1
|
Franza M, Varricchio R, Alloisio G, De Simone G, Di Bella S, Ascenzi P, di Masi A. Zebrafish ( Danio rerio) as a Model System to Investigate the Role of the Innate Immune Response in Human Infectious Diseases. Int J Mol Sci 2024; 25:12008. [PMID: 39596075 PMCID: PMC11593600 DOI: 10.3390/ijms252212008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
The zebrafish (Danio rerio) has emerged as a valuable model for studying host-pathogen interactions due to its unique combination of characteristics. These include extensive sequence and functional conservation with the human genome, optical transparency in larvae that allows for high-resolution visualization of host cell-microbe interactions, a fully sequenced and annotated genome, advanced forward and reverse genetic tools, and suitability for chemical screening studies. Despite anatomical differences with humans, the zebrafish model has proven instrumental in investigating immune responses and human infectious diseases. Notably, zebrafish larvae rely exclusively on innate immune responses during the early stages of development, as the adaptive immune system becomes fully functional only after 4-6 weeks post-fertilization. This window provides a unique opportunity to isolate and examine infection and inflammation mechanisms driven by the innate immune response without the confounding effects of adaptive immunity. In this review, we highlight the strengths and limitations of using zebrafish as a powerful vertebrate model to study innate immune responses in infectious diseases. We will particularly focus on host-pathogen interactions in human infections caused by various bacteria (Clostridioides difficile, Staphylococcus aureus, and Pseudomonas aeruginosa), viruses (herpes simplex virus 1, SARS-CoV-2), and fungi (Aspergillus fumigatus and Candida albicans).
Collapse
Affiliation(s)
- Maria Franza
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Romualdo Varricchio
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Giulia Alloisio
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy;
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
- Accademia Nazionale dei Lincei, 00165 Roma, Italy
| | - Alessandra di Masi
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
- Centro Linceo Interdisciplinare “Beniamino Segre”, Accademia Nazionale dei Lincei, 00165 Roma, Italy
| |
Collapse
|
2
|
Metsäniitty M, Hasnat S, Öhman C, Salo T, Eklund KK, Oscarsson J, Salem A. Zebrafish larvae as a model for studying the impact of oral bacterial vesicles on tumor cell growth and metastasis. Hum Cell 2024; 37:1696-1705. [PMID: 39138804 PMCID: PMC11481661 DOI: 10.1007/s13577-024-01114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Oral bacteria naturally secrete extracellular vesicles (EVs), which have attracted attention for their promising biomedical applications including cancer therapeutics. However, our understanding of EV impact on tumor progression is hampered by limited in vivo models. In this study, we propose a facile in vivo platform for assessing the effect of EVs isolated from different bacterial strains on oral cancer growth and dissemination using the larval zebrafish model. EVs were isolated from: wild-type Aggregatibacter actinomycetemcomitans and its mutant strains lacking the cytolethal distending toxin (CDT) or lipopolysaccharide (LPS) O-antigen; and wild-type Porphyromonas gingivalis. Cancer cells pretreated with EVs were xenotransplanted into zebrafish larvae, wherein tumor growth and metastasis were screened. We further assessed the preferential sites for the metastatic foci development. Interestingly, EVs from the CDT-lacking A. actinomycetemcomitans resulted in an increased tumor growth, whereas EVs lacking the lipopolysaccharide O-antigen reduced the metastasis rate. P. gingivalis-derived EVs showed no significant effects. Cancer cells pretreated with EVs from the mutant A. actinomycetemcomitans strains tended to metastasize less often to the head and tail compared to the controls. In sum, the proposed approach provided cost- and labor-effective yet efficient model for studying bacterial EVs in oral carcinogenesis, which can be easily extended for other cancer types. Furthermore, our results support the notion that these nanosized particles may represent promising targets in cancer therapeutics.
Collapse
Affiliation(s)
- Marjut Metsäniitty
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland
| | - Saika Hasnat
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland
| | - Carina Öhman
- Oral Microbiology, Department of Odontology, Umeå University, 90187, Umeå, Sweden
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland
| | - Kari K Eklund
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, 00014, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014, Helsinki, Finland
| | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, 90187, Umeå, Sweden
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland.
