1
|
Park KH, Makki HMM, Kim SH, Chung HJ, Jung J. Narirutin ameliorates alcohol-induced liver injury by targeting MAPK14 in zebrafish larvae. Biomed Pharmacother 2023; 166:115350. [PMID: 37633055 DOI: 10.1016/j.biopha.2023.115350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/06/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) encompasses a range of hepatic abnormalities, including isolated alcoholic steatosis, steatohepatitis, and cirrhosis. The flavanone-7-O-glycoside narirutin (NRT), the primary flavonoid in citrus peel, has antioxidant, anti-inflammatory, and lipid-lowering activity. We investigated the effects of NRT on liver injury induced by alcohol and explored the underlying mechanisms. METHODS Zebrafish larvae were used to investigate the effects of NRT on acute exposure to ethanol (EtOH). Liver phenotypic, morphological, and biochemical assessments were performed to evaluate the hepatoprotective effects of NRT. Network pharmacology and molecular docking analyses were conducted to identify candidate targets of NRT in EtOH-induced liver injury. A drug affinity responsive target stability (DARTS) assay was conducted to evaluate the binding of NRT to mitogen-activated protein kinase 14 (MAPK14). The mechanism of action of NRT was validated by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and Western blot analysis. RESULTS The liver phenotypic, morphological, and biochemical assessments revealed that NRT has potential therapeutic effects against acute EtOH-induced liver injury. RT-qPCR confirmed that NRT reversed the change in the expression of genes related to oxidative stress, lipogenesis, and the endoplasmic reticulum (ER)/unfolded protein response pathway. Network pharmacology and molecular docking analyses identified potential targets of NRT's protective effects and confirmed that NRT regulates the p38 MAPK signaling pathway by targeting mitogen-activated protein kinase 14 (MAPK14). CONCLUSIONS NRT mitigates alcohol-induced liver injury by preventing lipid formation, protecting the antioxidant system, and suppressing ER stress-induced apoptosis through MAPK14 modulation.
Collapse
Affiliation(s)
- Ki-Hoon Park
- Department of Anesthesiology and Pain Medicine, College of Medicine, Kosin University, Seo-gu, Busan 49267, South Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, South Korea
| | - Haytham Mohamedelfatih Mohamed Makki
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, South Korea; Department of Biomedical Science, Graduation School, Kyung Hee University, Dongdaemun-gu, Seoul 02447, South Korea
| | - Seok-Hyung Kim
- Sarcopenia Total Solution Center, Wonkwang University, Iksan 54538, South Korea.
| | - Hyung-Joo Chung
- Department of Anesthesiology and Pain Medicine, College of Medicine, Kosin University, Seo-gu, Busan 49267, South Korea.
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, South Korea; Department of Biomedical Science, Graduation School, Kyung Hee University, Dongdaemun-gu, Seoul 02447, South Korea; Department of Precision Medicine, College of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, South Korea.
| |
Collapse
|
2
|
Kim MK, Lee JU, Lee SJ, Chang HS, Park JS, Park CS. The Role of Erythrocyte Membrane Protein Band 4.1-like 3 in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2023; 24:10182. [PMID: 37373330 DOI: 10.3390/ijms241210182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Novel genetic and epigenetic factors involved in the development and prognosis of idiopathic pulmonary fibrosis (IPF) have been identified. We previously observed that erythrocyte membrane protein band 4.1-like 3 (EPB41L3) increased in the lung fibroblasts of IPF patients. Thus, we investigated the role of EPB41L3 in IPF by comparing the EPB41L3 mRNA and protein expression of lung fibroblast between patients with IPF and controls. We also investigated the regulation of epithelial-mesenchymal transition (EMT) in an epithelial cell line (A549) and fibroblast-to-myofibroblast transition (FMT) in a fibroblast cell line (MRC5) by overexpressing and silencing EPB41L3. EPB41L3 mRNA and protein levels, as measured using RT-PCR, real-time PCR, and Western blot, were significantly higher in fibroblasts derived from 14 IPF patients than in those from 10 controls. The mRNA and protein expression of EPB41L3 was upregulated during transforming growth factor-β-induced EMT and FMT. Overexpression of EPB41L3 in A549 cells using lenti-EPB41L3 transfection suppressed the mRNA and protein expression of N-cadherin and COL1A1. Treatment with EPB41L3 siRNA upregulated the mRNA and protein expression of N-cadherin. Overexpression of EPB41L3 in MRC5 cells using lenti-EPB41L3 transfection suppressed the mRNA and protein expression of fibronectin and α-SMA. Finally, treatment with EPB41L3 siRNA upregulated the mRNA and protein expression of FN1, COL1A1, and VIM. In conclusion, these data strongly support an inhibitory effect of EPB41L3 on the process of fibrosis and suggest the therapeutic potential of EPB41L3 as an anti-fibrotic mediator.
