1
|
Orso R, Creutzberg KC, Begni V, Petrillo G, Cattaneo A, Riva MA. Emotional dysregulation following prenatal stress is associated with altered prefrontal cortex responsiveness to an acute challenge in adolescence. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111162. [PMID: 39383932 DOI: 10.1016/j.pnpbp.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Exposure to prenatal stress (PNS) has the potential to elicit multiple neurobiological alterations and increase the susceptibility to psychiatric disorders. Moreover, gestational stress may sensitize the brain toward an altered response to subsequent challenges. Here, we investigated the effects of PNS in rats and assessed whether these animals exhibit an altered brain responsiveness to an acute stress (AS) during adolescence. From gestational day 14 until delivery, Sprague Dawley dams were exposed to PNS or left undisturbed. During adolescence (PND38 to PND41), offspring were tested in the social interaction and splash test. At PND44 half of the animals were exposed to 5 min of forced swim stress. Males and Females exposed to PNS showed reduced sociability and increased anhedonic-like behavior. At the molecular level, exposure of adolescent rats to AS produced increased activation of the amygdala and ventral and dorsal hippocampus. Regarding the prefrontal cortex (PFC), we observed a pronounced activation in PNS males exposed to AS. Cell-type specific transcriptional analyses revealed a significant imbalance in the activation of PFC excitatory and inhibitory neurons in PNS males and females exposed to AS. Furthermore, stressed males exhibited disrupted HPA-axis function, while females showed impairments in the modulation of antioxidant genes. Our study shows that PNS induces emotional dysregulation and alters the responsiveness of the PFC to an acute stressor. Moreover, the disruption of excitatory and inhibitory balance during adolescence could influence the ability to respond to challenging events that may contribute to precipitate a full-blown pathologic condition.
Collapse
Affiliation(s)
- Rodrigo Orso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | | | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Giulia Petrillo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
2
|
Cattaneo A, Begni V, Zonca V, Riva MA. Early life adversities, psychopathologies and novel pharmacological strategies. Pharmacol Ther 2024; 260:108686. [PMID: 38969307 DOI: 10.1016/j.pharmthera.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Exposure to adversities during early life stages (early life adversities - ELA), ranging from pregnancy to adolescence, represents a major risk factor for the vulnerability to mental disorders. Hence, it is important to understand the molecular and functional underpinning of such relationship, in order to develop strategies aimed at reducing the psychopathologic burden associated with ELA, which may eventually lead to a significant improvement in clinical practice. In this review, we will initially recapitulate clinical and preclinical evidence supporting the link between ELA and psychopathology and we will primarily discuss the main biological mechanisms that have been described as potential mediators of the effects of ELA on the psychopathologic risk, including the role for genetic factors as well as sex differences. The knowledge emerging from these studies may be instrumental for the development of novel therapeutic strategies aimed not only at correcting the deficits that emerge from ELA exposure, but also in preventing the manifestation of a full-blown psychopathologic condition. With this respect, we will specifically focus on adolescence as a key time frame for disease onset as well as for early therapeutic intervention. We believe that incorporating clinical and preclinical research data in the context of early life adversities can be instrumental to elucidate the mechanisms contributing to the risk for psychopathology or that may promote resilience. This will ultimately allow the identification of 'at risk' individuals who may benefit from specific forms of interventions that, by interfering with disease trajectories, could result in more benign clinical outcomes.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Valentina Zonca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
3
|
Buck T, Dong E, McCarthy M, Guidotti A, Sodhi M. Prenatal stress alters transcription of NMDA-type glutamate receptors in the hippocampus. Neurosci Lett 2024; 836:137886. [PMID: 38917870 DOI: 10.1016/j.neulet.2024.137886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Prenatal stress increases the risk of neurodevelopmental disorders. NMDA-type glutamate receptor (NMDAR) activity plays an important pathophysiological role in the cortico-hippocampal circuit in these disorders. We tested the hypothesis that transcription of NMDAR subunits is modified in the frontal cortex (FCx) and hippocampus after exposure to prenatal restraint stress (PRS) in mice. At 10 weeks of age, male PRS offspring (n = 20) and non-stressed controls (NS, n = 20) were treated with haloperidol (1 mg/kg), clozapine (5 mg/kg) or saline twice daily for 5 days, before measuring social approach (SOC). Saline-treated and haloperidol-treated PRS mice had reduced SOC relative to NS (P < 0.01), but clozapine-treated PRS mice had similar SOC to NS mice. These effects of PRS were associated with increased transcription of NMDAR subunits encoded by GRIN2A and GRIN2B genes in the hippocampus but not FCx. GRIN transcription in FCx correlated positively with SOC, but hippocampal GRIN transcription had negative correlation with SOC. The ratio of GRIN2A/GRIN2B transcription is known to increase during development but was lower in PRS mice. These results suggest that GRIN2A and GRIN2B transcript levels are modified in the hippocampus by PRS, leading to life-long deficits in social behavior. These data have some overlap with the molecular pathophysiology of schizophrenia. Similar to PRS in mice, schizophrenia, has been associated with social withdrawal, with increased GRIN2 expression in the hippocampus, and reduced GRIN2A/GRIN2B expression ratios in the hippocampus. These findings suggest that PRS in mice may have construct validity as a preclinical model for antipsychotic drug development.
