1
|
Zhang WY, Wen L, Du L, Liu TT, Sun Y, Chen YZ, Lu YX, Cheng XC, Sun HY, Xiao FJ, Wang LS. S-RBD-modified and miR-486-5p-engineered exosomes derived from mesenchymal stem cells suppress ferroptosis and alleviate radiation-induced lung injury and long-term pulmonary fibrosis. J Nanobiotechnology 2024; 22:662. [PMID: 39462403 PMCID: PMC11515248 DOI: 10.1186/s12951-024-02830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/02/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is associated with alveolar epithelial cell death and secondary fibrosis in injured lung. Mesenchymal stem cell (MSC)-derived exosomes have regenerative effect against lung injury and the potential to intervene of RILI. However, their intervention efficacy is limited because they lack lung targeting characters and do not carry sufficient specific effectors. SARS-CoV-2 spike glycoprotein (SARS-CoV-2-S-RBD) binds angiotensin-converting enzyme 2 (ACE2) receptor and mediates interaction with host cells. MiR-486-5p is a multifunctional miRNA with angiogenic and antifibrotic potential and acts as an effector in MSC-derived exosomes. Ferroptosis is a form of cell death associated with radiation injury, its roles and mechanisms in RILI remain unclear. In this study, we developed an engineered MSC-derived exosomes with SARS-CoV-2-S-RBD- and miR-486-5p- modification and investigated their intervention effects on RIPF and action mechanisms via suppression of epithelial cell ferroptosis. RESULTS Adenovirus-mediated gene modification led to miR-486-5p overexpression in human umbilical cord MSC exosomes (p < 0.05), thereby constructing miR-486-5p engineered MSC exosomes (miR-486-MSC-Exo). MiR-486-MSC-Exo promoted the proliferation and migration of irradiated mouse lung epithelial (MLE-12) cells in vitro and inhibited RILI in vivo (all p < 0.05). MiR-486-MSC-Exo suppressed ferroptosis in MLE-12 cells, and an in vitro assay revealed that the expression of fibrosis-related genes is up-regulated following ferroptosis (both p < 0.05). MiR-486-MSC-Exo reversed the up-regulated expression of fibrosis-related genes induced by TGF-β1 in vitro and improved pathological fibrosis in RIPF mice in vivo (all p < 0.05). SARS-CoV-2-S-RBD-modified and miR-486-5p-engineered MSC exosomes (miR-486-RBD-MSC-Exo) were also constructed, and the distribution of DiR dye-labeled miR-486-RBD-MSC-Exo in hACE2CKI/CKI Sftpc-Cre+ mice demonstrated long-term retention in the lung (p < 0.05). MiR-486-RBD-MSC-Exo significantly improved the survival rate and pathological changes in hACE2CKI/CKI Sftpc-Cre+ RIPF mice (all p < 0.05). Furthermore, miR-486-MSC-Exo exerted anti-fibrotic effects via targeted SMAD2 inhibition and Akt phosphorylation activation (p < 0.05). CONCLUSIONS Engineered MSC exosomes with SARS-CoV-2-S-RBD- and miR-486-5p-modification were developed. MiR-486-RBD-MSC-Exo suppressed ferroptosis and fibrosis of MLE-12 cells in vitro, and alleviated RILI and long-term RIPF in ACE2 humanized mice in vivo. MiR-486-MSC-Exo exerted anti-fibrotic effects via SMAD2 inhibition and Akt activation. This study provides a potential approach for RIPF intervention.
Collapse
Affiliation(s)
- Wei-Yuan Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Li Wen
- School of Nursing, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Li Du
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Ting Ting Liu
- Department of Pulmonary and Critical Care Medicine, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Sun
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Yi-Zhu Chen
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Yu-Xin Lu
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Xiao-Chen Cheng
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hui-Yan Sun
- Yanda Medical Research Institute, Hebei Yanda Hospital, Langfang, 065201, China
| | - Feng-Jun Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Li-Sheng Wang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China.
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China.
- School of Nursing, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
2
|
Chiba T, Oda A, Zhang Y, Bons J, Bharathi SS, Pfister KE, Zhang BB, Richert AC, Schilling B, Goetzman ES, Sims-Lucas S. Loss of long-chain acyl-CoA dehydrogenase protects against acute kidney injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619640. [PMID: 39484612 PMCID: PMC11526992 DOI: 10.1101/2024.10.22.619640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Proximal tubular epithelial cells (PTECs) are particularly vulnerable to acute kidney injury (AKI). While fatty acids are the preferred energy source for PTECs via fatty acid oxidation (FAO), FAO-mediated H 2 O 2 production in mitochondria has been shown to be a major source of oxidative stress. We have previously shown that a mitochondrial flavoprotein, long-chain acyl-CoA dehydrogenase (LCAD), which catalyzes a key step in mitochondrial FAO, directly produces H 2 O 2 in vitro . Further we have established that loss of a lysine deacylase, Sirtuin 5 ( Sirt5 -/- ), induces hypersuccinylation and inhibition of mitochondrial FAO genes to stimulate peroxisomal FAO and to protect against AKI. However, the role of LCAD has yet to be determined. Mass spectrometry data acquisition revealed that LCAD is hypersuccinylated in Sirt5 -/- kidneys after AKI. Following two distinct models of AKI, cisplatin treatment or renal ischemia/reperfusion (IRI), LCAD knockout mice ( LCAD -/- ) demonstrated renoprotection against AKI. Specifically, LCAD -/- kidneys displayed mitigated renal tubular injury, decreased oxidative stress, preserved mitochondrial function, enhanced peroxisomal FAO, and decreased ferroptotic cell death. LCAD deficiency confers protection against two distinct models of AKI. This suggests a therapeutically attractive mechanism whereby preserved mitochondrial respiration as well as enhanced peroxisomal FAO by loss of LCAD mediates renoprotection against AKI.
