1
|
Yang N, Li M, Li X, Wu L, Wang W, Xu Y, Wang Z, Zhu C, Geng D. MAGL blockade alleviates steroid-induced femoral head osteonecrosis by reprogramming BMSC fate in rat. Cell Mol Life Sci 2024; 81:418. [PMID: 39368012 PMCID: PMC11455816 DOI: 10.1007/s00018-024-05443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 09/08/2024] [Indexed: 10/07/2024]
Abstract
The leading cause of steroid-induced femoral head osteonecrosis (ONFH) is the imbalance of bone homeostasis. Bone marrow-derived mesenchymal stem cell (BMSC) differentiation and fate are closely associated with bone homeostasis imbalance. Blocking monoacylglycerol lipase (MAGL) could effectively ameliorate ONFH by mitigating oxidative stress and apoptosis in BMSCs induced by glucocorticoids (GC). Nevertheless, whether MAGL inhibition can modulate the balance during BMSC differentiation, and therefore improve ONFH, remains elusive. Our study indicates that MAGL inhibition can effectively rescue the enhanced BMSC adipogenic differentiation caused by GC and promote their differentiation toward osteogenic lineages. Cannabinoid receptor 2 (CB2) is the direct downstream target of MAGL in BMSCs, rather than cannabinoid receptor 1(CB1). Using RNA sequencing analyses and a series of in vitro experiments, we confirm that the MAGL blockade-induced enhancement of BMSC osteogenic differentiation is primarily mediated by the phosphoinositide 3-kinases (PI3K)/ the serine/threonine kinase (AKT)/ (glycogen synthase kinase-3 beta) GSK3β pathway. Additionally, MAGL blockade can also reduce GC-induced bone resorption by directly suppressing osteoclastogenesis and indirectly reducing the expression of receptor activator of nuclear factor kappa-Β ligand (RANKL) in BMSCs. Thus, our study proposes that the therapeutic effect of MAGL blockade on ONFH is partly mediated by restoring the balance of bone homeostasis and MAGL may be an effective therapeutic target for ONFH.
Collapse
Affiliation(s)
- Ning Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, 215006, China
- Department of Orthopaedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Meng Li
- Department of Orthopaedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xuefeng Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Lunan Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, Hefei, 230001, China
| | - Wenzhi Wang
- Department of Orthopaedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Zhen Wang
- Department of Orthopaedics, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, 215000, China
| | - Chen Zhu
- Department of Orthopaedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
2
|
Tudorancea IM, Ciorpac M, Stanciu GD, Caratașu C, Săcărescu A, Ignat B, Burlui A, Rezuș E, Creangă I, Alexa-Stratulat T, Tudorancea I, Tamba BI. The Therapeutic Potential of the Endocannabinoid System in Age-Related Diseases. Biomedicines 2022; 10:2492. [PMID: 36289755 PMCID: PMC9599275 DOI: 10.3390/biomedicines10102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
The endocannabinoid system (ECS) dynamically regulates many aspects of mammalian physiology. ECS has gained substantial interest since growing evidence suggests that it also plays a major role in several pathophysiological conditions due to its ability to modulate various underlying mechanisms. Furthermore, cannabinoids, as components of the cannabinoid system (CS), have proven beneficial effects such as anti-inflammatory, immunomodulatory, neuromodulatory, antioxidative, and cardioprotective effects. In this comprehensive review, we aimed to describe the complex interaction between CS and most common age-related diseases such as neuro-degenerative, oncological, skeletal, and cardiovascular disorders, together with the potential of various cannabinoids to ameliorate the progression of these disorders. Since chronic inflammation is postulated as the pillar of all the above-mentioned medical conditions, we also discuss in this paper the potential of CS to ameliorate aging-associated immune system dysregulation.