Collapse
Affiliation(s)
- Tristram Buck
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Erbo Dong
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA
| | - Michael McCarthy
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Alessandro Guidotti
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Monsheel Sodhi
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
4
|
Feng YF, Zhou YY, Duan KM. The Role of Extrasynaptic GABA Receptors in Postpartum Depression. Mol Neurobiol 2024; 61:385-396. [PMID: 37612480 DOI: 10.1007/s12035-023-03574-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Postpartum depression is a serious disease with a high incidence and severe impact on pregnant women and infants, but its mechanism remains unclear. Recent studies have shown that GABA receptors, especially extrasynaptic receptors, are closely associated with postpartum depression. There are many different structures of GABA receptors, so different types of receptors have different functions, even though they transmit information primarily through GABA. In this review, we focus on the function of GABA receptors, especially extrasynaptic GABA receptors, and their association with postpartum depression. We have shown that the extrasynaptic GABA receptor has a significant impact on the activity and function of neurons through tonic inhibition. The extrasynaptic receptor and its ligands undergo drastic changes during pregnancy and childbirth. Abnormal changes or the body's inability to adjust and recover may be an important cause of postpartum depression. Finally, by reviewing the mechanisms of several novel antidepressants, we suggest that extrasynaptic receptors may be potential targets for the treatment of postpartum depression.
Collapse
Affiliation(s)
- Yun Fei Feng
- Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yin Yong Zhou
- Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Kai Ming Duan
- Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
5
|
Creutzberg KC, Begni V, Orso R, Lumertz FS, Wearick-Silva LE, Tractenberg SG, Marizzoni M, Cattaneo A, Grassi-Oliveira R, Riva MA. Vulnerability and resilience to prenatal stress exposure: behavioral and molecular characterization in adolescent rats. Transl Psychiatry 2023; 13:358. [PMID: 37993429 PMCID: PMC10665384 DOI: 10.1038/s41398-023-02653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Exposure to stress can lead to long lasting behavioral and neurobiological consequences, which may enhance the susceptibility for the onset of mental disorders. However, there are significant individual differences in the outcome of stress exposure since only a percentage of exposed individuals may show pathological consequences, whereas others appear to be resilient. In this study, we aimed to characterize the effects of prenatal stress (PNS) exposure in rats at adolescence and to identify subgroup of animals with a differential response to the gestational manipulation. PNS adolescent offspring (regardless of sex) showed impaired emotionality in different pathological domains, such as anhedonia, anxiety, and sociability. However, using cluster analysis of the behavioral data we could identify 70% of PNS-exposed animals as vulnerable (PNS-vul), whereas the remaining 30% were considered resilient (PNS-res). At the molecular level, we found that PNS-res males show a reduced basal activation of the ventral hippocampus whereas other regions, such as amygdala and dorsal hippocampus, show significant PNS-induced changes regardless from vulnerability or resilience. Taken together, our results provide evidence of the variability in the behavioral and neurobiological effects of PNS-exposed offspring at adolescence. While these data may advance our understanding of the association between exposure to stress during gestation and the risk for psychopathology, the investigation of the mechanisms associated to stress vulnerability or resilience may be instrumental to develop novel strategies for therapeutic intervention.