Collapse
|
3
|
Elsakka EGE, Midan HM, Abulsoud AI, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Zaki MB, Abd-Elmawla MA, Rizk NI, Elrebehy MA, Abdelghany TM, Elesawy AE, Shahin RK, El Tabaa MM, Mohammed OA, Abdel-Reheim MA, Elballal MS, Doghish AS. Emerging insights: miRNA modulation of ferroptosis pathways in lung cancer. Exp Cell Res 2024; 442:114272. [PMID: 39362302 DOI: 10.1016/j.yexcr.2024.114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
The newly discovered programmed iron-dependent necrosis, ferroptosis, is a novel pathway that is controlled by iron-dependent lipid peroxidation and cellular redox changes. It can be triggered intrinsically by low antioxidant enzyme activity or extrinsically by blocking amino acid transporters or activating iron transporters. The induction of ferroptosis involves the activation of specific proteins, suppression of transporters, and increased endoplasmic reticulum (ER) stress (a condition in which the ER, a crucial organelle involved in protein folding and processing, becomes overwhelmed by an accumulation of misfolded or unfolded proteins. This situation disrupts the normal functioning of the ER, leading to a cellular stress response known as the unfolded protein response), leading to lipid peroxidation byproduct accumulation and toxic reactive oxygen species (ROS), which are highly reactive molecules derived from diatomic oxygen and include various forms such as superoxide (O₂⁻), hydroxyl radicals (•OH), and hydrogen peroxide (H₂O₂). Ferroptosis is closely associated with signaling molecules in lung cancer, including epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), hypoxia-inducible factor 1-alpha (HIF-1α), and P53, and is regulated by epigenetic factors such as microRNAs (miRNAs). miRNAs are small non-coding RNA molecules that regulate gene expression by binding to target messenger RNAs (mRNAs), leading to translational repression or degradation. Several miRNAs have been found to modulate ferroptosis by targeting key genes involved in iron metabolism, lipid peroxidation, and antioxidant defense pathways. The research on ferroptosis has expanded to target its role in lung cancer treatment and resistance prevention. This review encapsulates the significance of ferroptosis in lung cancer. Understanding the mechanisms and implications of ferroptosis in lung cancer cells may lead to targeted therapies exploiting cancer cell vulnerabilities to ferroptosis Also, improving treatment outcomes, and overcoming resistance.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
4
|
Chrabąszcz K, Pogoda K, Cieżak K, Panek A, Kwiatek WM. Sensing Biomolecules Associated with Cells' Radiosusceptibility by Advanced Micro- and Nanospectroscopy Techniques. ACS Sens 2024; 9:4887-4897. [PMID: 39291908 PMCID: PMC11443521 DOI: 10.1021/acssensors.4c01455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Radiotherapy is one of the most common approaches for cancer treatment, especially in the case of peripheral nervous system tumors. As it requires exposure to high doses of ionizing radiation, it is important to look for substances that support efficient reduction of the tumor volume with simultaneous prevention of the surrounding noncancerous cells. Cannabidiol (CBD), which exhibits both anticancer and neuroprotective properties, was applied as a potential modulator of radiological response; however, its influence on cells undergoing irradiation remains elusive. Here, we have applied high-resolution optical spectroscopy techniques to capture biomolecules associated with CBD shielding of normal and damaging cancerous cells upon X-ray exposure. Conventional Raman (RS) and Fourier transformed infrared (FT-IR) spectroscopies provided semiquantitative information mainly about changes in the concentration of total lipids, DNA, cholesteryl esters, and phospholipids in cells. A through assessment of the single cells by atomic force microscopy coupled with infrared spectroscopy (AFM-IR) allowed us to determine not only the alterations in DNA content but also in its conformation due to cell treatment. Pronounced nanoscale changes in cholesteryl ester metabolites, associated with CBD treatment and radiation, were also observed. AFM-IR chemoselective maps of the single cells indicate the modified distribution of cholesteryl esters with 40 nm spatial resolution. Based on the obtained results, we propose a label-free and fast analytical method engaging optical spectroscopy to assess the mechanism of normal and cancerous cell susceptibility to ionizing radiation when pretreated with CBD.
Collapse
Affiliation(s)
- Karolina Chrabąszcz
- Institute of Nuclear Physics Polish
Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - Katarzyna Pogoda
- Institute of Nuclear Physics Polish
Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - Klaudia Cieżak
- Institute of Nuclear Physics Polish
Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - Agnieszka Panek
- Institute of Nuclear Physics Polish
Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - Wojciech M. Kwiatek
- Institute of Nuclear Physics Polish
Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| |
Collapse
|
5
|
Liu X, Sun Y, Lv X, Song M, Sun J, Sun Y. Targeting lipid peroxidation-associated ferroptosis suppresses lung carcinoma progression by regulating cell cycle arrest. Int Immunopharmacol 2024; 138:112518. [PMID: 38917528 DOI: 10.1016/j.intimp.2024.112518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Lung carcinoma is a frequently encountered cancerous growth that affects the respiratory tract and has a high occurrence rate globally. In light of the ongoing worldwide health emergency, the significance of efficient therapeutic agents and strategies is of utmost importance. A meticulous control of the cell cycle is crucial for comprehending the pathophysiology and molecular causes of lung cancer, as well as for the formulation of efficacious therapeutic medicines. The mechanism by which cells synchronize cell cycle with cell survival and death is still not fully understood. In this study, we demonstrate that the halting of the cell cycle has a strong inhibitory impact on ferroptosis, a specific type of controlled cell death triggered by excessive lipid peroxidation at the membranes of cells. Ferroptosis is halted through the mechanism of cell cycle arrest, which involves the deposition of intracellular lipids mediated by diacylglycerol acyltransferase (DGAT). Excessive amounts of polyunsaturated fatty acids (PUFAs) are stored as triacylglycerols (TAGs) within inactive cells. As a result, inhibiting DGAT causes a rearrangement of PUFAs from TAGs to phospholipids and makes arrested cells more susceptible to ferroptosis. We demonstrate that certain lung cancer cells that are resistant to antimitotic drugs and have a slow-cycling behavior exhibit an increase in lipid droplets. Furthermore, we find that the growth of tumors resistant to 5-fluorouracil, lorlatinib, and docetaxel can be effectively suppressed by a combination treatment involving the use of ferroptosis inducers and DGAT inhibitors, which induces ferroptosis. Collectively, these findings demonstrate the involvement of cell cycle arrest in conferring resistance to ferroptosis and propose a potential therapeutic approach for addressing the challenge of slow-cycling malignancies that exhibit resistance to ferroptosis.
Collapse
Affiliation(s)
- Xiuju Liu
- Department of Respiratory Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Yuhui Sun
- Department of Medical Administration, Tai'an Hospital of Traditional Chinese Medicine (TCM), Tai'an 271000, PR China
| | - Xue Lv
- Department of Clinical Laboratory, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250117, PR China
| | - Mengmeng Song
- Department of Hematology & Oncology, Tai'an Hospital of Traditional Chinese Medicine (TCM), Tai'an 271000, PR China
| | - Jian Sun
- Department of Oncology, Shouguang People's Hospital, Shouguang 262700, PR China
| | - Yulan Sun
- Department of Respiratory Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| |
Collapse
|
6
|
Han H, Meister M, Peng G, Yuan Y, Qiao J, Yang JJ, Liu ZR, Ji X. Inhalation of nicotine-containing electronic cigarette vapor exacerbates the features of COPD by inducing ferroptosis in βENaC-overexpressing mice. Front Immunol 2024; 15:1429946. [PMID: 38947318 PMCID: PMC11211252 DOI: 10.3389/fimmu.2024.1429946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is currently listed as the 3rd leading cause of death in the United States. Accumulating data shows the association between COPD occurrence and the usage of electronic nicotine delivery systems (ENDS) in patients. However, the underlying pathogenesis mechanisms of COPD have not been fully understood. Methods In the current study, bENaC-overexpressing mice (bENaC mice) were subjected to whole-body ENDS exposure. COPD related features including emphysema, mucus accumulation, inflammation and fibrosis are examined by tissue staining, FACS analysis, cytokine measurement. Cell death and ferroptosis of alveolar epithelial cells were further evaluated by multiple assays including staining, FACS analysis and lipidomics. Results ENDS-exposed mice displayed enhanced emphysema and mucus accumulation, suggesting that ENDS exposure promotes COPD features. ENDS exposure also increased immune cell number infiltration in bronchoalveolar lavage and levels of multiple COPD-related cytokines in the lungs, including CCL2, IL-4, IL-13, IL-10, M-CSF, and TNF-α. Moreover, we observed increased fibrosis in ENDS-exposed mice, as evidenced by elevated collagen deposition and a-SMA+ myofibroblast accumulation. By investigating possible mechanisms for how ENDS promoted COPD, we demonstrated that ENDS exposure induced cell death of alveolar epithelial cells, evidenced by TUNEL staining and Annexin V/PI FACS analysis. Furthermore, we identified that ENDS exposure caused lipid dysregulations, including TAGs (9 species) and phospholipids (34 species). As most of these lipid species are highly associated with ferroptosis, we confirmed ENDS also enhanced ferroptosis marker CD71 in both type I and type II alveolar epithelial cells. Discussion Overall, our data revealed that ENDS exposure exacerbates features of COPD in bENaC mice including emphysema, mucus accumulation, abnormal lung inflammation, and fibrosis, which involves the effect of COPD development by inducing ferroptosis in the lung.
