1
|
Liang W, Li Y, Ji Y, Kang R, Zhang K, Su X, Li J, Ji M, Wu T, Cao X, Chen J, Huo J. Exosomes derived from bone marrow mesenchymal stem cells induce the proliferation and osteogenic differentiation and regulate the inflammatory state in osteomyelitis in vitro model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03357-4. [PMID: 39168906 DOI: 10.1007/s00210-024-03357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024]
Abstract
Chronic osteomyelitis is a chronic bone infection characterized by progressive osteonecrosis and dead bone formation, which is closely related to persistent infection and chronic inflammation. Exosomes derived from bone marrow-derived mesenchymal stem cells (BMSC) play an important role in bone tissue regeneration and the modulation of inflammatory processes. However, their role and mechanism of action in osteomyelitis have not been reported so far. This paper explores the potential effect of BMSC-derived exosomes on osteomyelitis in vitro model with the aim of providing a theoretical basis for the treatment of osteomyelitis in the future. In this study, exosomes were isolated and extracted from BMSCs and identified. MC3T3-E1 cells were treated with Staphylococcal protein A (SPA) to establish an in vitro model of osteomyelitis. Next, the effects of BMSC-derived exosomes on cell proliferation, apoptosis, angiogenesis, and autophagy in MC3T3-E1 cells treated with SPA were evaluated. Results showed that the proliferation ability of MC3T3-E1 cells increased after co-culture with BMSC-derived exosomes. Moreover, exosomes induced autophagy and osteogenic differentiation in MC3T3-E1 cells. The mRNA and protein levels of factors related to proliferation, differentiation, apoptosis, autophagy, and angiogenesis including β-Catenin, Runx2, Bcl-2, VEGFA, and Beclin-1 upregulated in SPA-treated MC3T3-E1 cells, whereas the levels of inflammatory cytokines including TNF-α, IL-1β, and IL-6 decreased in the supernatant. The results showed that exosomes derived from BMSCs may participate in the attenuation of osteomyelitis by inducing proliferation and osteogenic differentiation and regulating the inflammatory state in bone cells.
Collapse
Affiliation(s)
- Wei Liang
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Yangui Li
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Yihua Ji
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Renjie Kang
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Kaixi Zhang
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Xueyuan Su
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Jiangbo Li
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Mingming Ji
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Taiyong Wu
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Xinjie Cao
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Jianrui Chen
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China.
| | - Jianzhong Huo
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China.
| |
Collapse
|
2
|
Yuan P, Wang ZH, Jiang H, Wang YH, Yang JY, Li LM, Wang WT, Chen J, Li DH, Long SY, Zhang W, He F, Wang WZ. Prevalence and plasma exosome-derive microRNA diagnostic biomarker screening of adolescent idiopathic scoliosis in Yunnan Province, China. Front Pediatr 2024; 12:1308931. [PMID: 38720947 PMCID: PMC11076730 DOI: 10.3389/fped.2024.1308931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Background Idiopathic scoliosis significantly affects the physical and mental health of children and adolescents, with varying prevalence rates in different regions. The occurrence of idiopathic scoliosis is associated with genetic regulation and biochemical factors, but the changes in exosome-derived miRNA profiles among idiopathic scoliosis patients remain unclear. This study aimed to determine the prevalence of idiopathic scoliosis in Yunnan Province, China, and identify key exosome-derived miRNAs in idiopathic scoliosis through a cohort study. Methods From January 2018 to December 2020, a cross-sectional study on idiopathic scoliosis in children and adolescents was conducted in Yunnan Province. A total of 84,460 students from 13 cities and counties in Yunnan Province participated in a scoliosis screening program, with ages ranging from 7 to 19 years. After confirmation through screening and imaging results, patients with severe idiopathic scoliosis and normal control individuals were selected using propensity matching. Subsequently, plasma exosome-derived miRNA sequencing and RT-qPCR validation were performed separately. Based on the validation results, diagnostic performance analysis and target gene prediction were conducted for differential plasma exosome-derived miRNAs. Results The overall prevalence of idiopathic scoliosis in children and adolescents in Yunnan Province was 1.10%, with a prevalence of 0.87% in males and 1.32% in females. The peak prevalence was observed at age 13. Among patients diagnosed with idiopathic scoliosis, approximately 12.8% had severe cases, and there were more cases of double curvature than of single curvature, with thoracolumbar curvature being the most common in the single-curvature group. Sequencing of plasma exosome-derived miRNAs associated with idiopathic scoliosis revealed 56 upregulated and 153 downregulated miRNAs. Further validation analysis confirmed that hsa-miR-27a-5p, hsa-miR-539-5p, and hsa-miR-1246 have potential diagnostic value. Conclusions We gained insights into the epidemiological characteristics of idiopathic scoliosis in Yunnan Province and conducted further analysis of plasma exosome-derived miRNA changes in patients with severe idiopathic scoliosis. This study has provided new insights for the prevention and diagnosis of idiopathic scoliosis, paving the way for exploring clinical biomarkers and molecular regulatory mechanisms. However, further validation and elucidation of the detailed biological mechanisms underlying these findings will be required in the future.