Collapse
Affiliation(s)
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Rodrigo Orso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | | | - Saulo Gantes Tractenberg
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Lab of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, Brescia, 25125, Italy
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rodrigo Grassi-Oliveira
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
6
|
Creutzberg KC, Begni V, Marchisella F, Papp M, Riva MA. Early effects of lurasidone treatment in a chronic mild stress model in male rats. Psychopharmacology (Berl) 2023; 240:1001-1010. [PMID: 36820870 PMCID: PMC10006266 DOI: 10.1007/s00213-023-06343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
RATIONALE Stress represents a major contributor to the development of mental illness. Accordingly, exposure of adult rats to chronic stress represents a valuable tool to investigate the ability of a pharmacological intervention to counteract the adverse effects produced by stress exposure. OBJECTIVES The aim of this study was to perform a time course analysis of the treatment with the antipsychotic drug lurasidone in normalizing the anhedonic phenotype in the chronic mild stress (CMS) model in order to identify early mechanisms that may contribute to its therapeutic activity. METHODS Male Wistar rats were exposed to CMS or left undisturbed for 7 weeks. After two weeks of stress, both controls and CMS rats were randomly divided into two subgroups that received vehicle or lurasidone for five weeks. Weekly measures of sucrose intake were recorded to evaluate anhedonic behavior, and animals were sacrificed at different weeks of treatment for molecular analyses. RESULTS We found that CMS-induced anhedonia was progressively improved by lurasidone treatment. Interestingly, after two weeks of lurasidone treatment, 50% of the animals showed a full recovery of the phenotype, which was associated with increased activation of the prefrontal and recruitment of parvalbumin-positive cells that may lead to a restoration of excitatory/inhibitory balance. CONCLUSION These results suggest that the capacity of lurasidone to normalize anhedonia at an early stage of treatment may depend on its ability to modulate the function of the prefrontal cortex.
Collapse
Affiliation(s)
- Kerstin Camile Creutzberg
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Francesca Marchisella
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125, Brescia, Italy.
| |
Collapse
|
7
|
Fidilio A, Grasso M, Caruso G, Musso N, Begni V, Privitera A, Torrisi SA, Campolongo P, Schiavone S, Tascedda F, Leggio GM, Drago F, Riva MA, Caraci F. Prenatal stress induces a depressive-like phenotype in adolescent rats: The key role of TGF-β1 pathway. Front Pharmacol 2022; 13:1075746. [DOI: 10.3389/fphar.2022.1075746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Stressful experiences early in life, especially in the prenatal period, can increase the risk to develop depression during adolescence. However, there may be important qualitative and quantitative differences in outcome of prenatal stress (PNS), where some individuals exposed to PNS are vulnerable and develop a depressive-like phenotype, while others appear to be resilient. PNS exposure, a well-established rat model of early life stress, is known to increase vulnerability to depression and a recent study demonstrated a strong interaction between transforming growth factor-β1 (TGF-β1) gene and PNS in the pathogenesis of depression. Moreover, it is well-known that the exposure to early life stress experiences induces brain oxidative damage by increasing nitric oxide levels and decreasing antioxidant factors. In the present work, we examined the role of TGF-β1 pathway in an animal model of adolescent depression induced by PNS obtained by exposing pregnant females to a stressful condition during the last week of gestation. We performed behavioral tests to identify vulnerable or resilient subjects in the obtained litters (postnatal day, PND > 35) and we carried out molecular analyses on hippocampus, a brain area with a key role in the pathogenesis of depression. We found that female, but not male, PNS adolescent rats exhibited a depressive-like behavior in forced swim test (FST), whereas both male and female PNS rats showed a deficit of recognition memory as assessed by novel object recognition test (NOR). Interestingly, we found an increased expression of type 2 TGF-β1 receptor (TGFβ-R2) in the hippocampus of both male and female resilient PNS rats, with higher plasma TGF-β1 levels in male, but not in female, PNS rats. Furthermore, PNS induced the activation of oxidative stress pathways by increasing inducible nitric oxide synthase (iNOS), NADPH oxidase 1 (NOX1) and NOX2 levels in the hippocampus of both male and female PNS adolescent rats. Our data suggest that high levels of TGF-β1 and its receptor TGFβ-R2 can significantly increase the resiliency of adolescent rats to PNS, suggesting that TGF-β1 pathway might represent a novel pharmacological target to prevent adolescent depression in rats.