Collapse
Affiliation(s)
- Hongwei Han
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Maureen Meister
- Department of Nutrition, Georgia State University, Atlanta, GA, United States
| | - Guangda Peng
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Yi Yuan
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Jingjuan Qiao
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Jenny J. Yang
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Xiangming Ji
- Department of Nutrition, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
7
|
Gatti M, Belli M, De Rubeis M, Tokita S, Ikema H, Yamashiro H, Fujishima Y, Anderson D, Goh VST, Shinoda H, Nakata A, Fukumoto M, Miura T, Nottola SA, Macchiarelli G, Palmerini MG. Ultrastructural Analysis of Large Japanese Field Mouse ( Apodemus speciosus) Testes Exposed to Low-Dose-Rate (LDR) Radiation after the Fukushima Nuclear Power Plant Accident. BIOLOGY 2024; 13:239. [PMID: 38666851 PMCID: PMC11048324 DOI: 10.3390/biology13040239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Since the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, great attention has been paid to the impact of chronic low-dose-rate (LDR) radiation exposure on biological systems. The reproductive system is sensitive to radiation, with implications connected to infertility. We investigated the testis ultrastructure of the wild large Japanese field mouse (Apodemus speciosus) from three areas contaminated after the FDNPP accident, with different levels of LDR radiation (0.29 µSv/h, 5.11 µSv/h, and 11.80 µSv/h). Results showed good preservation of the seminiferous tubules, comparable to the unexposed animals (controls), except for some ultrastructural modifications. Increases in the numerical density of lipid droplet clusters in spermatogenic cells were found at high levels of LDR radiation, indicating an antioxidant activity rising due to radiation recovery. In all groups, wide intercellular spaces were found between spermatogenic cells, and cytoplasmic vacuolization increased at intermediate and high levels and vacuolated mitochondria at the high-level. However, these findings were also related to the physiological dynamics of spermatogenesis. In conclusion, the testes of A. speciosus exposed to LDR radiation associated with the FDNPP accident showed a normal spermatogenesis, with some ultrastructural changes. These outcomes may add information on the reproductive potential of mammals chronically exposed to LDR radiation.
Collapse
Affiliation(s)
- Marta Gatti
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy; (M.G.); (M.D.R.)
| | - Manuel Belli
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Mariacarla De Rubeis
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy; (M.G.); (M.D.R.)
| | - Syun Tokita
- Graduate School of Science and Technology, Niigata University, Niigata 959-2181, Japan
| | - Hikari Ikema
- Graduate School of Science and Technology, Niigata University, Niigata 959-2181, Japan
| | - Hideaki Yamashiro
- Graduate School of Science and Technology, Niigata University, Niigata 959-2181, Japan
| | - Yohei Fujishima
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, Aomori 036-8564, Japan (D.A.); (T.M.)
| | - Donovan Anderson
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, Aomori 036-8564, Japan (D.A.); (T.M.)
| | - Valerie Swee Ting Goh
- Department of Radiobiology, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Hisashi Shinoda
- Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Akifumi Nakata
- Department of Life Science, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Hokkaido 006-8585, Japan
| | - Manabu Fukumoto
- RIKEN Center for Advanced Intelligence Project, Pathology Informatics Team, Tokyo 103-0027, Japan;
| | - Tomisato Miura
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, Aomori 036-8564, Japan (D.A.); (T.M.)
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy; (M.G.); (M.D.R.)
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| |
Collapse
|
8
|
Wang J, Li J, Liu J, Chan KY, Lee HS, Lin KN, Wang CC, Lau TS. Interplay of Ferroptosis and Cuproptosis in Cancer: Dissecting Metal-Driven Mechanisms for Therapeutic Potentials. Cancers (Basel) 2024; 16:512. [PMID: 38339263 PMCID: PMC10854932 DOI: 10.3390/cancers16030512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Iron (Fe) and copper (Cu), essential transition metals, play pivotal roles in various cellular processes critical to cancer biology, including cell proliferation, mitochondrial respiration, distant metastases, and oxidative stress. The emergence of ferroptosis and cuproptosis as distinct forms of non-apoptotic cell death has heightened their significance, particularly in connection with these metal ions. While initially studied separately, recent evidence underscores the interdependence of ferroptosis and cuproptosis. Studies reveal a link between mitochondrial copper accumulation and ferroptosis induction. This interconnected relationship presents a promising strategy, especially for addressing refractory cancers marked by drug tolerance. Harnessing the toxicity of iron and copper in clinical settings becomes crucial. Simultaneous targeting of ferroptosis and cuproptosis, exemplified by the combination of sorafenib and elesclomol-Cu, represents an intriguing approach. Strategies targeting mitochondria further enhance the precision of these approaches, providing hope for improving treatment outcomes of drug-resistant cancers. Moreover, the combination of iron chelators and copper-lowering agents with established therapeutic modalities exhibits a synergy that holds promise for the augmentation of anti-tumor efficacy in various malignancies. This review elaborates on the complex interplay between ferroptosis and cuproptosis, including their underlying mechanisms, and explores their potential as druggable targets in both cancer research and clinical settings.
Collapse
Affiliation(s)
- Jinjiang Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| | - Jiaxi Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jiao Liu
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| | - Kit-Ying Chan
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| | - Ho-Sze Lee
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| | - Kenneth Nansheng Lin
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| | - Chi-Chiu Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| | - Tat-San Lau
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| |
Collapse
|
9
|
Cheng KW, Su PR, Feller KJA, Chien MP, Hsu CC. Investigating the Metabolic Heterogeneity of Cancer Cells Using Functional Single-Cell Selection and nLC Combined with Multinozzle Emitter Mass Spectrometry. Anal Chem 2024; 96:624-629. [PMID: 38157203 DOI: 10.1021/acs.analchem.3c03688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Tumor metastasis and cancer recurrence are often a result of cell heterogeneity, where specific subpopulations of tumor cells may be resistant to radio- or chemotherapy. To investigate this physiological and phenotypic diversity, single-cell metabolomics provides a powerful approach at the chemical level, where distinct lipid profiles can be found in different tumor cells. Here, we established a highly sensitive platform using nanoflow liquid chromatography (nLC) combined with multinozzle emitter electrospray ionization mass spectrometry for more in-depth metabolomics profiling. Our platform identified 15 and 17 lipids from individual osteosarcoma (U2OS) and glioblastoma (GBM) cells when analyzing single-cell samples. Additionally, we used the functional single-cell selection (fSCS) pipeline to analyze the subpopulations of cells with a DNA damage response (DDR) in U2OS cells and fast migration in GBM cells. Specifically, we observed a down-regulation of polyunsaturated fatty acids (PUFAs) in U2OS cells undergoing DDR, such as fatty acids FA 20:3; O2 and FA 17:4; O3. Furthermore, ceramides (Cer 38:0; O3) and triglycerides (TG 36:0) were found to be down-regulated in fast-migrating GBM cells compared to the slow-migrating subpopulation. These findings suggest the potential roles of these metabolites and/or lipids in the cellular behavior of the subpopulations.