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
3
|
Evans MO, Smith DM, Kress AT, Nadeau RJ, Selig DJ, Caridha D, Racharaks R, Langowski T, Madejczyk MS, Carbaugh C, Saunders D, Widder M, De Meese J, Lee PJ, DeLuca JP. Plerixafor for pathogen-agnostic treatment in murine thigh infection and zebrafish sepsis. Clin Transl Sci 2024; 17:e13876. [PMID: 38963161 PMCID: PMC11223064 DOI: 10.1111/cts.13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/07/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
Plerixafor is a CXCR4 antagonist approved in 2008 by the FDA for hematopoietic stem cell collection. Subsequently, plerixafor has shown promise as a potential pathogen-agnostic immunomodulator in a variety of preclinical animal models. Additionally, investigator-led studies demonstrated plerixafor prevents viral and bacterial infections in patients with WHIM syndrome, a rare immunodeficiency with aberrant CXCR4 signaling. Here, we investigated whether plerixafor could be repurposed to treat sepsis or severe wound infections, either alone or as an adjunct therapy. In a Pseudomonas aeruginosa lipopolysaccharide (LPS)-induced zebrafish sepsis model, plerixafor reduced sepsis mortality and morbidity assessed by tail edema. There was a U-shaped response curve with the greatest effect seen at 0.1 μM concentration. We used Acinetobacter baumannii infection in a neutropenic murine thigh infection model. Plerixafor did not show reduced bacterial growth at 24 h in the mouse thigh model, nor did it amplify the effects of a rifampin antibiotic therapy, in varying regimens. While plerixafor did not mitigate or treat bacterial wound infections in mice, it did reduce sepsis mortality in zebra fish. The observed mortality reduction in our LPS model of zebrafish was consistent with prior research demonstrating a mortality benefit in a murine model of sepsis. However, based on our results, plerixafor is unlikely to be successful as an adjunct therapy for wound infections. Further research is needed to better define the scope of plerixafor as a pathogen-agnostic therapy. Future directions may include the use of longer acting CXCR4 antagonists, biased CXCR4 signaling, and optimization of animal models.
Collapse
Affiliation(s)
- Martin O. Evans
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Darren M. Smith
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Adrian T. Kress
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Robert J. Nadeau
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Daniel J. Selig
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Diana Caridha
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Ratanachat Racharaks
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Thomas Langowski
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Michael S. Madejczyk
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Chance Carbaugh
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - David Saunders
- Uniformed Services University School of MedicineBethesdaMarylandUSA
| | - Mark Widder
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Jason De Meese
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Patricia J. Lee
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Jesse P. DeLuca
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| |
Collapse
|
4
|
Speirs ZC, Loynes CA, Mathiessen H, Elks PM, Renshaw SA, Jørgensen LVG. What can we learn about fish neutrophil and macrophage response to immune challenge from studies in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109490. [PMID: 38471626 DOI: 10.1016/j.fsi.2024.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Fish rely, to a high degree, on the innate immune system to protect them against the constant exposure to potential pathogenic invasion from the surrounding water during homeostasis and injury. Zebrafish larvae have emerged as an outstanding model organism for immunity. The cellular component of zebrafish innate immunity is similar to the mammalian innate immune system and has a high degree of sophistication due to the needs of living in an aquatic environment from early embryonic stages of life. Innate immune cells (leukocytes), including neutrophils and macrophages, have major roles in protecting zebrafish against pathogens, as well as being essential for proper wound healing and regeneration. Zebrafish larvae are visually transparent, with unprecedented in vivo microscopy opportunities that, in combination with transgenic immune reporter lines, have permitted visualisation of the functions of these cells when zebrafish are exposed to bacterial, viral and parasitic infections, as well as during injury and healing. Recent findings indicate that leukocytes are even more complex than previously anticipated and are essential for inflammation, infection control, and subsequent wound healing and regeneration.