Collapse
|
8
|
Petroni V, Subashi E, Premoli M, Memo M, Lemaire V, Pietropaolo S. Long-term behavioral effects of prenatal stress in the Fmr1-knock-out mouse model for fragile X syndrome. Front Cell Neurosci 2022; 16:917183. [PMID: 36385949 PMCID: PMC9647640 DOI: 10.3389/fncel.2022.917183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
Fragile X syndrome (FXS) is a major neurodevelopmental disorder and the most common monogenic cause of autism spectrum disorder (ASD). FXS is caused by a mutation in the X-linked FMR1 gene leading to the absence of the FMRP protein, inducing several behavioral deficits, including motor, emotional, cognitive, and social abnormalities. Beside its clear genetic origins, FXS can be modulated by environmental factors, e.g., stress exposure: indeed the behavioral phenotype of FXS, as well as of ASD patients can be exacerbated by the repeated experience of stressful events, especially early in life. Here we investigated the long-term effects of prenatal exposure to unpredictable chronic stress on the behavioral phenotype of the Fmr1-knock-out (KO) mouse model for FXS and ASD. Mice were tested for FXS- and ASD-relevant behaviors first at adulthood (3 months) and then at aging (18 months), in order to assess the persistence and the potential time-related progression of the stress effects. Stress induced the selective emergence of behavioral deficits in Fmr1-KO mice that were evident in spatial memory only at aging. Stress also exerted several age-specific behavioral effects in mice of both genotypes: at adulthood it enhanced anxiety levels and reduced social interaction, while at aging it enhanced locomotor activity and reduced the complexity of ultrasonic calls. Our findings underline the relevance of gene-environment interactions in mouse models of neurodevelopmental syndromes and highlight the long-term behavioral impact of prenatal stress in laboratory mice.
Collapse
Affiliation(s)
- Valeria Petroni
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Enejda Subashi
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valerie Lemaire
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Susanna Pietropaolo
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
- *Correspondence: Susanna Pietropaolo,
| |
Collapse
|
9
|
Mbiydzenyuy NE, Hemmings SMJ, Qulu L. Prenatal maternal stress and offspring aggressive behavior: Intergenerational and transgenerational inheritance. Front Behav Neurosci 2022; 16:977416. [PMID: 36212196 PMCID: PMC9539686 DOI: 10.3389/fnbeh.2022.977416] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Even though studies have shown that prenatal maternal stress is associated with increased reactivity of the HPA axis, the association between prenatal maternal stress and fetal glucocorticoid exposure is complex and most likely dependent on unidentified and poorly understood variables including nature and timing of prenatal insults. The precise mechanisms in which prenatal maternal stress influence neuroendocrine signaling between the maternal-placental-fetal interface are still unclear. The aim of this review article is to bring comprehensive basic concepts about prenatal maternal stress and mechanisms of transmission of maternal stress to the fetus. This review covers recent studies showing associations between maternal stress and alterations in offspring aggressive behavior, as well as the possible pathways for the “transmission” of maternal stress to the fetus: (1) maternal-fetal HPA axis dysregulation; (2) intrauterine environment disruption due to variations in uterine artery flow; (3) epigenetic modifications of genes implicated in aggressive behavior. Here, we present evidence for the phenomenon of intergenerational and transgenerational transmission, to better understands the mechanism(s) of transmission from parent to offspring. We discuss studies showing associations between maternal stress and alterations in offspring taking note of neuroendocrine, brain architecture and epigenetic changes that may suggest risk for aggressive behavior. We highlight animal and human studies that focus on intergenerational transmission following exposure to stress from a biological mechanistic point of view, and maternal stress-induced epigenetic modifications that have potential to impact on aggressive behavior in later generations.