Collapse
Affiliation(s)
- Kai-Wen Cheng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Pin-Rui Su
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Kate Jo-Ann Feller
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Miao-Ping Chien
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
10
|
Farzipour S, Zefrei FJ, Bahadorikhalili S, Alvandi M, Salari A, Shaghaghi Z. Nanotechnology Utilizing Ferroptosis Inducers in Cancer Treatment. Anticancer Agents Med Chem 2024; 24:571-589. [PMID: 38275050 DOI: 10.2174/0118715206278427231215111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024]
Abstract
Current cancer treatment options have presented numerous challenges in terms of reaching high efficacy. As a result, an immediate step must be taken to create novel therapies that can achieve more than satisfying outcomes in the fight against tumors. Ferroptosis, an emerging form of regulated cell death (RCD) that is reliant on iron and reactive oxygen species, has garnered significant attention in the field of cancer therapy. Ferroptosis has been reported to be induced by a variety of small molecule compounds known as ferroptosis inducers (FINs), as well as several licensed chemotherapy medicines. These compounds' low solubility, systemic toxicity, and limited capacity to target tumors are some of the significant limitations that have hindered their clinical effectiveness. A novel cancer therapy paradigm has been created by the hypothesis that ferroptosis induced by nanoparticles has superior preclinical properties to that induced by small drugs and can overcome apoptosis resistance. Knowing the different ideas behind the preparation of nanomaterials that target ferroptosis can be very helpful in generating new ideas. Simultaneously, more improvement in nanomaterial design is needed to make them appropriate for therapeutic treatment. This paper first discusses the fundamentals of nanomedicine-based ferroptosis to highlight the potential and characteristics of ferroptosis in the context of cancer treatment. The latest study on nanomedicine applications for ferroptosis-based anticancer therapy is then highlighted.
Collapse
Affiliation(s)
- Soghra Farzipour
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Jalali Zefrei
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Bahadorikhalili
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Maryam Alvandi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arsalan Salari
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Shaghaghi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
11
|
Zuo HL, Huang HY, Lin YCD, Liu KM, Lin TS, Wang YB, Huang HD. Effects of Natural Products on Enzymes Involved in Ferroptosis: Regulation and Implications. Molecules 2023; 28:7929. [PMID: 38067658 PMCID: PMC10708253 DOI: 10.3390/molecules28237929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Ferroptosis is a form of regulated cell death that is characterized by the accumulation of iron-dependent lipid peroxides. The regulation of ferroptosis involves both non-enzymatic reactions and enzymatic mechanisms. Natural products have demonstrated potential effects on various enzymes, including GPX4, HO-1, NQO1, NOX4, GCLC, and GCLM, which are mainly involved in glutathione metabolic pathway or oxidative stress regulation, and ACSL3 and ACSL4, which mainly participate in lipid metabolism, thereby influencing the regulation of ferroptosis. In this review, we have provided a comprehensive overview of the existing literature pertaining to the effects of natural products on enzymes involved in ferroptosis and discussed their potential implications for the prevention and treatment of ferroptosis-related diseases. We also highlight the potential challenge that the majority of research has concentrated on investigating the impact of natural products on the expression of enzymes involving ferroptosis while limited attention is given to the regulation of enzyme activity. This observation underscores the considerable potential and scope for exploring the influence of natural products on enzyme activity.
Collapse
Affiliation(s)
- Hua-Li Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-Y.H.); (Y.-C.-D.L.); (T.-S.L.); (Y.-B.W.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-Y.H.); (Y.-C.-D.L.); (T.-S.L.); (Y.-B.W.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-Y.H.); (Y.-C.-D.L.); (T.-S.L.); (Y.-B.W.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Kun-Meng Liu
- Center for Medical Artificial Intelligence, Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
| | - Ting-Syuan Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-Y.H.); (Y.-C.-D.L.); (T.-S.L.); (Y.-B.W.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yi-Bing Wang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-Y.H.); (Y.-C.-D.L.); (T.-S.L.); (Y.-B.W.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-Y.H.); (Y.-C.-D.L.); (T.-S.L.); (Y.-B.W.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| |
Collapse
|
12
|
Sridhar S, Bhalla P, Kullu J, Veerapaneni S, Sahoo S, Bhatt N, Suraishkumar GK. A reactive species reactions module for integration into genome-scale metabolic models for improved insights: Application to cancer. Metab Eng 2023; 80:78-93. [PMID: 37689259 DOI: 10.1016/j.ymben.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/07/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
Reactive species (RS) play significant roles in many disease contexts. Despite their crucial roles in diseases including cancer, the RS are not adequately modeled in the genome-scale metabolic (GSM) models, which are used to understand cell metabolism in disease contexts. We have developed a scalable RS reactions module that can be integrated with any Recon 3D-derived human metabolic model, or after fine-tuning, with any metabolic model. With RS-integration, the GSM models of three cancers (basal-like triple negative breast cancer (TNBC), high grade serous ovarian carcinoma (HGSOC) and colorectal cancer (CRC)) built from Recon 3D, precisely highlighted the increases/decreases in fluxes (dysregulation) occurring in important pathways of these cancers. These dysregulations were not prominent in the standard cancer models without the RS module. Further, the results from these RS-integrated cancer GSM models suggest the following decreasing order in the ease of ferroptosis-targeting to treat the cancers: TNBC > HGSOC > CRC.
Collapse
Affiliation(s)
- Subasree Sridhar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building - 1 and 2, Indian Institute of Technology Madras, Chennai, 600 036, India; Centre for Integrative Biology and Systems medicinE, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Prerna Bhalla
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building - 1 and 2, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Justin Kullu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building - 1 and 2, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Sriya Veerapaneni
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building - 1 and 2, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Swagatika Sahoo
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Nirav Bhatt
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building - 1 and 2, Indian Institute of Technology Madras, Chennai, 600 036, India; Centre for Integrative Biology and Systems medicinE, Indian Institute of Technology Madras, Chennai, 600 036, India; Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of Technology Madras, Chennai, 600 036, India.
| | - G K Suraishkumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building - 1 and 2, Indian Institute of Technology Madras, Chennai, 600 036, India.
| |
Collapse
|
13
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
14
|
Wang L, Huang H, Li X, Ouyang L, Wei X, Xie J, Liu D, Tan P, Hu Z. A review on the research progress of traditional Chinese medicine with anti-cancer effect targeting ferroptosis. Chin Med 2023; 18:132. [PMID: 37833746 PMCID: PMC10571466 DOI: 10.1186/s13020-023-00838-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by iron-dependent lipid peroxidation. It can be triggered by various mechanisms, including the glutathione peroxidase 4 (GPX4)-glutathione (GSH) axis, iron metabolism, lipid metabolism, the GTP cyclohydrolase 1 (GCH1)-tetrahydrobiopterin (BH4) pathway, and the ferroptosis suppressor protein 1 (FSP1)-coenzyme Q10 axis. The redox balance is disrupted when ferroptosis occurs in cells, which is fatal to cancer cells. Additionally, some tumor-associated genes are involved in ferroptosis. Hence, targeting ferroptosis might be an effective strategy for treating cancer. Several small-molecule compounds exhibit anti-tumor effects through ferroptosis, including sorafenib and altretamine, which induce ferroptosis by inhibiting System-Xc and GPX4 respectively, but many problems, such as poor druggability, still exist. Some studies have shown that many traditional Chinese medicine (TCM) induce ferroptosis by inhibiting GPX4, solute carrier family 7 member 11 (SLC7A11), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), or by increasing the expression of Acyl-CoA synthetase long-chain family member 4 (ACSL4), transferrin (TF), and transferrin receptor 1 (TFR1). These changes can lead to the lysosomal degradation of ferritin, accumulation of iron, lipid peroxidation and the production of reactive oxygen species (ROS), which in turn can promote anti-tumor activities or synergistic effects with chemotherapeutic drugs. In this study, we elucidated the underlying mechanisms of ferroptosis, and the anti-tumor pharmacology of TCM targeting ferroptosis including prescriptions, Chinese herbs, extracts, and natural compounds. Our findings might act as valuable reference for research on anti-tumor drugs targeting ferroptosis, especially those drugs developed from TCM.