Collapse
Affiliation(s)
- Zoë C Speirs
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Catherine A Loynes
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Heidi Mathiessen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Stephen A Renshaw
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Louise von Gersdorff Jørgensen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
5
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
6
|
Qin X, Lam A, Zhang X, Sengupta S, Iorgulescu JB, Ni H, Das S, Rager M, Zhou Z, Zuo T, Meara GK, Floru AE, Kemet C, Veerapaneni D, Kashy D, Lin L, Lloyd K, Kwok L, Smith KS, Nagaraju RT, Meijers R, Ceol C, Liu CT, Alexandrescu S, Wu CJ, Keskin DB, George RE, Feng H. CKLF instigates a "cold" microenvironment to promote MYCN-mediated tumor aggressiveness. SCIENCE ADVANCES 2024; 10:eadh9547. [PMID: 38489372 PMCID: PMC10942121 DOI: 10.1126/sciadv.adh9547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Solid tumors, especially those with aberrant MYCN activation, often harbor an immunosuppressive microenvironment to fuel malignant growth and trigger treatment resistance. Despite this knowledge, there are no effective strategies to tackle this problem. We found that chemokine-like factor (CKLF) is highly expressed by various solid tumor cells and transcriptionally up-regulated by MYCN. Using the MYCN-driven high-risk neuroblastoma as a model system, we demonstrated that as early as the premalignant stage, tumor cells secrete CKLF to attract CCR4-expressing CD4+ cells, inducing immunosuppression and tumor aggression. Genetic depletion of CD4+ T regulatory cells abolishes the immunorestrictive and protumorigenic effects of CKLF. Our work supports that disrupting CKLF-mediated cross-talk between tumor and CD4+ suppressor cells represents a promising immunotherapeutic approach to battling MYCN-driven tumors.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Andrew Lam
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Xu Zhang
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Satyaki Sengupta
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - J. Bryan Iorgulescu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongru Ni
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sanjukta Das
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- School of Biotechnology, KIIT University, Bhubanesw, India
| | - Madison Rager
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Zhenwei Zhou
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Tao Zuo
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Grace K. Meara
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alexander E. Floru
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Chinyere Kemet
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Divya Veerapaneni
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Daniel Kashy
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Liang Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Lauren Kwok
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kaylee S. Smith
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Raghavendar T. Nagaraju
- Faculty of Biology, Medicine and Health, Division of Cancer Sciences, University of Manchester, Manchester, UK
- Colorectal and Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - Rob Meijers
- Institute for Protein Innovation, Boston, MA, USA
| | - Craig Ceol
- Department of Molecular, Cell and Cancer Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Derin B. Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rani E. George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hui Feng
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
7
|
Nadarajapillai K, Jung S, Sellaththurai S, Ganeshalingam S, Kim MJ, Lee J. CRISPR/Cas9-mediated knockout of tnf-α1 in zebrafish reduces disease resistance after Edwardsiella piscicida bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109249. [PMID: 38040136 DOI: 10.1016/j.fsi.2023.109249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Tumor necrosis factor (TNF) is an important cytokine involved in immune responses to bacterial infections in vertebrates, including fish. Although Tnf-α is a well-studied cytokine, there are contradictory findings about Tnf-α function following bacterial infection. In this study, we analyzed the expression and function of the Tnf-α-type I isoform (Tnf-α1) in zebrafish by knockout experiments using the CRISPR/Cas9 gene-editing tool. The open reading frame of tnf-α1 encodes a 25.82 kDa protein with 234 amino acids (aa). The expression of tnf-α1 in the early stages of zebrafish was observed from the 2-cell stage. Adult zebrafish spleens showed the highest expression of tnf-α1. To evaluate the function of Tnf-α1, an 8 bp deletion in the target region, resulting in a short truncated protein of 55 aa, was used to create the tnf-α1 knockout mutant. The pattern of downstream gene expression in 7-day larvae in wild-type (WT) and tnf-α1 knockout fish was examined. We also verified the fish mortality rate after Edwardsiella piscicida challenge and found that it was much higher in tnf-α1 knockout fish than in WT fish. Additionally, downstream gene expression analyses after E. piscicida exposure revealed a distinct expression pattern in tnf-α1 knockout fish compared to that in WT fish. Overall, our study using tnf-α1 deletion in zebrafish confirmed that Tnf-α1 is critical for immune regulation during bacterial infection.