Collapse
Affiliation(s)
- Ping Yuan
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- The First Clinical College, Kunming Medical University, Kunming, Yunnan, China
| | - Zhi-Hua Wang
- Trauma Medicine Centre, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hong Jiang
- Department of Medical Imaging, Kunming Children’s Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Yang-Hao Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- The First Clinical College, Kunming Medical University, Kunming, Yunnan, China
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jian-Yi Yang
- Department of Orthopaedics, Kunming Guandu District People’s Hospital, Kunming, Yunnan, China
| | - Lu-Ming Li
- Department of Orthopedics, Yunnan Sino-German Orthopedic Hospital, Kunming, Yunnan, China
| | - Wen-Tong Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- The First Clinical College, Kunming Medical University, Kunming, Yunnan, China
| | - Jing Chen
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Deng-Hui Li
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- The First Clinical College, Kunming Medical University, Kunming, Yunnan, China
| | - Sheng-Yu Long
- The First Clinical College, Kunming Medical University, Kunming, Yunnan, China
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Wan Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- The First Clinical College, Kunming Medical University, Kunming, Yunnan, China
| | - Fei He
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Wei-Zhou Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- The First Clinical College, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Shi H, Yang Y, Xing H, Jia J, Xiong W, Guo S, Yang S. Exosomal non-coding RNAs: Emerging insights into therapeutic potential and mechanisms in bone healing. J Tissue Eng 2024; 15:20417314241286606. [PMID: 39371940 PMCID: PMC11456177 DOI: 10.1177/20417314241286606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Exosomes are nano-sized extracellular vesicles (EVs) released by diverse types of cells, which affect the functions of targeted cells by transporting bioactive substances. As the main component of exosomes, non-coding RNA (ncRNA) is demonstrated to impact multiple pathways participating in bone healing. Herein, this review first introduces the biogenesis and secretion of exosomes, and elucidates the role of the main cargo in exosomes, ncRNAs, in mediating intercellular communication. Subsequently, the potential molecular mechanism of exosomes accelerating bone healing is elucidated from the following four aspects: macrophage polarization, vascularization, osteogenesis and osteoclastogenesis. Then, we systematically introduce construction strategies based on modified exosomes in bone regeneration field. Finally, the clinical trials of exosomes for bone healing and the challenges of exosome-based therapies in the biomedical field are briefly introduced, providing solid theoretical frameworks and optimization methods for the clinical application of exosomes in orthopedics.