Collapse
Affiliation(s)
- Longyan Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Huiming Huang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Xingxing Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Lishan Ouyang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Xuejiao Wei
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jinxin Xie
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Dongxiao Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Peng Tan
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
15
|
Zhang Y, Zhao T, Hu L, Xue J. Integrative Analysis of Core Genes and Biological Process Involved in Polycystic Ovary Syndrome. Reprod Sci 2023; 30:3055-3070. [PMID: 37171773 DOI: 10.1007/s43032-023-01259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common gynecological endocrine disordered disease, affecting the function of the ovaries in women of reproductive age. However, there are limited curative therapies for PCOS due to lack of reliable candidates. Hence, this study aimed to identify hub pathogenic genes and potential therapeutic targets for PCOS using bioinformatics tools. We obtained the expression profiles of 29 PCOS samples and 24 normal samples from three Gene Expression Omnibus (GEO) datasets. Then, the differentially expressed genes (DEGs) were screened, which were subjected to functional enrichment analyses. Moreover, we found 30 ferroptosis-related genes out of the 89 DEGs. Among the top 10 significant ferroptosis-related DEGs, 8 genes showed good predictive performance. We constructed interaction network of top three ferroptosis-related DEGs (SLC38A1, ACO1, DDIT3). Finally, real-time PCR was performed to test the relative expression of these genes. In conclusions, we have identified ferroptosis-related DEGs as core genes and potential therapeutic targets of PCOS based on comprehensive bioinformatics analysis. The findings are conducive to understanding of the pathogenesis of PCOS and paving the way towards curative therapies.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Obstetrics and Gynecology, Yan'an University Affiliated Hospital, No. 43 North Street, Baota District, Yan'an, 716000, Shaanxi, People's Republic of China
| | - Tianyi Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Lishuang Hu
- Department of Obstetrics and Gynecology, Yan'an University Affiliated Hospital, No. 43 North Street, Baota District, Yan'an, 716000, Shaanxi, People's Republic of China
| | - Juan Xue
- Department of Obstetrics and Gynecology, Yan'an University Affiliated Hospital, No. 43 North Street, Baota District, Yan'an, 716000, Shaanxi, People's Republic of China.
| |
Collapse
|
16
|
Yu S, Xiao H, Ma L, Zhang J, Zhang J. Reinforcing the immunogenic cell death to enhance cancer immunotherapy efficacy. Biochim Biophys Acta Rev Cancer 2023; 1878:188946. [PMID: 37385565 DOI: 10.1016/j.bbcan.2023.188946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Immunogenic cell death (ICD) has been a revolutionary modality in cancer treatment since it kills primary tumors and prevents recurrent malignancy simultaneously. ICD represents a particular form of cancer cell death accompanied by production of damage-associated molecular patterns (DAMPs) that can be recognized by pattern recognition receptors (PRRs), which enhances infiltration of effector T cells and potentiates antitumor immune responses. Various treatment methods can elicit ICD involving chemo- and radio-therapy, phototherapy and nanotechnology to efficiently convert dead cancer cells into vaccines and trigger the antigen-specific immune responses. Nevertheless, the efficacy of ICD-induced therapies is restrained due to low accumulation in the tumor sites and damage of normal tissues. Thus, researchers have been devoted to overcoming these problems with novel materials and strategies. In this review, current knowledge on different ICD modalities, various ICD inducers, development and application of novel ICD-inducing strategies are summarized. Moreover, the prospects and challenges are briefly outlined to provide reference for future design of novel immunotherapy based on ICD effect.
Collapse
Affiliation(s)
- Sihui Yu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongyang Xiao
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Li Ma
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Jiarong Zhang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
17
|
Li W, Zhang C, Aramaki S, Xu L, Tsuge S, Sakamoto T, Mamun MA, Islam A, Hayakawa T, Takanashi Y, Dubail M, Konishi K, Sato T, Kahyo T, Fouillade C, Nakamura K, Setou M. Lipid Polyunsaturated Fatty Acid Chains in Mouse Kidneys Were Increased within 5 min of a Single High Dose Whole Body Irradiation. Int J Mol Sci 2023; 24:12439. [PMID: 37569813 PMCID: PMC10419980 DOI: 10.3390/ijms241512439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
To understand the ultra-early reaction of normal organ lipids during irradiation, we investigated the response of lipids, including polyunsaturated fatty acid (PUFA) chains, which are particularly susceptible to damage by ROS, in mice's kidneys, lungs, brains, and livers within 5 min of single high-dose irradiation. In this study, we set up three groups of C56BL/6 male mice and conducted whole-body irradiation with 0 Gy, 10 Gy, and 20 Gy single doses. Kidney, lung, brain, and liver tissues were collected within 5 min of irradiation. PUFA-targeted and whole lipidomic analyses were conducted using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results showed that PUFA chains of kidney phosphatidylcholine (PC), phosphatidylethanolamine (PE), and triacylglycerol (TG) significantly increased within 5 min of 10 Gy and 20 Gy irradiation. The main components of increased PUFA chains in PC and PE were C18:2, C20:4, and C22:6, and in TG the main component was C18:2. The kidney lipidomes also showed significant changes from the perspective of lipid species, mainly dominated by an increase in PC, PE, TG, and signal lipids, while lipidomes of the lung, brain, and liver were slightly changed. Our results revealed that acute PUFA chains increase and other lipidomic changes in the kidney upon whole-body irradiation within 5 min of irradiation. The significantly increased lipids also showed a consistent preference for possessing PUFA chains. The lipidomic changes varied from organ to organ, which indicates that the response upon irradiation within a short time is tissue-specific.
Collapse
Affiliation(s)
- Wenxin Li
- Department of Radiation Oncology, Hamamatsu University School of Medicine, Handayama 1-20-1, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan; (W.L.)
| | - Chi Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan; (C.Z.); (M.S.)
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center Hamamatsu, Hamamatsu 431-3192, Shizuoka, Japan
| | - Shuhei Aramaki
- Department of Radiation Oncology, Hamamatsu University School of Medicine, Handayama 1-20-1, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan; (W.L.)
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan; (C.Z.); (M.S.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Lili Xu
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan; (C.Z.); (M.S.)
| | - Shogo Tsuge
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan; (C.Z.); (M.S.)
| | - Takumi Sakamoto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan; (C.Z.); (M.S.)
| | - Md. Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan; (C.Z.); (M.S.)
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan; (C.Z.); (M.S.)
| | - Takamitsu Hayakawa
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Yusuke Takanashi
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Maxime Dubail
- Institut Curie, Centre de Recherche, INSERM U612, 91405 Orsay, France
| | - Kenta Konishi
- Department of Radiation Oncology, Hamamatsu University School of Medicine, Handayama 1-20-1, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan; (W.L.)