Collapse
Affiliation(s)
- Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Sarithaa Sellaththurai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Subothini Ganeshalingam
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Myoung-Jin Kim
- Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
8
|
Wei Z, Wang W, Xu W, Tao L, Li Z, Zhang Y, Shao X. Studies on immunotoxicity induced by emamectin benzoate in zebrafish embryos based on metabolomics. ENVIRONMENTAL TOXICOLOGY 2024; 39:97-105. [PMID: 37665110 DOI: 10.1002/tox.23942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
Emamectin benzoate (EMB) is an insecticide for the control of agricultural lepidoptera pests, and also an anti-parasiticide for the control of exoparasites in aquaculture industry. Increased studies suggest that EMB could cause toxicity to non-targeted organisms, but its immunotoxicity to human remains unclear. In this study, zebrafish were used to investigate the immunotoxic effects induced by environmentally relevant doses of EMB. We observed that EMB exposure led to embryo mortality and delayed hatching, as well as increased malformations. Meanwhile, zebrafish exposed to EMB exhibited a significant decrease in the number of neutrophils and macrophages. In addition, untargeted metabolomics approach was developed to elucidate the mechanism of EMB-induced immunotoxicity. We found that a total of 10 shared biomarkers were identified in response to EMB exposure. Furthermore, pathway analysis identified glycerophospholipid metabolism was the most relevant pathway. Within this pathway, it was observed abnormal increases in glycerol 3-phosphate content, which could be attributed to the increased expression of GK5 and decreased expression of GPAT3. Our study provided novel and robust perspectives, which showed that EMB exposure to zebrafish embryos could cause metabolic disturbances that adversely affected development and immune system.
Collapse
Affiliation(s)
- Ziyi Wei
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weiguo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Michael C, de Oliveira S. Exploring the dynamic behavior of leukocytes with zebrafish. Curr Opin Cell Biol 2023; 85:102276. [PMID: 37956533 PMCID: PMC10842401 DOI: 10.1016/j.ceb.2023.102276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
Cell migration is a complex and intricate network of physical, chemical, and molecular events that ultimately leads to cell motility. This phenomenon is involved in both physiological and pathological processes such as proper immune and inflammatory responses. Dysregulation of cell migration machinery in immune cells can have a tremendous impact on the trajectory of inflammation, infection, and resolution. The small vertebrate, the zebrafish, has a remarkable capacity for genetic and pharmacological manipulation aligned to transparency that enables modulation and visualization of cell migration in vivo noninvasively. Such characteristics revolutionized the field of leukocyte biology, particularly neutrophils. In this review, we will focus on leukocyte migration and highlight findings made in the zebrafish that demonstrate how this small vertebrate system is a unique model to perform in vivo imaging and study mechanisms that regulate the dynamic behavior of immune cells in their native environment under homeostasis or upon challenge.
Collapse
Affiliation(s)
- Cassia Michael
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Sofia de Oliveira
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Montefiore-Einstein Comprehensive Cancer Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Cancer Dormancy Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, USA.
| |
Collapse
|
10
|
Murali Shankar N, Ortiz-Montero P, Kurzyukova A, Rackwitz W, Künzel SR, Wels WS, Tonn T, Knopf F, Eitler J. Preclinical assessment of CAR-NK cell-mediated killing efficacy and pharmacokinetics in a rapid zebrafish xenograft model of metastatic breast cancer. Front Immunol 2023; 14:1254821. [PMID: 37885894 PMCID: PMC10599014 DOI: 10.3389/fimmu.2023.1254821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Natural killer (NK) cells are attractive effectors for adoptive immunotherapy of cancer. Results from first-in-human studies using chimeric antigen receptor (CAR)-engineered primary NK cells and NK-92 cells are encouraging in terms of efficacy and safety. In order to further improve treatment strategies and to test the efficacy of CAR-NK cells in a personalized manner, preclinical screening assays using patient-derived tumor samples are needed. Zebrafish (Danio rerio) embryos and larvae represent an attractive xenograft model to study growth and dissemination of patient-derived tumor cells because of their superb live cell imaging properties. Injection into the organism's circulation allows investigation of metastasis, cancer cell-to-immune cell-interactions and studies of the tumor cell response to anti-cancer drugs. Here, we established a zebrafish larval xenograft model to test the efficacy of CAR-NK cells against metastatic breast cancer in vivo by injecting metastatic breast cancer cells followed by CAR-NK cell injection into the Duct of Cuvier (DoC). We validated the functionality of the system with two different CAR-NK cell lines specific for PD-L1 and ErbB2 (PD-L1.CAR NK-92 and ErbB2.CAR NK-92 cells) against the PD-L1-expressing MDA-MB-231 and ErbB2-expressing MDA-MB-453 breast cancer cell lines. Injected cancer cells were viable and populated peripheral regions of the larvae, including the caudal hematopoietic tissue (CHT), simulating homing of cancer cells to blood forming sites. CAR-NK cells injected 2.5 hours later migrated to the CHT and rapidly eliminated individual cancer cells throughout the organism. Unmodified NK-92 also demonstrated minor in vivo cytotoxicity. Confocal live-cell imaging demonstrated intravascular migration and real-time interaction of CAR-NK cells with MDA-MB-231 cells, explaining the rapid and effective in vivo cytotoxicity. Thus, our data suggest that zebrafish larvae can be used for rapid and cost-effective in vivo assessment of CAR-NK cell potency and to predict patient response to therapy.