Collapse
Affiliation(s)
- Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Yang
- Department of Rehabilitation, The First Hospital of China Medical University, Shenyang, China
| | - Hao Xing
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jialin Jia
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xinjiang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Minbo J, Feng C, Wen H, Jamil M, Zhang H, Abdel-Maksoud MA, Zakri AM, Almanaa TN, Alfuraydi AA, Almunqedhi BM. Up-regulated and hypomethylated genes are causative factors and diagnostic markers of osteoporosis. Am J Transl Res 2023; 15:6042-6057. [PMID: 37969207 PMCID: PMC10641362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/25/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Due to the lack of sensitive diagnostic biomarkers for osteoporosis (OP), there is an urgent need to identify and uncover biomarkers associated with the disease in order to facilitate early clinical diagnosis and effective intervention strategies. METHODS GEO2R was employed to conduct a screening of differentially expressed genes (DEGs) within the transcriptome sequencing data obtained from blood samples of OP patients within the GSE163849 dataset. Subsequently, we conducted expression confirmation of the identified DEGs using an additional dataset, GSE35959. To further explore Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, MicroRNA (miRNA) interactions, and drug predictions, we employed the DAVID, miRTarBase, and DrugBank databases. For validation purposes, clinical OP samples paired with normal controls were collected from the Pakistani population. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to assess the expression levels of DEGs and miRNA, while targeted bisulfite sequencing (bisulfite-seq) analysis was used to investigate methylation patterns. DNA and RNA from clinical OP and normal control samples were extracted using appropriate methods. RESULTS Out of total identified 269 DEGs, EGFR (epidermal growth factor receptor), HMOX1 (heme oxygenase-1), PGR (progesterone receptor), CXCL10 (C-X-C motif chemokine ligand 10), CCL5 (C-C motif chemokine ligand 5), and IL12B (interleukin 12B) were prioritized as top DEGs in OP patients. Expression validation of these genes on additional Gene Expression Omnibus (GEO) dataset and Pakistani OP patients revealed consistent significant up-regulation of these genes in OP patients. Receiver operating characteristic (ROC) analysis demonstrated that these DEGs displayed considerable diagnostic accuracy for detecting OP. Targeted bisulfite-seq analysis further revealed that EGFR, HMOX1, PGR, CXCL10, CCL5, and IL12B were hypomethylated in OP patients. Moreover, has-miR-27a-5p, a common expression regulator of the EGFR, HMOX1, PGR, CXCL10, CCL5, and IL12B was also significantly down-regulated in OP patients. CONCLUSION The DEGs that have been identified hold significant potential for the future development of diagnostic and treatment approaches for OP in preclinical and clinical applications.
Collapse
Affiliation(s)
- Jiang Minbo
- Department of Orthopedic, Shanghai Songjiang District Central HospitalShanghai 201699, China
| | - Chen Feng
- Department of Orthopedics, Hongqi HospitalMuDanjiang 157011, Heilongjiang, China
| | - Hongli Wen
- Department of Foreign Language, MuDanjiang Medical UniversityMuDanjiang 157011, Heilongjiang, China
| | - Muhammad Jamil
- PARC Arid Zone Research CenterDera Ismail Khan 29050, Pakistan
| | - Heng Zhang
- Department of Orthopedic, Shanghai Songjiang District Central HospitalShanghai 201699, China
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Adel M Zakri
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud UniversityRiyadh 11451, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Akram A Alfuraydi
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bandar M Almunqedhi
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Liu R, Wu S, Liu W, Wang L, Dong M, Niu W. microRNAs delivered by small extracellular vesicles in MSCs as an emerging tool for bone regeneration. Front Bioeng Biotechnol 2023; 11:1249860. [PMID: 37720323 PMCID: PMC10501734 DOI: 10.3389/fbioe.2023.1249860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Bone regeneration is a dynamic process that involves angiogenesis and the balance of osteogenesis and osteoclastogenesis. In bone tissue engineering, the transplantation of mesenchymal stem cells (MSCs) is a promising approach to restore bone homeostasis. MSCs, particularly their small extracellular vesicles (sEVs), exert therapeutic effects due to their paracrine capability. Increasing evidence indicates that microRNAs (miRNAs) delivered by sEVs from MSCs (MSCs-sEVs) can alter gene expression in recipient cells and enhance bone regeneration. As an ideal delivery vehicle of miRNAs, MSCs-sEVs combine the high bioavailability and stability of sEVs with osteogenic ability of miRNAs, which can effectively overcome the challenge of low delivery efficiency in miRNA therapy. In this review, we focus on the recent advancements in the use of miRNAs delivered by MSCs-sEVs for bone regeneration and disorders. Additionally, we summarize the changes in miRNA expression in osteogenic-related MSCs-sEVs under different microenvironments.