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan; (C.Z.); (M.S.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan; (C.Z.); (M.S.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Charles Fouillade
- Institut Curie, Centre de Recherche, INSERM U612, 91405 Orsay, France
| | - Katsumasa Nakamura
- Department of Radiation Oncology, Hamamatsu University School of Medicine, Handayama 1-20-1, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan; (W.L.)
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan; (C.Z.); (M.S.)
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center Hamamatsu, Hamamatsu 431-3192, Shizuoka, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
| |
Collapse
|
18
|
Allen CH, Skillings R, Ahmed D, Sanchez SC, Altwasser K, Hilan G, Willmore WG, Chauhan V, Cassol E, Murugkar S. Investigating ionizing radiation-induced changes in breast cancer cells using stimulated Raman scattering microscopy. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:076501. [PMID: 37441447 PMCID: PMC10335321 DOI: 10.1117/1.jbo.28.7.076501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Significance Altered lipid metabolism of cancer cells has been implicated in increased radiation resistance. A better understanding of this phenomenon may lead to improved radiation treatment planning. Stimulated Raman scattering (SRS) microscopy enables label-free and quantitative imaging of cellular lipids but has never been applied in this domain. Aim We sought to investigate the radiobiological response in human breast cancer MCF7 cells using SRS microscopy, focusing on how radiation affects lipid droplet (LD) distribution and cellular morphology. Approach MCF7 breast cancer cells were exposed to either 0 or 30 Gy (X-ray) ionizing radiation and imaged using a spectrally focused SRS microscope every 24 hrs over a 72-hr time period. Images were analyzed to quantify changes in LD area per cell, lipid and protein content per cell, and cellular morphology. Cell viability and confluency were measured using a live cell imaging system while radiation-induced lipid peroxidation was assessed using BODIPY C11 staining and flow cytometry. Results The LD area per cell and total lipid and protein intensities per cell were found to increase significantly for irradiated cells compared to control cells from 48 to 72 hrs post irradiation. Increased cell size, vacuole formation, and multinucleation were observed as well. No significant cell death was observed due to irradiation, but lipid peroxidation was found to be greater in the irradiated cells than control cells at 72 hrs. Conclusions This pilot study demonstrates the potential of SRS imaging for investigating ionizing radiation-induced changes in cancer cells without the use of fluorescent labels.
Collapse
Affiliation(s)
- Christian Harry Allen
- Carleton University, Department of Physics, Ottawa, Ontario, Canada
- Carleton University, Ottawa-Carleton Institute for Biomedical Engineering, Ottawa, Ontario, Canada
| | - Robyn Skillings
- Carleton University, Department of Health Sciences, Ottawa, Ontario, Canada
| | - Duale Ahmed
- Carleton University, Department of Health Sciences, Ottawa, Ontario, Canada
| | - Sarita Cuadros Sanchez
- Health Canada, Consumer and Clinical Radiation Protection Bureau, Ottawa, Ontario, Canada
| | - Kaitlyn Altwasser
- Health Canada, Consumer and Clinical Radiation Protection Bureau, Ottawa, Ontario, Canada
| | - George Hilan
- Carleton University, Institute of Biochemistry, Departments of Biology and Chemistry, Ottawa, Canada
| | - William G. Willmore
- Carleton University, Institute of Biochemistry, Departments of Biology and Chemistry, Ottawa, Canada
| | - Vinita Chauhan
- Health Canada, Consumer and Clinical Radiation Protection Bureau, Ottawa, Ontario, Canada
| | - Edana Cassol
- Carleton University, Department of Health Sciences, Ottawa, Ontario, Canada
| | - Sangeeta Murugkar
- Carleton University, Department of Physics, Ottawa, Ontario, Canada
- Carleton University, Ottawa-Carleton Institute for Biomedical Engineering, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
The Emerging Role of Heat Shock Factor 1 (HSF1) and Heat Shock Proteins (HSPs) in Ferroptosis. PATHOPHYSIOLOGY 2023; 30:63-82. [PMID: 36976734 PMCID: PMC10057451 DOI: 10.3390/pathophysiology30010007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Cells employ a well-preserved physiological stress response mechanism, termed the heat shock response, to activate a certain type of molecular chaperone called heat shock proteins (HSPs). HSPs are activated by transcriptional activators of heat shock genes known as heat shock factors (HSFs). These molecular chaperones are categorized as the HSP70 superfamily, which includes HSPA (HSP70) and HSPH (HSP110) families; the DNAJ (HSP40) family; the HSPB family (small heat shock proteins (sHSPs)); chaperonins and chaperonin-like proteins; and other heat-inducible protein families. HSPs play a critical role in sustaining proteostasis and protecting cells against stressful stimuli. HSPs participate in folding newly synthesized proteins, holding folded proteins in their native conformation, preventing protein misfolding and accumulation, and degrading denatured proteins. Ferroptosis is a recently identified type of oxidative iron-dependent cell demise. It was coined recently in 2012 by Stockwell Lab members, who described a special kind of cell death induced by erastin or RSL3. Ferroptosis is characterized by alterations in oxidative status resulting from iron accumulation, increased oxidative stress, and lipid peroxidation, which are mediated by enzymatic and non-enzymatic pathways. The process of ferroptotic cell death is regulated at multiple, and it is involved in several pathophysiological conditions. Much research has emerged in recent years demonstrating the involvement of HSPs and their regulator heat shock factor 1 (HSF1) in ferroptosis regulation. Understanding the machinery controlling HSF1 and HSPs in ferroptosis can be employed in developing therapeutic interventions for ferroptosis occurrence in a number of pathological conditions. Therefore, this review comprehensively summarized the basic characteristics of ferroptosis and the regulatory functions of HSF1 and HSPs in ferroptosis.
Collapse
|
20
|
Luo H, Wang X, Song S, Wang Y, Dan Q, Ge H. Targeting stearoyl-coa desaturase enhances radiation induced ferroptosis and immunogenic cell death in esophageal squamous cell carcinoma. Oncoimmunology 2022; 11:2101769. [PMID: 35859734 PMCID: PMC9291654 DOI: 10.1080/2162402x.2022.2101769] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Overcoming resistance to radiation is a major challenge in cancer treatment. Stearoyl-coa desaturase (SCD1) is the enzyme responsible for oleic acid (OA) and palmitoleic acid (POA) formation. Here, we provided evidence that targeting SCD1 was capable of inducing ferroptosis and immunogenic cell death (ICD), thereby improving the radiation sensitivity of esophageal squamous cell carcinoma (ESCC). ESCC cell lines with high SCD1 expression were treated with MF-438 (SCD1 inhibitor) to determine cell viability. Colony formation assay was performed to evaluate the radiation sensitization of SCD1 inhibitor. Tumor cell ferroptosis and ICD was analyzed in MF-438, radiation therapy (RT) and the combination treatment group. The potential molecular mechanisms underlying MF-438 as a novel radiation sensitizer in ESCC were explored. We concluded by assessing SCD1 as a prognostic factor in ESCC. MF-438 exhibited antitumor activity in ESCC cells. Our outcomes revealed significant improvement of radiation sensitivity by MF-438. Moreover, the combination treatment enhanced tumor cell ferroptosis and ICD. Further analyses revealed SCD1 conferred radiation resistance via alleviating ferroptosis in tumor cells; targeting SCD1 inhibited the biosynthesis of OA and POA, and improved radiation induced ferroptosis in ESCC cells. Clinical analysis indicated high expression of SCD1 was associated with unfavorable survival in patients of ESCC. In summary, our results demonstrated that MF-438 acted as a ferroptosis inducer. Targeting SCD1 conferred the immunogenicity of ferroptotic cancer cells and increased the effectiveness of RT in ESCC. SCD1 could be considered as a useful prognostic indicator of survival in ESCC.