Collapse
Affiliation(s)
- Nivedha Murali Shankar
- Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden University of Technology, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Paola Ortiz-Montero
- Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Anastasia Kurzyukova
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden University of Technology, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Wiebke Rackwitz
- Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Stephan R. Künzel
- Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Winfried S. Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Torsten Tonn
- Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Franziska Knopf
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden University of Technology, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Jiri Eitler
- Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| |
Collapse
|
11
|
Wang MX, Shandilya UK, Wu X, Huyben D, Karrow NA. Assessing Larval Zebrafish Survival and Gene Expression Following Sodium Butyrate Exposure and Subsequent Lethal Bacterial Lipopolysaccharide (LPS) Endotoxin Challenge. Toxins (Basel) 2023; 15:588. [PMID: 37888619 PMCID: PMC10610854 DOI: 10.3390/toxins15100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
As aquaculture production continues to grow, producers are looking for more sustainable methods to promote growth and increase fish health and survival. Butyrate is a short-chain fatty acid (SCFA) with considerable benefits to gut health, and in recent years, butyrate has been commonly used as an alternative to antimicrobials in livestock production. In this study, we aimed to assess the protective effects of sodium butyrate (NaB) on larval zebrafish subjected to a lethal Pseudomonas aeruginosa lipopolysaccharide (LPS) endotoxin challenge and to elucidate potential protective mechanisms of action. Larval zebrafish were pre-treated with 0, 3000, or 6000 μM NaB for 24 h at 72 h post-fertilization (hpf), then immune challenged for 24 h with 60 μg/mL of LPS at 96 hpf. Our results demonstrate that larval zebrafish pre-treated with 6000 μM of NaB prior to lethal LPS challenge experienced significantly increased survival by 40%, and this same level of NaB significantly down-regulated the expression of pro-inflammatory Tumor Necrosis Factor α (TNF-alpha). Findings from this study are consistent with the beneficial effects of NaB on other vertebrate species and support the potential use of NaB in aquaculture.
Collapse
Affiliation(s)
- Mary X Wang
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Umesh K Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Xiang Wu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - David Huyben
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Niel A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
12
|
Berckmans Y, Ceusters J, Vankerckhoven A, Wouters R, Riva M, Coosemans A. Preclinical studies performed in appropriate models could help identify optimal timing of combined chemotherapy and immunotherapy. Front Immunol 2023; 14:1236965. [PMID: 37744323 PMCID: PMC10512939 DOI: 10.3389/fimmu.2023.1236965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) have been revolutionary in the field of cancer therapy. However, their success is limited to specific indications and cancer types. Recently, the combination treatment of ICI and chemotherapy has gained more attention to overcome this limitation. Unfortunately, many clinical trials testing these combinations have provided limited success. This can partly be attributed to an inadequate choice of preclinical models and the lack of scientific rationale to select the most effective immune-oncological combination. In this review, we have analyzed the existing preclinical evidence on this topic, which is only limitedly available. Furthermore, this preclinical data indicates that besides the selection of a specific drug and dose, also the sequence or order of the combination treatment influences the study outcome. Therefore, we conclude that the success of clinical combination trials could be enhanced by improving the preclinical set up, in order to identify the optimal treatment combination and schedule to enhance the anti-tumor immunity.