Collapse
Affiliation(s)
| | | | | | | | - Ming Dong
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Weidong Niu
- School of Stomatology, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Cai Z, Liu F, Li Y, Bai L, Feng M, Li S, Ma W, Shi S. Functional micro-RNA drugs acting as a fate manipulator in the regulation of osteoblastic death. NANOSCALE 2023; 15:12840-12852. [PMID: 37482769 DOI: 10.1039/d3nr02318d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Bone loss is prevalent in clinical pathological phenomena such as osteoporosis, which is characterized by decreased osteoblast function and number, increased osteoclast activity, and imbalanced bone homeostasis. However, current treatment strategies for bone diseases are limited. Regulated cell death (RCD) is a programmed cell death pattern activated by the expression of specific genes in response to environmental changes. Various studies have shown that RCD is closely associated with bone diseases, and manipulating the death fate of osteoblasts could contribute to effective bone treatment. Recently, microRNA-targeting therapy drugs have emerged as a potential solution because of their precise targeting, powerful curative effect, and limited side effects. Nevertheless, their clinical application is limited by their inherent instability, easy enzymatic degradation, and poor membrane penetrability. To address this challenge, a self-assembling tetrahedral DNA nanostructure (TDN)-based microRNA (Tmi) delivery system has been proposed. TDN features excellent biocompatibility, cell membrane penetrability, serum stability, and modification versatility, making it an ideal nucleic acid carrier for miRNA protection and intracellular transport. Once inside cells, Tmi can dissociate and release miRNAs to manipulate key molecules in the RCD signaling pathway, thereby regulating bone homeostasis and curing diseases caused by abnormal RCD activation. In this paper, we discuss the impact of the miRNA network on the initiation and termination of four critical RCD programs in bone tissues: apoptosis, autophagy, pyroptosis, and ferroptosis. Furthermore, we present the Tmi delivery system as a miRNA drug vector. This provides insight into the clinical translation of miRNA nucleic acid drugs and the application of miRNA drugs in bone diseases.
Collapse
Affiliation(s)
- Zhengwen Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Fengshuo Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Long Bai
- The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Maogeng Feng
- The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Deng L, Huo PC, Feng MT, Wang RL, Jing R, Luo LJ. miR-27a-5p alleviates periodontal inflammation by targeting phosphatase and tensin homolog deleted on chromosome ten. Mol Oral Microbiol 2023. [PMID: 37216657 DOI: 10.1111/omi.12416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/05/2023] [Accepted: 04/04/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs), a type of non-coding RNA, have been demonstrated to be essential posttranscriptional modulators in oral diseases and inflammatory responses. However, the specific role of miR-27a-5p in periodontitis requires further investigation. In this study, we used both cellular and animal models to determine how miR-27a-5p affects the pathogenesis of periodontitis and its associated biological functions. METHODS Quantitative real-time polymerase chain reaction and western blotting were used to analyze the expression of cytokines, phosphatase and tensin homolog deleted on chromosome ten (PTEN), and miR-27a-5p transcription. Investigation of alveolar bone resorption and inflammation of the periodontium in ligature-induced periodontitis in mice was performed using micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, and tartrate-resistant acid phosphatase (TRAP) staining. The binding of miR-27a-5p and PTEN was predicted using the TargetScan database and experimentally confirmed using dual luciferase reporter gene assays. RESULTS The inflamed gingiva showed lower levels of miR-27a-5p. Macrophages from miR-27a-5p-/- mice produced much higher quantities of pro-inflammatory cytokines owing to the stimulation of Porphyromonas gingivalis lipopolysaccharide, and miR-27a-5p-/- mice with ligature-induced periodontitis also exhibited more severe alveolar bone resorption and damage to the periodontium. Target validation assays identified PTEN as a direct target of bona. Blocking PTEN expression partially reduced inflammation, both in vitro and in vivo. CONCLUSIONS miR-27a-5p alleviated the inflammatory response in periodontitis by targeting PTEN.