Collapse
Affiliation(s)
- Ngala Elvis Mbiydzenyuy
- Department of Basic Science, School of Medicine, Copperbelt University, Ndola, Zambia
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Cape Town, South Africa
- *Correspondence: Ngala Elvis Mbiydzenyuy,
| | - Sian Megan Joanna Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lihle Qulu
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
10
|
Howes OD, Shatalina E. Integrating the Neurodevelopmental and Dopamine Hypotheses of Schizophrenia and the Role of Cortical Excitation-Inhibition Balance. Biol Psychiatry 2022; 92:501-513. [PMID: 36008036 DOI: 10.1016/j.biopsych.2022.06.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 12/23/2022]
Abstract
The neurodevelopmental and dopamine hypotheses are leading theories of the pathoetiology of schizophrenia, but they were developed in isolation. However, since they were originally proposed, there have been considerable advances in our understanding of the normal neurodevelopmental refinement of synapses and cortical excitation-inhibition (E/I) balance, as well as preclinical findings on the interrelationship between cortical and subcortical systems and new in vivo imaging and induced pluripotent stem cell evidence for lower synaptic density markers in patients with schizophrenia. Genetic advances show that schizophrenia is associated with variants linked to genes affecting GABA (gamma-aminobutyric acid) and glutamatergic signaling as well as neurodevelopmental processes. Moreover, in vivo studies on the effects of stress, particularly during later development, show that it leads to synaptic elimination. We review these lines of evidence as well as in vivo evidence for altered cortical E/I balance and dopaminergic dysfunction in schizophrenia. We discuss mechanisms through which frontal cortex circuitry may regulate striatal dopamine and consider how frontal E/I imbalance may cause dopaminergic dysregulation to result in psychotic symptoms. This integrated neurodevelopmental and dopamine hypothesis suggests that overpruning of synapses, potentially including glutamatergic inputs onto frontal cortical interneurons, disrupts the E/I balance and thus underlies cognitive and negative symptoms. It could also lead to disinhibition of excitatory projections from the frontal cortex and possibly other regions that regulate mesostriatal dopamine neurons, resulting in dopamine dysregulation and psychotic symptoms. Together, this explains a number of aspects of the epidemiology and clinical presentation of schizophrenia and identifies new targets for treatment and prevention.
Collapse
Affiliation(s)
- Oliver D Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, United Kingdom; Department of Psychosis, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Ekaterina Shatalina
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, United Kingdom
| |
Collapse
|
11
|
Exposure to chronic stress impairs the ability to cope with an acute challenge: Modulation by lurasidone treatment. Eur Neuropsychopharmacol 2022; 61:78-90. [PMID: 35830759 DOI: 10.1016/j.euroneuro.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022]
Abstract
Chronic stress represents a major contributor for the development of mental illness. This study aimed to investigate how animals exposed to chronic mild stress (CMS) responded to an acute stress (AS), as a vulnerability's challenge, and to establish the potential effects of the antipsychotic drug lurasidone on such mechanisms. Adult male Wistar rats were exposed or not (controls) to a CMS paradigm for 7 weeks. Starting from the end of week 2, animals were randomized to receive vehicle or lurasidone for 5 weeks. Sucrose intake was used to measure anhedonia. At the end, half of the animals were exposed to an acute stress before sacrifice. Exposure to CMS produced a significant reduction in sucrose consumption, whereas lurasidone progressively normalized such alteration. We found that exposure to AS produced an upregulation of Brain derived neurotrophic factor (Bdnf) in the prefrontal cortex of controls animals. This response was impaired in CMS rats and restored by lurasidone treatment. While in control animals, AS-induced increase of Bdnf mRNA levels was specific for Parvalbumin cells, CMS rats treated with lurasidone show a significant upregulation of Bdnf in pyramidal cells. Furthermore, when investigating the activation of different brain regions, CMS rats showed an impairment in the global response to the acute stressor, that was largely restored by lurasidone treatment. Our results suggest that lurasidone treatment in CMS rats may regulate specific circuits and mechanisms, which will ultimately contribute to boost resilience under stressful challenges.