Collapse
Affiliation(s)
- Yani Berckmans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Jolien Ceusters
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Ann Vankerckhoven
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Roxanne Wouters
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Oncoinvent AS, Oslo, Norway
| | - Matteo Riva
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, Centre Hospitalier Universitaire (CHU) UCLouvain Namur, University Hospital of Godinne, Yvoir, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Bondue T, Berlingerio SP, van den Heuvel L, Levtchenko E. The Zebrafish Embryo as a Model Organism for Testing mRNA-Based Therapeutics. Int J Mol Sci 2023; 24:11224. [PMID: 37446400 DOI: 10.3390/ijms241311224] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
mRNA-based therapeutics have revolutionized the world of molecular therapy and have proven their potential in the vaccination campaigns for SARS-CoV2 and clinical trials for hereditary disorders. Preclinical studies have mainly focused on in vitro and rodent studies. However, research in rodents is costly and labour intensive, and requires ethical approval for all interventions. Zebrafish embryonic disease models are not always classified as laboratory animals and have been shown to be extremely valuable for high-throughput drug testing. Zebrafish larvae are characterized by their small size, optical transparency and high number of embryos, and are therefore also suited for the study of mRNA-based therapeutics. First, the one-cell stage injection of naked mRNA can be used to assess the effectivity of gene addition in vivo. Second, the intravascular injection in older larvae can be used to assess tissue targeting efficiency of (packaged) mRNA. In this review, we describe how zebrafish can be used as a steppingstone prior to testing mRNA in rodent models. We define the procedures that can be employed for both the one-cell stage and later-stage injections, as well as the appropriate procedures for post-injection follow-up.
Collapse
Affiliation(s)
- Tjessa Bondue
- Department of Development and Regeneration, KU Leuven Campus Gasthuisberg, 3000 Leuven, Belgium
| | | | - Lambertus van den Heuvel
- Department of Development and Regeneration, KU Leuven Campus Gasthuisberg, 3000 Leuven, Belgium
- Department of Pediatric Nephrology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Elena Levtchenko
- Department of Development and Regeneration, KU Leuven Campus Gasthuisberg, 3000 Leuven, Belgium
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
14
|
Sree Kumar H, Wisner AS, Refsnider JM, Martyniuk CJ, Zubcevic J. Small fish, big discoveries: zebrafish shed light on microbial biomarkers for neuro-immune-cardiovascular health. Front Physiol 2023; 14:1186645. [PMID: 37324381 PMCID: PMC10267477 DOI: 10.3389/fphys.2023.1186645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Zebrafish (Danio rerio) have emerged as a powerful model to study the gut microbiome in the context of human conditions, including hypertension, cardiovascular disease, neurological disorders, and immune dysfunction. Here, we highlight zebrafish as a tool to bridge the gap in knowledge in linking the gut microbiome and physiological homeostasis of cardiovascular, neural, and immune systems, both independently and as an integrated axis. Drawing on zebrafish studies to date, we discuss challenges in microbiota transplant techniques and gnotobiotic husbandry practices. We present advantages and current limitations in zebrafish microbiome research and discuss the use of zebrafish in identification of microbial enterotypes in health and disease. We also highlight the versatility of zebrafish studies to further explore the function of human conditions relevant to gut dysbiosis and reveal novel therapeutic targets.