Collapse
Affiliation(s)
- Li Deng
- Department of Periodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Peng-Cheng Huo
- Department of Periodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Mei-Ting Feng
- Department of Periodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Rui-Ling Wang
- Department of Periodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Rui Jing
- Department of Periodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Li-Jun Luo
- Department of Periodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
8
|
Rouco H, García-García P, Briffault E, Diaz-Rodriguez P. Modulating osteoclasts with nanoparticles: A path for osteoporosis management? WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1885. [PMID: 37037204 DOI: 10.1002/wnan.1885] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 04/12/2023]
Abstract
Osteoclasts are the cells responsible for the bone resorption process during bone remodeling. In a healthy situation, this process results from an equilibrium between new matrix formation by osteoblast and matrix resorption by osteoclast. Osteoporosis (OP) is a systemic bone disease characterized by a decreased bone mass density and alterations in bone microarchitecture, increasing fracture predisposition. Despite the variety of available therapies for OP management there is a growing gap in its treatment associated to the low patients´ adherence owing to concerns related with long-term efficacy or safety. This makes the development of new and safe treatments necessary. Among the newly developed strategies, the use of synthetic and natural nanoparticles to modulate osteoclasts differentiation, activity, apoptosis or crosstalk with osteoblasts have arisen. Synthetic nanoparticles exert their therapeutic effect either by loading antiresorptive drugs or including molecules for osteoclasts gene regulation. Moreover, this control over osteoclasts can be improved by their targeting to bone extracellular matrix or osteoclast membranes. Furthermore, natural nanoparticles, also known as extracellular vesicles, have been identified to play a key role in bone homeostasis. Consequently, these systems have been widely studied to control osteoblasts and osteoclasts under variable environments. Additionally, the ability to bioengineer extracellular vesicles has allowed to obtain biomimetic systems with desirable characteristics as drug carriers for osteoclasts. The analyzed information reveals the possibility of modulating osteoclasts by different mechanisms through nanoparticles decreasing bone resorption. These findings suggest that controlling osteoclast activity using nanoparticles has the potential to improve osteoporosis management. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Helena Rouco
- School of Pharmacy, University of Nottingham, Nottingham, UK
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Patricia García-García
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Institute of Biomedical Technologies (ITB), La Laguna, Spain
| | - Erik Briffault
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, La Laguna, Spain
| | - Patricia Diaz-Rodriguez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Institute of Biomedical Technologies (ITB), Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
9
|
Yang Y, Yuan L, Cao H, Guo J, Zhou X, Zeng Z. Application and Molecular Mechanisms of Extracellular Vesicles Derived from Mesenchymal Stem Cells in Osteoporosis. Curr Issues Mol Biol 2022; 44:6346-6367. [PMID: 36547094 PMCID: PMC9776574 DOI: 10.3390/cimb44120433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis (OP) is a chronic bone disease characterized by decreased bone mass, destroyed bone microstructure, and increased bone fragility. Accumulative evidence shows that extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) (MSC-EVs), especially exosomes (Exos), exhibit great potential in the treatment of OP. However, the research on MSC-EVs in the treatment of OP is still in the initial stage. The potential mechanism has not been fully clarified. Therefore, by reviewing the relevant literature of MSC-EVs and OP in recent years, we summarized the latest application of bone targeted MSC-EVs in the treatment of OP and further elaborated the potential mechanism of MSC-EVs in regulating bone formation, bone resorption, bone angiogenesis, and immune regulation through internal bioactive molecules to alleviate OP, providing a theoretical basis for the related research of MSC-EVs in the treatment of OP.
Collapse
Affiliation(s)
- Yajing Yang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Lei Yuan
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Correspondence: (X.Z.); (Z.Z.)