Collapse
Affiliation(s)
- Min Kyung Kim
- Department of Interdisciplinary, Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Jong-Uk Lee
- Department of Interdisciplinary, Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sun Ju Lee
- Department of Interdisciplinary, Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hun Soo Chang
- Department of Microbiology and BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan 31538, Republic of Korea
| | - Jong-Sook Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Choon-Sik Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| |
Collapse
|
3
|
Wei M, Yan X, Xin X, Chen H, Hou L, Zhang J. Hepatocyte-Specific Smad4 Deficiency Alleviates Liver Fibrosis via the p38/p65 Pathway. Int J Mol Sci 2022; 23:ijms231911696. [PMID: 36232998 PMCID: PMC9570188 DOI: 10.3390/ijms231911696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022] Open
Abstract
Liver fibrosis is a wound-healing response caused by the abnormal accumulation of extracellular matrix, which is produced by activated hepatic stellate cells (HSCs). Most studies have focused on the activated HSCs themselves in liver fibrosis, and whether hepatocytes can modulate the process of fibrosis is still unclear. Sma mothers against decapentaplegic homologue 4 (Smad4) is a key intracellular transcription mediator of transforming growth factor-β (TGF-β) during the development and progression of liver fibrosis. However, the role of hepatocyte Smad4 in the development of fibrosis is poorly elucidated. Here, to explore the functional role of hepatocyte Smad4 and the molecular mechanism in liver fibrosis, a CCl4-induced liver fibrosis model was established in mice with hepatocyte-specific Smad4 deletion (Smad4Δhep). We found that hepatocyte-specific Smad4 deficiency reduced liver inflammation and fibrosis, alleviated epithelial-mesenchymal transition, and inhibited hepatocyte proliferation and migration. Molecularly, Smad4 deletion in hepatocytes suppressed the expression of inhibitor of differentiation 1 (ID1) and the secretion of connective tissue growth factor (CTGF) of hepatocytes, which subsequently activated the p38 and p65 signaling pathways of HSCs in an epidermal growth factor receptor-dependent manner. Taken together, our results clearly demonstrate that the Smad4 expression in hepatocytes plays an important role in promoting liver fibrosis and could therefore be a promising target for future anti-fibrotic therapy.
Collapse
Affiliation(s)
- Miaomiao Wei
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Xinlong Yan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Xin Xin
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Haiqiang Chen
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Lingling Hou
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinhua Zhang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
4
|
Pang Y, Yao Y, Yang M, Wu D, Ma Y, Zhang Y, Zhang T. TFEB-lysosome pathway activation is associated with different cell death responses to carbon quantum dots in Kupffer cells and hepatocytes. Part Fibre Toxicol 2022; 19:31. [PMID: 35477523 PMCID: PMC9047349 DOI: 10.1186/s12989-022-00474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
Background Carbon dot has been widely used in biomedical field as a kind of nanomaterial with low toxicity and high biocompatibility. CDs has demonstrated its unique advantages in assisted drug delivery, target diagnosis and targeted therapy with its small size and spontaneous fluorescence. However, the potential biosafety of CDs cannot be evaluated. Therefore, we focused on the study of liver, the target organ involved in CDs metabolism, to evaluate the risk of CDs in vitro. Methods and results Liver macrophage KUP5 cells and normal liver cells AML12 cells were incubated in CDs at the same concentration for 24 h to compare the different effects under the same exposure conditions. The study found that both liver cell models showed ATP metabolism disorder, membrane damage, autophagosome formation and lysosome damage, but the difference was that, KUP5 cells exhibited more serious damage than AML12 cells, suggesting that immunogenic cell type is particularly sensitive to CDs. The underlying mechanism of CDs-induced death of the two hepatocyte types were also assessed. In KUP5 cells, death was caused by inhibition of autophagic flux caused by autophagosome accumulation, this process that was reversed when autophagosome accumulation was prevented by 3-MA. AML12 cells had no such response, suggesting that the accumulation of autophagosomes caused by CDs may be specific to macrophages. Conclusion Activation of the TFEB-lysosome pathway is important in regulating autophagy and apoptosis. The dual regulation of ERK and mTOR phosphorylation upstream of TFEB influences the death outcome of AML12 cells. These findings provide a new understanding of how CDs impact different liver cells and contribute to a more complete toxicological safety evaluation of CDs.