Collapse
Affiliation(s)
- Hui Luo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohui Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuai Song
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yunhan Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qinfu Dan
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Sagkrioti E, Biz GM, Takan I, Asfa S, Nikitaki Z, Zanni V, Kars RH, Hellweg CE, Azzam EI, Logotheti S, Pavlopoulou A, Georgakilas AG. Radiation Type- and Dose-Specific Transcriptional Responses across Healthy and Diseased Mammalian Tissues. Antioxidants (Basel) 2022; 11:2286. [PMID: 36421472 PMCID: PMC9687520 DOI: 10.3390/antiox11112286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 08/30/2023] Open
Abstract
Ionizing radiation (IR) is a genuine genotoxic agent and a major modality in cancer treatment. IR disrupts DNA sequences and exerts mutagenic and/or cytotoxic properties that not only alter critical cellular functions but also impact tissues proximal and distal to the irradiated site. Unveiling the molecular events governing the diverse effects of IR at the cellular and organismal levels is relevant for both radiotherapy and radiation protection. Herein, we address changes in the expression of mammalian genes induced after the exposure of a wide range of tissues to various radiation types with distinct biophysical characteristics. First, we constructed a publicly available database, termed RadBioBase, which will be updated at regular intervals. RadBioBase includes comprehensive transcriptomes of mammalian cells across healthy and diseased tissues that respond to a range of radiation types and doses. Pertinent information was derived from a hybrid analysis based on stringent literature mining and transcriptomic studies. An integrative bioinformatics methodology, including functional enrichment analysis and machine learning techniques, was employed to unveil the characteristic biological pathways related to specific radiation types and their association with various diseases. We found that the effects of high linear energy transfer (LET) radiation on cell transcriptomes significantly differ from those caused by low LET and are consistent with immunomodulation, inflammation, oxidative stress responses and cell death. The transcriptome changes also depend on the dose since low doses up to 0.5 Gy are related with cytokine cascades, while higher doses with ROS metabolism. We additionally identified distinct gene signatures for different types of radiation. Overall, our data suggest that different radiation types and doses can trigger distinct trajectories of cell-intrinsic and cell-extrinsic pathways that hold promise to be manipulated toward improving radiotherapy efficiency and reducing systemic radiotoxicities.
Collapse
Affiliation(s)
- Eftychia Sagkrioti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
- Biology Department, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Gökay Mehmet Biz
- Department of Technical Programs, Izmir Vocational School, Dokuz Eylül University, Buca, Izmir 35380, Turkey
| | - Işıl Takan
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Seyedehsadaf Asfa
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Zacharenia Nikitaki
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Vassiliki Zanni
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Rumeysa Hanife Kars
- Department of Biomedical Engineering, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Christine E. Hellweg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology, Linder Höhe, D-51147 Köln, Germany
| | | | - Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| |
Collapse
|
22
|
Chatterjee A, Sakallioglu IT, Murthy D, Kosmacek EA, Singh PK, McDonald JT, Powers R, Oberley-Deegan RE. MnTE-2-PyP protects fibroblast mitochondria from hyperglycemia and radiation exposure. Redox Biol 2022; 52:102301. [PMID: 35358851 PMCID: PMC8967707 DOI: 10.1016/j.redox.2022.102301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022] Open
Abstract
Radiation is a common anticancer therapy for prostate cancer, which transforms tumor-associated normal fibroblasts to myofibroblasts, resulting in fibrosis. Oxidative stress caused by radiation-mediated mitochondrial damage is one of the major contributors to fibrosis. As diabetics are oxidatively stressed, radiation-mediated reactive oxygen species cause severe treatment failure, treatment-related side effects, and significantly reduced survival for diabetic prostate cancer patients as compared to non-diabetic prostate cancer patients. Hyperglycemia and enhanced mitochondrial damage significantly contribute to oxidative damage and disease progression after radiation therapy among diabetic prostate cancer patients. Therefore, reduction of mitochondrial damage in normal prostate fibroblasts after radiation should improve the overall clinical state of diabetic prostate cancer patients. We previously reported that MnTE-2-PyP, a manganese porphyrin, reduces oxidative damage in irradiated hyperglycemic prostate fibroblasts by scavenging superoxide and activating NRF2. In the current study, we have investigated the potential role of MnTE-2-PyP to protect mitochondrial health in irradiated hyperglycemic prostate fibroblasts. This study revealed that hyperglycemia and radiation increased mitochondrial ROS via blocking the mitochondrial electron transport chain, altered mitochondrial dynamics, and reduced mitochondrial biogenesis. Increased mitochondrial damage preceeded an increase in myofibroblast differentiation. MnTE-2-PyP reduced myofibroblast differentiation, improved mitochondrial health by releasing the block on the mitochondrial electron transport chain, enhanced ATP production efficiency, and restored mitochondrial dynamics and metabolism in the irradiated-hyperglycemic prostate fibroblasts. Therefore, we are proposing that one of the mechanisms that MnTE-2-PyP protects prostate fibroblasts from irradiation and hyperglycemia-mediated damage is by protecting the mitochondrial health in diabetic prostate cancer patients. MnTE-2-PyP protects mitochondria from radiation and hyperglycemia-induced stress. MnTE-2-PyP reduced mitochondrial ROS by restoring the levels of OXPHOS complexes. MnTE-2-PyP increased the number of healthy mitochondria and enhanced ATP production efficiency. Mitochondrial protection by MnTE-2-PyP inhibits myofibroblast differentiation. MnTE-2-PyP treatment partly restores radiation-mediated metabolic changes.
Collapse
Affiliation(s)
- Arpita Chatterjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Isin T Sakallioglu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA
| | - Divya Murthy
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Elizabeth A Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pankaj K Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - J Tyson McDonald
- Department of Physics & Cancer Research Center, Hampton University, Hampton, VA, 23668, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
23
|
Rodríguez-Graciani KM, Chapa-Dubocq XR, Ayala-Arroyo EJ, Chaves-Negrón I, Jang S, Chorna N, S. Maskrey T, Wipf P, Javadov S. Effects of Ferroptosis on the Metabolome in Cardiac Cells: The Role of Glutaminolysis. Antioxidants (Basel) 2022; 11:antiox11020278. [PMID: 35204160 PMCID: PMC8868370 DOI: 10.3390/antiox11020278] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/26/2022] Open
Abstract
Ferroptosis is a novel iron-dependent regulated cell death mechanism that affects cell metabolism; however, a detailed metabolomic analysis of ferroptotic cells is not yet available. Here, we elucidated the metabolome of H9c2 cardioblasts by gas chromatography-mass spectrometry during ferroptosis induced by RSL3, a GPX4 inhibitor, in the presence of ferrostatin-1 (a ferroptosis inhibitor), XJB-5-131 (a mitochondrial-targeted ROS scavenger), or TSM-1005-44 (a newly developed cellular ROS scavenger). Results demonstrated that RSL3 decreased the levels of amino acids involved in glutathione synthesis more than two-fold. In contrast, saturated fatty acids levels were markedly increased in RSL3-challenged cells, with no effects on unsaturated fatty acids. RSL3 significantly altered the levels of mitochondrial tricarboxylic acid cycle intermediates; isocitrate and 2-oxoglutarate were found to increase, whereas succinate was significantly decreased in RSL3-challenged cells. Ferrostatin-1, XJB-5-131, and TSM-1005-44 prevented RSL3-induced cell death and conserved the metabolomic profile of the cells. Since 2-oxoglutarate is involved in the regulation of ferroptosis, particularly through glutamine metabolism, we further assessed the role of glutaminolysis in ferroptosis in H9c2 cardioblasts. Genetic silencing of GLS1, which encodes the K-type mitochondrial glutaminase (glutaminase C), protected against ferroptosis in the early stage. In conclusion, our study demonstrates that RSL3-induced ferroptosis impairs the metabolome of H9c2 cardioblasts.