Collapse
|
12
|
Zhao F, Wang K, Wen Y, Chen X, Liu H, Qi F, Fu Y, Zhu J, Guan S, Liu Z. Contribution of hippocampal BDNF/CREB signaling pathway and gut microbiota to emotional behavior impairment induced by chronic unpredictable mild stress during pregnancy in rats offspring. PeerJ 2022; 10:e13605. [PMID: 35769142 PMCID: PMC9235812 DOI: 10.7717/peerj.13605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/26/2022] [Indexed: 01/17/2023] Open
Abstract
Background Numerous studies have shown that exposure to prenatal maternal stress (PMS) is associated with various psychopathological outcomes of offspring. The accumulating evidence linking bacteria in the gut and neurons in the brain (the microbiota-gut-brain axis) has been aconsensus; however, there is a lack of research on the involvement mechanism of gut microbiota in the regulation of the BDNF/CREB signaling pathway in the hippocampus of prenatally stressed offspring. Methods Pregnant rats were subjected to chronic unpredictable mild stress (CUMS) to establish the prenatal maternal stress model. The body weight was measured and the behavioral changes were recorded. Offspring were tested to determine emotional state using sucrose preference test (SPT), open-field test (OFT) and suspended tail test (STT). Gut microbiota was evaluated by sequencing the microbial 16S rRNA V3-V4 region, and the interactive analysis of bacterial community structure and diversity was carried out. The expression of hippocampal BDNF, TrkB and CREB mRNA and proteins were respectively measured using RT-PCR and Western blotting. Results Prenatal maternal stress increased maternal plasma corticosterone levels, slowed maternal weight gain and caused depression-like behaviors (all P < 0.05). In offspring, prenatal maternal stress increased plasma corticosterone levels (P < 0.05) and emotional behavior changes (depression-like state) were observed (P < 0.05). The species abundance, diversity and composition of the offspring's gut microbiota changed after the maternal stress during pregnancy (P < 0.05). Compared with the control group's offspring, the species abundance of Lactobacillaceae was dropped, while the abundance of the Muribaculaceae species abundance was risen. Concurrent, changes in the hippocampal structure of the offspring and decreases in expression of BDNF/CREB signaling were noted (P < 0.05). Conclusions Prenatal maternal stress leads to high corticosterone status and abnormal emotion behavior of offspring, which may be associated with the abnormal BDNF/CREB signaling in hippocampus of offspring caused by the change of gut microbiota composition.
Collapse
Affiliation(s)
- Feng Zhao
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health, Chongqing Medical University, Chongqing, China, Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yujun Wen
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaohui Chen
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hongya Liu
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Faqiu Qi
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Youjuan Fu
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiashu Zhu
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Suzhen Guan
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhihong Liu
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
13
|
Autistic-like behavioral effects of prenatal stress in juvenile Fmr1 mice: the relevance of sex differences and gene-environment interactions. Sci Rep 2022; 12:7269. [PMID: 35508566 PMCID: PMC9068699 DOI: 10.1038/s41598-022-11083-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most common heritable form of mental retardation and monogenic cause of autism spectrum disorder (ASD). FXS is due to a mutation in the X-linked FMR1 gene and is characterized by motor, cognitive and social alterations, mostly overlapping with ASD behavioral phenotypes. The severity of these symptoms and their timing may be exacerbated and/or advanced by environmental adversity interacting with the genetic mutation. We therefore tested the effects of the prenatal exposure to unpredictable chronic stress on the behavioral phenotype of juveniles of both sexes in the Fmr1 knock-out (KO) mouse model of FXS. Mice underwent behavioral tests at 7-8 weeks of age, that is, when most of the relevant behavioral alterations are absent or mild in Fmr1-KOs. Stress induced the early appearance of deficits in spontaneous alternation in KO male mice, without exacerbating the behavioral phenotype of mutant females. In males stress also altered social interaction and communication, but mostly in WT mice, while in females it induced effects on locomotion and communication in mice of both genotypes. Our data therefore highlight the sex-dependent relevance of early environmental stressors to interact with genetic factors to influence the appearance of selected FXS- and ASD-like phenotypes.