Collapse
Affiliation(s)
- Yanting Pang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.,Yangzhou Center for Disease Prevention and Control, Yangzhou, 225200, Jiangsu, China
| | - Mengran Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Daming Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Chen X, Wang Z, Han S, Wang Z, Zhang Y, Li X, Xia N, Yu W, Jia C, Ni Y, Pu L. Targeting SYK of monocyte-derived macrophages regulates liver fibrosis via crosstalking with Erk/Hif1α and remodeling liver inflammatory environment. Cell Death Dis 2021; 12:1123. [PMID: 34853322 PMCID: PMC8636632 DOI: 10.1038/s41419-021-04403-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022]
Abstract
Liver fibrosis is a danger signal indicating a huge risk of liver cancer occurrence, but there is still no effective clinical means to regulate the progress of liver fibrosis. Although a variety of drugs targeting SYK have been developed for tumors and autoimmune diseases, the mechanism and specific efficacy of SYK's role in liver fibrosis are not yet clear. Our studies based on chronic CCL4, bile duct ligation, and subacute TAA mouse models show that SYK in monocyte-derived macrophages (MoMFs) is fully dependent on phosphorylation of Erk to up-regulate the expression of Hif1α, thereby forming the crosstalk with SYK to drive liver fibrosis progress. We have evaluated the ability of the small molecule SYK inhibitor GS9973 in a variety of models. Contrary to previous impressions, high-frequency administration of GS9973 will aggravate CCL4-induced liver fibrosis, which is especially unsuitable for patients with cholestasis whose clinical features are bile duct obstruction. In addition, we found that inhibition of MoMFs SYK impairs the expression of CXCL1, on one hand, it reduces the recruitment of CD11bhiLy6Chi inflammatory cells, and on the other hand, it promotes the phenotype cross-dress process of pro-resolution MoMFs, thereby remodeling the chronic inflammatory environment of the fibrotic liver. Our further findings indicate that on the basis of the administration of CCR2/CCR5 dual inhibitor Cenicriviroc, further inhibiting MoMFs SYK may give patients with fibrosis additional benefits.
Collapse
Affiliation(s)
- Xuejiao Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Ziyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Sheng Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Zeng Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yu Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Xiangdong Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Nan Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Wenjie Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Chenyang Jia
- Department of Hepatopancreatobiliary Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Yong Ni
- Department of Hepatopancreatobiliary Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.
| | - Liyong Pu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
| |
Collapse
|
6
|
Shu G, Yusuf A, Dai C, Sun H, Deng X. Piperine inhibits AML-12 hepatocyte EMT and LX-2 HSC activation and alleviates mouse liver fibrosis provoked by CCl 4: roles in the activation of the Nrf2 cascade and subsequent suppression of the TGF-β1/Smad axis. Food Funct 2021; 12:11686-11703. [PMID: 34730139 DOI: 10.1039/d1fo02657g] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Piperine (PIP) is an alkaloid derived from peppercorns. Herein, we assessed its effects on hepatocyte EMT and HSC activation in vitro and CCl4-elicited liver fibrosis in mice. Further experiments were performed to unveil the molecular mechanisms underlying the hepatoprotective activity of PIP. We found that PIP inhibited TGF-β1-provoked AML-12 hepatocyte EMT and LX-2 HSC activation. Mechanistically, in AML-12 and LX-2 cells, PIP evoked Nrf2 nuclear translocation and increased transcriptions of Nrf2-responsive antioxidative genes. These events decreased TGF-β1-induced production of ROS. Moreover, PIP increased the expression of Smad7, suppressed phosphorylation and nuclear translocation of Smad2/3, and decreased the transcriptions of Smad2/3-downstream genes. Knockdown of Nrf2 abrogated the protective activity of PIP against TGF-β1. Modulatory effects of PIP on the TGF-β1/Smad cascade were also crippled, which suggested that activation of Nrf2 played critical roles in the regulatory effects of PIP on TGF-β1/Smad signaling. Experiments in vivo unveiled that PIP ameliorated mouse liver fibrosis provoked by CCl4. PIP modulated the intrahepatic contents of the markers of EMT and HSC activation. In mouse livers, PIP activated Nrf2 signaling and reduced Smad2/3-dependent gene transcriptions. Our findings collectively suggested PIP as a new chemical entity with the capacity of alleviating liver fibrosis. The activation of the Nrf2 cascade and subsequent suppression of the TGF-β1/Smad axis are implicated in the hepatoprotective activity of PIP.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Arslan Yusuf