Collapse
Affiliation(s)
- Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Mitică Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Gabriela Dumitrița Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Cătălin Caratașu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Alina Săcărescu
- Department of Medical Specialties II, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității, 700115 Iași, Romania
- Department of Neurology, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa, 700661 Iași, Romania
| | - Bogdan Ignat
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alexandra Burlui
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Elena Rezuș
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Ioana Creangă
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
- Oncology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Teodora Alexa-Stratulat
- Oncology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Oncology Department, Regional Institute of Oncology, 700483 Iași, Romania
| | - Ionuț Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Cardiology Clinic “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| |
Collapse
|
3
|
The Role of Cannabinoids in Bone Metabolism: A New Perspective for Bone Disorders. Int J Mol Sci 2021; 22:ijms222212374. [PMID: 34830256 PMCID: PMC8621131 DOI: 10.3390/ijms222212374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Novel interest has arisen in recent years regarding bone, which is a very complex and dynamic tissue deputed to several functions ranging from mechanical and protective support to hematopoiesis and calcium homeostasis maintenance. In order to address these tasks, a very refined, continuous remodeling process needs to occur involving the coordinated action of different types of bone cells: osteoblasts (OBs), which have the capacity to produce newly formed bone, and osteoclasts (OCs), which can remove old bone. Bone remodeling is a highly regulated process that requires many hormones and messenger molecules, both at the systemic and the local level. The whole picture is still not fully understood, and the role of novel actors, such as the components of the endocannabinoids system (ECS), including endogenous cannabinoid ligands (ECs), cannabinoid receptors (CBRs), and the enzymes responsible for endogenous ligand synthesis and breakdown, is extremely intriguing. This article reviews the connection between the ECS and skeletal health, supporting the potential use of cannabinoid receptor ligands for the treatment of bone diseases associated with accelerated osteoclastic bone resorption, including osteoporosis and bone metastasis.
Collapse
|
4
|
Ge JW, Deng SJ, Xue ZW, Liu PY, Yu LJ, Li JN, Xia SN, Gu Y, Bao XY, Lan Z, Xu Y, Zhu XL. Imperatorin inhibits mitogen-activated protein kinase and nuclear factor kappa-B signaling pathways and alleviates neuroinflammation in ischemic stroke. CNS Neurosci Ther 2021; 28:116-125. [PMID: 34674376 PMCID: PMC8673701 DOI: 10.1111/cns.13748] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 01/02/2023] Open
Abstract
AIMS Microglia-mediated neuroinflammation plays an important role in the pathological process of ischemic stroke, and the effect of imperatorin on post-stroke neuroinflammation is not fully understood. METHODS Primary microglia were treated with imperatorin for 2 h followed by LPS (100 ng/ml) for 24 h. The expression of inflammatory cytokines was detected by RT-PCR, ELISA, and Western blot. The activation of MAPK and NF-κB signaling pathways were analyzed by Western blot. The ischemic insult was determined using a transient middle cerebral artery occlusion (tMCAO) model in C57BL/6J mice. Behavior tests were used to assess the neurological deficits of MCAO mice. TTC staining was applied to measure infract volume. RESULTS Imperatorin suppressed LPS-induced activation of microglia and pro-inflammatory cytokines release and attenuated ischemic injury in MCAO mice. The results of transcriptome sequencing and Western blot revealed that downregulation of MAPK and NF-κB pathways might contribute to the protective effects of imperatorin. CONCLUSIONS Imperatorin downregulated MAPK and NF-κB signaling pathways and exerted anti-inflammatory effects in ischemic stroke, which indicated that imperatorin might be a potential compound for the treatment of stroke.