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Correspondence: (X.Z.); (Z.Z.)
| |
Collapse
|
10
|
The potential effect of BMSCs with miR-27a in improving steroid-induced osteonecrosis of the femoral head. Sci Rep 2022; 12:21051. [PMID: 36473889 PMCID: PMC9726984 DOI: 10.1038/s41598-022-25407-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Steroid induced osteonecrosis of the femoral head (ONFH) frequently leads to femoral head collapse and subsequent hip arthritis. This study aimed to investigate the potential therapeutic mechanism of miR-27a on steroid-induced ONFH. Levels of IL-6, TNF-α, miR-27a, Runx2, PPAR-γ and ApoA5 were first examined in bone marrow tissues from steroid-induced ONFH and controls. Subsequently, we overexpressed or knocked down miR-27a in bone marrow mesenchymal stem cells (BMSCs) and detected cell proliferation, osteogenic differentiation, adipogenic differentiation. In addition, miR-27a mimics and BMSCs were injected into the established steroid-induced ONFH rats, and the osteoprotective effects of both were evaluated. Dual luciferase reporter was used to test the targeting effect of miR-27a-3p and PPARG. miR-27a and Runx2 were lowly expressed in steroid-induced ONFH, PPAR-γ and ApoA5 were highly expressed. Overexpression of miR-27a in BMSCs promoted cell proliferation and osteogenic differentiation, inhibited adipogenic differentiation. Furthermore, increasing miR-27a and BMSCs obviously reduced bone loss in steroid induced ONFH rats. The expressions of Runx2 in BMSCs and steroid-induced ONFH rats was significantly up-regulated, while IL-6, TNF-α, PPAR-γ and ApoA5 were down-regulated with miR-27a overexpression. Additionally, PPARG was the target of miR-27a-3p. The results of the present study reveal a role for miR-27a in promoting osteogenesis and may have a synergistic effect with BMSCs.
Collapse
|
11
|
Data Mining and Network Pharmacology Analysis of Kidney-Tonifying Herbs on the Treatment of Renal Osteodystrophy Based on the Theory of "Kidney Governing Bones" in Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1116923. [PMID: 36238608 PMCID: PMC9552684 DOI: 10.1155/2022/1116923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022]
Abstract
Background Renal osteodystrophy (ROD) secondary to chronic kidney disease is closely associated with osteoporosis and fractures. Based on the theory of “kidney governing bones” in traditional Chinese medicine (TCM), treating bone diseases from the perspective of the kidney has become a basic principle of treating ROD. However, there are many kidney-tonifying herbs and their mechanisms of treating ROD are not clear. Therefore, our study intends to use data mining and network pharmacology to study the commonly used kidney-tonifying herbs, as well as their active ingredients and mechanisms of treating ROD. Methods We established a clinical ROD database by searching PubMed, CNKI, and other databases and screened out a core herbal combination of treating ROD. Furthermore, by using databases such as Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and GeneCards, we obtained active ingredients and targets of the core herbal combination and ROD targets. The STRING website and Cytoscape software were then used to obtain information on key active ingredients and key targets. Finally, we conducted GO and KEGG analyses using the Metascape website and molecular docking using the AutoDock Vina software. Results Our study eventually included 58 prescriptions and 116 herbs of treating ROD. Through data mining, we found that yin-yang-huo, du-zhong, and bu-gu-zhi (YDB) constituted a core herbal combination to treat ROD. Network pharmacology showed that YDB mainly acted on targets such as estrogen receptor alpha through active ingredients such as quercetin by mitogen-activated protein kinase and other signaling pathways. Conclusion Many ingredients, targets, and pathways are involved in the treatment of YDB for ROD. Specifically, the flavonoids contained in YDB have great potential for ROD treatment.