Collapse
|
14
|
Impact of stress on inhibitory neuronal circuits, our tribute to Bruce McEwen. Neurobiol Stress 2022; 19:100460. [PMID: 35734023 PMCID: PMC9207718 DOI: 10.1016/j.ynstr.2022.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
This manuscript is dedicated to the memory of Bruce S. McEwen, to commemorate the impact he had on how we understand stress and neuronal plasticity, and the profound influence he exerted on our scientific careers. The focus of this review is the impact of stressors on inhibitory circuits, particularly those of the limbic system, but we also consider other regions affected by these adverse experiences. We revise the effects of acute and chronic stress during different stages of development and lifespan, taking into account the influence of the sex of the animals. We review first the influence of stress on the physiology of inhibitory neurons and on the expression of molecules related directly to GABAergic neurotransmission, and then focus on specific interneuron subpopulations, particularly on parvalbumin and somatostatin expressing cells. Then we analyze the effects of stress on molecules and structures related to the plasticity of inhibitory neurons: the polysialylated form of the neural cell adhesion molecule and perineuronal nets. Finally, we review the potential of antidepressants or environmental manipulations to revert the effects of stress on inhibitory circuits.
Collapse
|
15
|
Gomes MGS, Tractenberg SG, Orso R, Viola TW, Grassi-Oliveira R. Sex differences in risk behavior parameters in adolescent mice: Relationship with brain-derived neurotrophic factor in the medial prefrontal cortex. Neurosci Lett 2022; 766:136339. [PMID: 34762979 DOI: 10.1016/j.neulet.2021.136339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023]
Abstract
Adolescence is as a period of development characterized by impulsive and risk-seeking behaviors. Risk behaviors (RB) involves exposure to dangerous or negative consequences to achieve goal-directed behaviors, such as reward-seeking. On the other hand, risk aversion/assessment behaviors allow the individual to gather information or avoid potentially threatening situations. Evidence has suggested that both behavioral processes, RB and risk assessment (RA), may have sex-differences. However, sex-specific behavioral patterns implicated in RB and RA are not fully understood. To address that, we investigated sex differences in risk-behavioral parameters in a decision-making task developed for rodents. In addition, we investigated the potential role of sex-dependent differences in gene expression of brain-derived neurotrophic factor (BDNF) exon IV in the medial prefrontal cortex (mPFC), which has been implicated to mediate PFC-related behavioral dysfunctions. Male and female C57BL/6J adolescent mice were evaluated in the elevated plus-maze (EPM) to assess anxiety-like behaviors and in the predator-odor risk taking (PORT) task. The PORT task is a decision-making paradigm in which a conflict between the motivation towards reward pursuit and the threat elicited by predatory olfactory cues (coyote urine) is explored. After behavioral testing, animals were euthanized and BDNF exon IV gene expression was measured by RT-qPCR. Comparative and correlational analyses for behavioral and molecular parameters were performed for both sexes. We observed that female mice spent more time exploring the middle chamber of the PORT apparatus in the aversive condition, which is an indicative of avoidance behavior. Female mice also had a higher latency to collect the reward than male mice and presented less time exploring the open arms of the EPM. BDNF exon IV gene expression was higher among females, and there was a positive correlation between the BDNF and PORT behavioral parameters. Our findings suggest sex-dependent effects in the PORT task. Females presented higher RA and avoidance behavior profile and expressed higher levels of BDNF exon IV in the mPFC. Moreover, higher BDNF expression was correlated with RA behaviors, which suggests that adolescent females tend to evaluate the risks more than adolescent males and that BDNF gene expression may be mediating decision-making processes.
Collapse
Affiliation(s)
- Marco G S Gomes
- Developmental Cognitive Neuroscience Lab (DCNL), Brain Institute of Rio Grande do Sul (BraIns), Pontifical University Catholic of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Saulo G Tractenberg
- Developmental Cognitive Neuroscience Lab (DCNL), Brain Institute of Rio Grande do Sul (BraIns), Pontifical University Catholic of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Orso
- Developmental Cognitive Neuroscience Lab (DCNL), Brain Institute of Rio Grande do Sul (BraIns), Pontifical University Catholic of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Thiago W Viola
- Developmental Cognitive Neuroscience Lab (DCNL), Brain Institute of Rio Grande do Sul (BraIns), Pontifical University Catholic of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Brain Institute of Rio Grande do Sul (BraIns), Pontifical University Catholic of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark.