Collapse
Affiliation(s)
- Jian-Wei Ge
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Shi-Ji Deng
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Zhi-Wei Xue
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Pin-Yi Liu
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Lin-Jie Yu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Jiang-Nan Li
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Sheng-Nan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Xin-Yu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Zhen Lan
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China.,Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xiao-Lei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China.,Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| |
Collapse
|
5
|
Zanfirescu A, Ungurianu A, Mihai DP, Radulescu D, Nitulescu GM. Targeting Monoacylglycerol Lipase in Pursuit of Therapies for Neurological and Neurodegenerative Diseases. Molecules 2021; 26:5668. [PMID: 34577139 PMCID: PMC8468992 DOI: 10.3390/molecules26185668] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Neurological and neurodegenerative diseases are debilitating conditions, and frequently lack an effective treatment. Monoacylglycerol lipase (MAGL) is a key enzyme involved in the metabolism of 2-AG (2-arachidonoylglycerol), a neuroprotective endocannabinoid intimately linked to the generation of pro- and anti-inflammatory molecules. Consequently, synthesizing selective MAGL inhibitors has become a focus point in drug design and development. The purpose of this review was to summarize the diverse synthetic scaffolds of MAGL inhibitors concerning their potency, mechanisms of action and potential therapeutic applications, focusing on the results of studies published in the past five years. The main irreversible inhibitors identified were derivatives of hexafluoroisopropyl alcohol carbamates, glycol carbamates, azetidone triazole ureas and benzisothiazolinone, whereas the most promising reversible inhibitors were derivatives of salicylketoxime, piperidine, pyrrolidone and azetidinyl amides. We reviewed the results of in-depth chemical, mechanistic and computational studies on MAGL inhibitors, in addition to the results of in vitro findings concerning selectivity and potency of inhibitors, using the half maximal inhibitory concentration (IC50) as an indicator of their effect on MAGL. Further, for highlighting the potential usefulness of highly selective and effective inhibitors, we examined the preclinical in vivo reports regarding the promising therapeutic applications of MAGL pharmacological inhibition.
Collapse
Affiliation(s)
| | - Anca Ungurianu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (A.Z.); (D.P.M.); (D.R.); (G.M.N.)
| | | | | | | |
Collapse
|
6
|
Lei Z, Wu H, Yang Y, Hu Q, Lei Y, Liu W, Nie Y, Yang L, Zhang X, Yang C, Lin T, Tong F, Zhu J, Guo J. Ovariectomy Impaired Hepatic Glucose and Lipid Homeostasis and Altered the Gut Microbiota in Mice With Different Diets. Front Endocrinol (Lausanne) 2021; 12:708838. [PMID: 34276568 PMCID: PMC8278766 DOI: 10.3389/fendo.2021.708838] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
The lower incidence of metabolic diseases of women than men and the increasing morbidity of metabolic disorders of menopausal women indicated that hormones produced by ovaries may affect homeostasis of glucose and lipid metabolism, but the underlying mechanisms remain unclear. To explore the functions of ovaries on regulating glucose and lipid metabolism in females, 8 weeks old C57BL/6 mice were preformed ovariectomy and administrated with normal food diet (NFD) or high fat diet (HFD). Six weeks after ovariectomy, blood biochemical indexes were tested and the morphology and histology of livers were checked. The expression levels of genes related to glucose and lipid metabolism in liver were detected through transcriptome analysis, qPCR and western blot assays. 16S rDNA sequence was conducted to analyze the gut microbiota of mice with ovariectomy and different diets. The serum total cholesterol (TC) was significantly increased in ovariectomized (OVX) mice fed with NFD (OVXN), and serum low density lipoprotein-cholesterol (LDL-C) was significantly increased in both OVXN mice and OVX mice fed with HFD (OVXH). The excessive glycogen storage was found in livers of 37.5% mice from OVXN group, and lipid accumulation was detected in livers of the other 62.5% OVXN mice. The OVXN group was further divided into OVXN-Gly and OVXN-TG subgroups depending on histological results of the liver. Lipid drops in livers of OVXH mice were more and larger than other groups. The expression level of genes related with lipogenesis was significantly increased and the expression level of genes related with β-oxidation was significantly downregulated in the liver of OVXN mice. Ovariectomy also caused the dysbiosis of intestinal flora of OVXN and OVXH mice. These results demonstrated that hormones generated by ovaries played important roles in regulating hepatic glucose and lipid metabolism and communicating with the gut microbiota in females.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, ; Jiao Guo,
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Lanxiang Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Xueying Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Changyuan Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiamin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, ; Jiao Guo,
| |
Collapse
|