Collapse
|
12
|
Carro Vázquez D, Emini L, Rauner M, Hofbauer C, Grillari J, Diendorfer AB, Eastell R, Hofbauer LC, Hackl M. Effect of Anti-Osteoporotic Treatments on Circulating and Bone MicroRNA Patterns in Osteopenic ZDF Rats. Int J Mol Sci 2022; 23:6534. [PMID: 35742976 PMCID: PMC9224326 DOI: 10.3390/ijms23126534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Bone fragility is an adverse outcome of type 2 diabetes mellitus (T2DM). The underlying molecular mechanisms have, however, remained largely unknown. MicroRNAs (miRNAs) are short non-coding RNAs that control gene expression in health and disease states. The aim of this study was to investigate the genome-wide regulation of miRNAs in T2DM bone disease by analyzing serum and bone tissue samples from a well-established rat model of T2DM, the Zucker Diabetic Fatty (ZDF) model. We performed small RNA-sequencing analysis to detect dysregulated miRNAs in the serum and ulna bone of the ZDF model under placebo and also under anti-sclerostin, PTH, and insulin treatments. The dysregulated circulating miRNAs were investigated for their cell-type enrichment to identify putative donor cells and were used to construct gene target networks. Our results show that unique sets of miRNAs are dysregulated in the serum (n = 12, FDR < 0.2) and bone tissue (n = 34, FDR < 0.2) of ZDF rats. Insulin treatment was found to induce a strong dysregulation of circulating miRNAs which are mainly involved in metabolism, thereby restoring seven circulating miRNAs in the ZDF model to normal levels. The effects of anti-sclerostin treatment on serum miRNA levels were weaker, but affected miRNAs were shown to be enriched in bone tissue. PTH treatment did not produce any effect on circulating or bone miRNAs in the ZDF rats. Altogether, this study provides the first comprehensive insights into the dysregulation of bone and serum miRNAs in the context of T2DM and the effect of insulin, PTH, and anti-sclerostin treatments on circulating miRNAs.
Collapse
Affiliation(s)
- David Carro Vázquez
- TAmiRNA GmbH, Department of Research, Leberstrasse 20, 1110 Vienna, Austria; (D.C.V.); (A.B.D.)
| | - Lejla Emini
- Center for Healthy Aging and Department of Medicine III, Technische Universität Dresden, 01069 Dresden, Germany; (L.E.); (M.R.); (C.H.); (L.C.H.)
| | - Martina Rauner
- Center for Healthy Aging and Department of Medicine III, Technische Universität Dresden, 01069 Dresden, Germany; (L.E.); (M.R.); (C.H.); (L.C.H.)
| | - Christine Hofbauer
- Center for Healthy Aging and Department of Medicine III, Technische Universität Dresden, 01069 Dresden, Germany; (L.E.); (M.R.); (C.H.); (L.C.H.)
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology in Cooperation with AUVA, Ludwig Boltzmann Society, 1200 Vienna, Austria;
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andreas B. Diendorfer
- TAmiRNA GmbH, Department of Research, Leberstrasse 20, 1110 Vienna, Austria; (D.C.V.); (A.B.D.)
| | - Richard Eastell
- Academic Unit of Bone Metabolism and Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2RX, UK;
| | - Lorenz C. Hofbauer
- Center for Healthy Aging and Department of Medicine III, Technische Universität Dresden, 01069 Dresden, Germany; (L.E.); (M.R.); (C.H.); (L.C.H.)
| | - Matthias Hackl
- TAmiRNA GmbH, Department of Research, Leberstrasse 20, 1110 Vienna, Austria; (D.C.V.); (A.B.D.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
13
|
Zhang W, Huang P, Lin J, Zeng H. The Role of Extracellular Vesicles in Osteoporosis: A Scoping Review. MEMBRANES 2022; 12:membranes12030324. [PMID: 35323799 PMCID: PMC8948898 DOI: 10.3390/membranes12030324] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
As an insidious metabolic bone disease, osteoporosis plagues the world, with high incidence rates. Patients with osteoporosis are prone to falls and becoming disabled, and their cone fractures and hip fractures are very serious, so the diagnosis and treatment of osteoporosis is very urgent. Extracellular vesicles (EVs) are particles secreted from cells to the outside of the cell and they are wrapped in a bilayer of phospholipids. According to the size of the particles, they can be divided into three categories, namely exosomes, microvesicles, and apoptotic bodies. The diameter of exosomes is 30–150 nm, the diameter of microvesicles is 100–1000 nm, and the diameter of apoptotic bodies is about 50–5000 nm. EVs play an important role in various biological process and diseases including osteoporosis. In this review, the role of EVs in osteoporosis is systematically reviewed and some insights for the prevention and treatment of osteoporosis are provided.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Bone & Joint Surgery/National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Pengzhou Huang
- National Cancer Center & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China;
| | - Jianjing Lin
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing 100044, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Correspondence: (J.L.); (H.Z.)
| | - Hui Zeng
- Department of Bone & Joint Surgery/National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China;
- Correspondence: (J.L.); (H.Z.)
| |
Collapse
|