| |
Collapse
|
16
|
Zhang H, Xue X, Pan J, Song X, Chang X, Mao Q, Lu Y, Zhao H, Wang Y, Chi X, Wang S, Ma K. Integrated analysis of the chemical-material basis and molecular mechanisms for the classic herbal formula of Lily Bulb and Rehmannia Decoction in alleviating depression. Chin Med 2021; 16:107. [PMID: 34674715 PMCID: PMC8529377 DOI: 10.1186/s13020-021-00519-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Lily Bulb and Rehmannia Decoction (LBRD), is a traditional Chinese formula that has been shown to be safe and effective against depression; however, its material basis and pharmacological mechanisms remain unknown. METHODS Here, ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) and high-performance liquid chromatography (HPLC) were used to identify the chemical spectrum and qualitatively identify the major active ingredients in the LBRD standard decoction, respectively. Subsequently, we assessed the behavior, neuronal function and morphology, neurotransmitter levels, hypothalamic-pituitary-adrenal (HPA)-axis associated hormones, inflammatory cytokine levels, and miRNA/mRNA expression alterations in an in vitro/vivo depression model treated by the LBRD standard decoction. Finally, miRNA/mRNA regulatory networks were created through bioinformatics analysis, followed by functional experiments to verify its role in LBRD standard decoction treatment. RESULTS A total of 32 prototype compounds were identified in the LBRD standard decoction, and the average quality of verbascoside in the fresh lily bulb decoction, fresh raw Rehmannia juice, and the LBRD standard decoction were 0.001264%, 0.002767%, and 0.009046% (w/w), respectively. Administration of the LBRD standard decoction ameliorated chronic unpredictable mild stress (CUMS)-induced depression-like phenotypes and protected PC12 cells against chronic corticosterone (CORT)-induced injury. The levels of neurotransmitter, cytokine, stress hormones and neuronal morphology were disrupted in the depression model, while LBRD standard decoction could work on these alterations. After LBRD standard decoction administration, four differentially expressed miRNAs, rno-miR-144-3p, rno-miR-495, rno-miR-34c-5p, and rno-miR-24-3p, and six differentially expressed mRNAs, Calml4, Ntrk2, VGAT, Gad1, Nr1d1, and Bdnf overlapped in the in vivo/vitro depression model. Among them, miR-144-3p directly mediated GABA synthesis and release by targeting Gad1 and VGAT, and miR-495 negatively regulated BDNF expression. The LBRD standard decoction can reverse the above miRNA/mRNA network-mediated GABA and BDNF expression in the in vivo/vitro depression model. CONCLUSION Collectively, the multi-components of the LBRD standard decoction altered a series of miRNAs in depression through mediating GABAergic synapse, circadian rhythm, and neurotrophic signaling pathway etc., thereby abolishing inhibitory/excitatory neurotransmitter deficits, recovering the pro-/anti-inflammatory cytokine levels and regulating the HPA-axis hormone secretion to achieve balance of the physiological function of the whole body.
Collapse
Affiliation(s)
- Hongxiu Zhang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Changqing District, Jinan, 250355, Shandong, People's Republic of China
- Institute of Virology, Jinan Municipal Center for Disease Control and Prevention, Jinan, 250021, People's Republic of China
| | - Xiaoyan Xue
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Changqing District, Jinan, 250355, Shandong, People's Republic of China
| | - Jin Pan
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Changqing District, Jinan, 250355, Shandong, People's Republic of China
| | - Xiaobin Song
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Changqing District, Jinan, 250355, Shandong, People's Republic of China
| | - Xing Chang
- Department of Cardiology, Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100053, People's Republic of China
| | - Qiancheng Mao
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Changqing District, Jinan, 250355, Shandong, People's Republic of China
| | - Yanting Lu
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Changqing District, Jinan, 250355, Shandong, People's Republic of China
| | - Haijun Zhao
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Changqing District, Jinan, 250355, Shandong, People's Republic of China
| | - Yuan Wang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Changqing District, Jinan, 250355, Shandong, People's Republic of China
| | - Xiansu Chi
- Department of Brain Disease, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, People's Republic of China
| | - Shijun Wang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Changqing District, Jinan, 250355, Shandong, People's Republic of China.
| | - Ke Ma
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Changqing District, Jinan, 250355, Shandong, People's Republic of China.
| |
Collapse
|