Collapse
Affiliation(s)
- Hemaa Sree Kumar
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
- Department of Neuroscience and Neurological Disorders, University of Toledo, Toledo, OH, United States
| | - Alexander S. Wisner
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH, United States
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Jeanine M. Refsnider
- Department of Environmental Sciences, University of Toledo, Toledo, OH, United States
| | - Christopher J. Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, OH, United States
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
15
|
Petry F, Oltramari AR, Kuhn KZ, Schneider SE, Mazon SC, Garbinato CLL, Aguiar GPS, Kreutz LC, Oliveira JV, Siebel AM, Müller LG. Fluoxetine and Curcumin Prevent the Alterations in Locomotor and Exploratory Activities and Social Interaction Elicited by Immunoinflammatory Activation in Zebrafish: Involvement of BDNF and Proinflammatory Cytokines. ACS Chem Neurosci 2023; 14:389-399. [PMID: 36634245 DOI: 10.1021/acschemneuro.2c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The increase in proinflammatory cytokine expression causes behavioral changes consistent with sickness behavior, and this led to the suggestion that depression might be a psychoneuroimmunological phenomenon. Here, we evaluated the effects of the pretreatment with fluoxetine (10 mg/kg, i.p.) and curcumin (0.5 mg/kg, i.p.) on the immune response elicited by the inoculation of an Aeromonas hydrophila bacterin in zebrafish. Non-pretreated but A. hydrophila-inoculated and sham-inoculated groups of fish served as controls. The social preference, locomotor, exploratory activities, and cerebral expression of il1b, il6, tnfa, and bdnf mRNA were compared among the groups. Behavioral changes characteristic of sickness behavior and a significant increase in the expression of il1b and il6 cytokines were found in fish from the immunostimulated group. The behavioral alterations caused by the inflammatory process were different between males and females, which was coincident with the increased expression of cerebral BDNF. Fluoxetine and curcumin prevented the sickness behavior induced by A. hydrophila and the increased expression of proinflammatory cytokines. Our results point to the potential of zebrafish as a translational model in studies related to neuroinflammation and demonstrate for the first time the effects of fluoxetine and curcumin on zebrafish sickness behavior.
Collapse
Affiliation(s)
- Fernanda Petry
- Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Amanda R Oltramari
- School of Agriculture and Environment, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Ketelin Z Kuhn
- School of Health Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Sabrina E Schneider
- School of Agriculture and Environment, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Samara C Mazon
- Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Cristiane L L Garbinato
- Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Gean P S Aguiar
- Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Luiz C Kreutz
- Laboratory of Advanced Microbiology and Immunology, Graduate Program in Bioexperimentation, University of Passo Fundo (UPF), BR 285, São José, Passo Fundo, Rio Grande do Sul99052-900, Brazil
| | - J Vladimir Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), R. Eng. Agronômico Andrei Cristian Ferreira, Trindade, Florianópolis, Santa Catarina88040-900, Brazil
| | - Anna M Siebel
- Institute of Biological Sciences, Federal University of Rio Grande, Av. Itália, Km 8, Rio Grande, Rio Grande do Sul96203-900, Brazil
| | - Liz G Müller
- Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil.,School of Health Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| |
Collapse
|
16
|
Sobah ML, Scott AC, Laird M, Koole C, Liongue C, Ward AC. Socs3b regulates the development and function of innate immune cells in zebrafish. Front Immunol 2023; 14:1119727. [PMID: 36969252 PMCID: PMC10030509 DOI: 10.3389/fimmu.2023.1119727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/23/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction Suppressor of cytokine signaling 3 (SOCS3) is a critical component of the negative feedback regulation that controls signaling by cytokines and other factors thereby ensuring that important processes such as hematopoiesis and inflammation occur at appropriate levels. Methods To gain further insights into SOCS3 function, the zebrafish socs3b gene was investigated through analysis of a knockout line generated using CRISPR/Cas9-mediated genome editing. Results Zebrafish socs3b knockout embryos displayed elevated numbers of neutrophils during primitive and definitive hematopoiesis but macrophage numbers were not altered. However, the absence of socs3b reduced neutrophil functionality but enhanced macrophage responses. Adult socs3b knockout zebrafish displayed reduced survival that correlated with an eye pathology involving extensive infiltration of neutrophils and macrophages along with immune cell dysregulation in other tissues. Discussion These findings identify a conserved role for Socs3b in the regulation of neutrophil production and macrophage activation.
