palamiuc
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Brooke M Emerling
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, USA
| |
Collapse
|
6
|
Tang L, He S, Yin Y, Liu H, Hu J, Cheng J, Wang W. Combination of Nanomaterials in Cell-Based Drug Delivery Systems for Cancer Treatment. Pharmaceutics 2021; 13:pharmaceutics13111888. [PMID: 34834304 PMCID: PMC8621332 DOI: 10.3390/pharmaceutics13111888] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-based drug delivery systems have shown tremendous advantages in cancer treatment due to their distinctive properties. For instance, delivery of therapeutics using tumor-tropic cells like neutrophils, lymphocytes and mesenchymal stem cells can achieve specific tumor targeting due to the "Trojan Horse" effect. Other circulatory cells like erythrocytes and platelets can greatly improve the circulation time of nanoparticles due to their innate long circulation property. Adipocytes, especially cancer-associated adipocytes, play key roles in tumor development and metabolism, therefore, adipocytes are regarded as promising bio-derived nanoplatforms for anticancer targeted drug delivery. Nanomaterials are important participants in cell-based drug delivery because of their unique physicochemical characteristics. Therefore, the integration of various nanomaterials with different cell types will endow the constructed delivery systems with many attractive properties due to the merits of both. In this review, a number of strategies based on nanomaterial-involved cell-mediated drug delivery systems for cancer treatment will be summarized. This review discusses how nanomaterials can be a benefit to cell-based therapies and how cell-derived carriers overcome the limitations of nanomaterials, which highlights recent advancements and specific biomedical applications based on nanomaterial-mediated, cell-based drug delivery systems.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Hening Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Jingyi Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (J.C.); (W.W.)
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (J.C.); (W.W.)
| |
Collapse
|
7
|
Fountain A, Inpanathan S, Alves P, Verdawala MB, Botelho RJ. Phagosome maturation in macrophages: Eat, digest, adapt, and repeat. Adv Biol Regul 2021; 82:100832. [PMID: 34717137 DOI: 10.1016/j.jbior.2021.100832] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
Phagocytosis is a dynamic process that requires an intricate interplay between phagocytic receptors, membrane lipids, and numerous signalling proteins and their effectors, to coordinate the engulfment of a bound particle. These particles are diverse in their physico-chemical properties such as size and shape and include bacteria, fungi, apoptotic cells, living tumour cells, and abiotic particles. Once engulfed, these particles are enclosed within a phagosome, which undergoes a striking transformation referred to as phagosome maturation, which will ultimately lead to the processing and degradation of the enclosed particulate. In this review, we focus on recent advancements in phagosome maturation in macrophages, highlighting new discoveries and emerging themes. Such advancements include identification of new GTPases and their effectors and the intricate spatio-temporal dynamics of phosphoinositides in governing phagosome maturation. We then explore phagosome fission and recycling, the emerging role of membrane contact sites, and delve into mechanisms of phagosome resolution to recycle and reform lysosomes. We further illustrate how phagosome maturation is context-dependent, subject to the type of particle, phagocytic receptors, the phagocytes and their state of activation during phagocytosis. Lastly, we discuss how phagosomes serve as signalling platforms to help phagocytes adapt to their environmental conditions. Overall, this review aims to cover recent findings, identify emerging themes, and highlight current challenges and directions to improve our understanding of phagosome maturation in macrophages.
Collapse
Affiliation(s)
- Aaron Fountain
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Subothan Inpanathan
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Patris Alves
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Munira B Verdawala
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada.
| |
Collapse
|