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Chenxi Dai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Hui Sun
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Perilipin 5 Ameliorates Hepatic Stellate Cell Activation via SMAD2/3 and SNAIL Signaling Pathways and Suppresses STAT3 Activation. Cells 2021; 10:cells10092184. [PMID: 34571833 PMCID: PMC8467115 DOI: 10.3390/cells10092184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022] Open
Abstract
Comprehending the molecular mechanisms underlying hepatic fibrogenesis is essential to the development of treatment. The hallmark of hepatic fibrosis is the development and deposition of excess fibrous connective tissue forcing tissue remodeling. Hepatic stellate cells (HSC) play a major role in the pathogenesis of liver fibrosis. Their activation via the transforming growth factor-β1 (TGF-β1) as a key mediator is considered the crucial event in the pathophysiology of hepatic fibrogenesis. It has been shown that Perilipin 5 (PLIN5), known as a lipid droplet structural protein that is highly expressed in oxidative tissue, can inhibit such activation through various mechanisms associated with lipid metabolism. This study aimed to investigate the possible influence of PLIN5 on TGF-β1 signaling. Our findings confirm the importance of PLIN5 in maintaining HSC quiescence in vivo and in vitro. PLIN5 overexpression suppresses the TGF-β1-SMAD2/3 and SNAIL signaling pathways as well as the activation of the signal transducers and activators of transcription 3 (STAT3). These findings derived from experiments in hepatic cell lines LX-2 and Col-GFP, in which overexpression of PLIN5 was able to downregulate the signaling pathways SMAD2/3 and SNAIL activated previously by TGF-β1 treatment. Furthermore, TGF-β1-mediatedinduction of extracellular matrix proteins, such as collagen type I (COL1), Fibronectin, and α-smooth muscle actin (α-SMA), was suppressed by PLIN5. Moreover, STAT3, which is interrelated with TGF-β1 was already basally activated in the cell lines and inhibited by PLIN5 overexpression, leading to a further reduction in HSC activity shown by lowered α-SMA expression. This extension of the intervening mechanisms presents PLIN5 as a potent and pleiotropic target in HSC activation.
Collapse
|
8
|
Westenberger G, Sellers J, Fernando S, Junkins S, Han SM, Min K, Lawan A. Function of Mitogen-Activated Protein Kinases in Hepatic Inflammation. JOURNAL OF CELLULAR SIGNALING 2021; 2:172-180. [PMID: 34557866 PMCID: PMC8457364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The western diet and overuse of anti-inflammatory medication have caused a great deal of stress on the liver. Obesity and the associated inflammatory state in insulin-responsive tissues result in the release of pro-inflammatory cytokine that activates the stress-responsive MAPKs, p38 MAPK, and JNK. These MAPKs have figured prominently as critical effectors in physiological and pathophysiological hepatic inflammation. In contrast, evidence for a role for ERK1/2 in hepatic inflammation has been less well developed. In this review article, we describe recent insights into the physiology and pathophysiology of the role of stress-responsive MAPKs in hepatic inflammation during obesity and liver injury with a focus on macrophages, hepatocytes and hepatic stellate cells. In response to metabolic stress and liver injury, JNK activation in macrophages and hepatocytes promotes the secretion of inflammatory cytokines and macrophage and neutrophil infiltration. p38 MAPK plays an important role in contributing to the progression of hepatic inflammation in response to various hepatic cellular stresses, although the precise substrates mediating these effects in hepatocytes and hepatic stellate cells remain to be identified. Both JNK and p38 MAPK promotes profibrotic behavior in hepatic stellate cells.
Collapse
Affiliation(s)
- Gabrielle Westenberger
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - Jacob Sellers
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - Savanie Fernando
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - Sadie Junkins
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - Sung Min Han
- Department of Aging and Geriatric Research, Institute of Aging, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Kisuk Min
- Division of Kinesiology, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Ahmed Lawan
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA,Correspondence should be addressed to Ahmed Lawan;
| |
Collapse
|