Collapse
Affiliation(s)
| | - Aimee C. Scott
- Institue for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Miranda Laird
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Cassandra Koole
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institue for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institue for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
- *Correspondence: Alister C. Ward,
| |
Collapse
|
17
|
Pan X, Hou X, Zhang F, Tang P, Wan W, Su Z, Yang Y, Wei W, Du Z, Deng J, Hao E. Gnetum montanum extract induces apoptosis by inhibiting the activation of AKT in SW480 human colon cancer cells. PHARMACEUTICAL BIOLOGY 2022; 60:915-930. [PMID: 35587342 PMCID: PMC9122364 DOI: 10.1080/13880209.2022.2063340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Gnetum montanum Markgr. (Gnetaceae) is used to treat rheumatic arthralgia and bruises in the clinic. OBJECTIVE To exam the activity and mechanism of G. montanum extract (GME) against colon cancer cells SW480. MATERIALS AND METHODS The anti-proliferative activity of GME (0-120 μg/mL) on SW480 cells was determined using MTS assay at 24, 48, and 72 h. The in vitro activity of GME (0-120 μg/mL) on SW480 cells was investigated using flow cytometry and western blotting analysis. The in vivo activity of GME was evaluated using xenograft tumour model of zebrafish and nude mice. The chemical composition of GME was detected by using HPLC-MS/MS. RESULTS The IC50 value SW480 cells viability by GME were 126.50, 78.25, and 50.77 μg/mL, respectively, for 24, 48, and 72 h. The experiments showed that apoptotic cells and G2/M phase cells increased from 20.81 to 61.53% (p < 0.01) and 25.76 to 34.93% with 120 μg/mL GME, respectively. GME also down-regulated the protein expression of P-AKT, P-GSK-3β, P-PDK1, P-c-Raf, caspase-3, and Bcl-2, and up-regulated the expression cleaved caspase-3, cleaved PARP, and Bax. In vivo study found that GME can significantly inhibit the growth and migration of SW480 cells in xenograft zebrafish. GME reduced the nude mice tumour weight to approximately 32.19% at 28 mg/kg/day and to 53.17% (p < 0.01) at 56 mg/kg/day. Forty-two compounds were identified from the GME. DISCUSSION AND CONCLUSIONS GME has a significant antitumor effect on colon cancer cells SW480, and it has the potential to be developed as an anticancer agent.
Collapse
Affiliation(s)
- Xianglong Pan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Peiling Tang
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
| | - Wanruo Wan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Zixia Su
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Yeguo Yang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Wei Wei
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Sino-Canada Joint Zebrafish Lab for Chinese Herbal Drug Screening, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| |
Collapse
|
18
|
Xu J, Xiao X, Yan B, Yuan Q, Dong X, Du Q, Zhang J, Shan L, Ding Z, Zhou L, Efferth T. Green tea-derived theabrownin induces cellular senescence and apoptosis of hepatocellular carcinoma through p53 signaling activation and bypassed JNK signaling suppression. Cancer Cell Int 2022; 22:39. [PMID: 35078476 PMCID: PMC8788116 DOI: 10.1186/s12935-022-02468-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/13/2022] [Indexed: 01/07/2023] Open
Abstract
Abstract
Background
Theabrownin (TB) is a bioactive component of tea and has been reported to exert effects against many human cancers, but its efficacy and mechanism on hepatocellular carcinoma (HCC) with different p53 genotypes remains unclarified.
Methods
MTT assay, DAPI staining, flow cytometry and SA-β-gal staining were applied to evaluate the effects of TB on HCC cells. Quantitative real time PCR (qPCR) and Western blot (WB) were conducted to explore the molecular mechanism of TB. A xenograft model of zebrafish was established to evaluate the anti-tumor effect of TB.
Results
MTT assays showed that TB significantly inhibited the proliferation of SK-Hep-1, HepG2, and Huh7 cells in a dose-dependent manner, of which SK-Hep-1 was the most sensitive one with the lowest IC50 values. The animal data showed that TB remarkably suppressed SK-Hep-1 tumor growth in xenograft model of zebrafish. The cellular data showed TB's pro-apoptotic and pro-senescent effect on SK-Hep-1 cells. The molecular results revealed the mechanism of TB that p53 signaling pathway (p-ATM, p-ATR, γ-H2AX, p-Chk2, and p-p53) was activated with up-regulation of downstream senescent genes (P16, P21, IL-6 and IL-8) as well as apoptotic genes (Bim, Bax and PUMA) and proteins (Bax, c-Casp9 and c-PARP). The p53-mediated mechanism was verified by using p53-siRNA. Moreover, by using JNK-siRNA, we found JNK as a bypass regulator in TB's mechanism.
Conclusions
To sum up, TB exerted tumor-inhibitory, pro-senescent and pro-apoptotic effects on SK-Hep-1 cells through ATM-Chk2-p53 signaling axis in accompany with JNK bypass regulation. This is the first report on the pro-senescent effect and multi-target (p53 and JNK) mechanism of TB on HCC cells, providing new insights into the underlying mechanisms of TB's anti-HCC efficacy.
Collapse
|