Collapse
Affiliation(s)
- Keishla M. Rodríguez-Graciani
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936, USA; (K.M.R.-G.); (X.R.C.-D.); (E.J.A.-A.); (I.C.-N.); (S.J.)
| | - Xavier R. Chapa-Dubocq
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936, USA; (K.M.R.-G.); (X.R.C.-D.); (E.J.A.-A.); (I.C.-N.); (S.J.)
| | - Esteban J. Ayala-Arroyo
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936, USA; (K.M.R.-G.); (X.R.C.-D.); (E.J.A.-A.); (I.C.-N.); (S.J.)
| | - Ivana Chaves-Negrón
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936, USA; (K.M.R.-G.); (X.R.C.-D.); (E.J.A.-A.); (I.C.-N.); (S.J.)
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936, USA; (K.M.R.-G.); (X.R.C.-D.); (E.J.A.-A.); (I.C.-N.); (S.J.)
| | - Nataliya Chorna
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, PR 00936, USA;
| | - Taber S. Maskrey
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA; (T.S.M.); (P.W.)
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA; (T.S.M.); (P.W.)
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936, USA; (K.M.R.-G.); (X.R.C.-D.); (E.J.A.-A.); (I.C.-N.); (S.J.)
- Correspondence: ; Tel.: +1-787-758-2525 (ext. 2909)
| |
Collapse
|
24
|
Assessment of lipid peroxidation in irradiated cells. Methods Cell Biol 2022; 172:37-50. [DOI: 10.1016/bs.mcb.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Rodriguez-Gonzalez JC, Hernández-Balmaseda I, Declerck K, Pérez-Novo C, Logie E, Theys C, Jakubek P, Quiñones-Maza OL, Dantas-Cassali G, Carlos Dos Reis D, Van Camp G, Lopes Paz MT, Rodeiro-Guerra I, Delgado-Hernández R, Vanden Berghe W. Antiproliferative, Antiangiogenic, and Antimetastatic Therapy Response by Mangiferin in a Syngeneic Immunocompetent Colorectal Cancer Mouse Model Involves Changes in Mitochondrial Energy Metabolism. Front Pharmacol 2021; 12:670167. [PMID: 34924998 PMCID: PMC8678272 DOI: 10.3389/fphar.2021.670167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
In spite of the current advances and achievements in cancer treatments, colorectal cancer (CRC) persists as one of the most prevalent and deadly tumor types in both men and women worldwide. Drug resistance, adverse side effects and high rate of angiogenesis, metastasis and tumor relapse remain one of the greatest challenges in long-term management of CRC and urges need for new leads of anticancer drugs. We demonstrate that CRC treatment with the phytopharmaceutical mangiferin (MGF), a glucosylxanthone present in Mango tree stem bark and leaves (Mangifera Indica L.), induces dose-dependent tumor regression and decreases lung metastasis in a syngeneic immunocompetent allograft mouse model of murine CT26 colon carcinoma, which increases overall survival of mice. Antimetastatic and antiangiogenic MGF effects could be further validated in a wound healing in vitro model in human HT29 cells and in a matrigel plug implant mouse model. Interestingly, transcriptome pathway enrichment analysis demonstrates that MGF inhibits tumor growth, metastasis and angiogenesis by multi-targeting of mitochondrial oxidoreductase and fatty acid β-oxidation metabolism, PPAR, SIRT, NFκB, Stat3, HIF, Wnt and GP6 signaling pathways. MGF effects on fatty acid β-oxidation metabolism and carnitine palmitoyltransferase 1 (CPT1) protein expression could be further confirmed in vitro in human HT29 colon cells. In conclusion, antitumor, antiangiogenic and antimetastatic effects of MGF treatment hold promise to reduce adverse toxicity and to mitigate therapeutic outcome of colorectal cancer treatment by targeting mitochondrial energy metabolism in the tumor microenvironment.
Collapse
Affiliation(s)
| | | | - Ken Declerck
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Claudina Pérez-Novo
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Emilie Logie
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Claudia Theys
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Patrycja Jakubek
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium.,Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | | | - Geovanni Dantas-Cassali
- Departamento de Farmacología, Instituto de Ciencias Biológicas (ICB), Universidad Federal de Minas Gerais (UFMG), Horizonte, Brazil
| | - Diego Carlos Dos Reis
- Departamento de Farmacología, Instituto de Ciencias Biológicas (ICB), Universidad Federal de Minas Gerais (UFMG), Horizonte, Brazil
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Miriam Teresa Lopes Paz
- Departamento de Farmacología, Instituto de Ciencias Biológicas (ICB), Universidad Federal de Minas Gerais (UFMG), Horizonte, Brazil
| | - Idania Rodeiro-Guerra
- Laboratorio de Farmacología, Instituto de Ciencias del Mar (ICIMAR), CITMA, La Habana, Cuba
| | - René Delgado-Hernández
- Centro de Estudios para las Investigaciones y Evaluaciones Biológicas (CEIEB), Instituto de Farmacia y Alimentos (IFAL), Universidad de La Habana, La Habana, Cuba.,Facultad de Ciencias Naturales y Agropecuarias, Universidat de Santander (UDES), Bucaramanga, Colombia
| | - Wim Vanden Berghe
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| |
Collapse
|
26
|
Tabnak P, HajiEsmailPoor Z, Soraneh S. Ferroptosis in Lung Cancer: From Molecular Mechanisms to Prognostic and Therapeutic Opportunities. Front Oncol 2021; 11:792827. [PMID: 34926310 PMCID: PMC8674733 DOI: 10.3389/fonc.2021.792827] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is the second commonly diagnosed malignancy worldwide and has the highest mortality rate among all cancers. Tremendous efforts have been made to develop novel strategies against lung cancer; however, the overall survival of patients still is low. Uncovering underlying molecular mechanisms of this disease can open up new horizons for its treatment. Ferroptosis is a newly discovered type of programmed cell death that, in an iron-dependent manner, peroxidizes unsaturated phospholipids and results in the accumulation of radical oxygen species. Subsequent oxidative damage caused by ferroptosis contributes to cell death in tumor cells. Therefore, understanding its molecular mechanisms in lung cancer appears as a promising strategy to induce ferroptosis selectively. According to evidence published up to now, significant numbers of research have been done to identify ferroptosis regulators in lung cancer. Therefore, this review aims to provide a comprehensive standpoint of molecular mechanisms of ferroptosis in lung cancer and address these molecules’ prognostic and therapeutic values, hoping that the road for future studies in this field will be paved more efficiently.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Soroush Soraneh
- Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
27
|
Chen G, Han Y, Zhang H, Tu W, Zhang S. Radiotherapy-Induced Digestive Injury: Diagnosis, Treatment and Mechanisms. Front Oncol 2021; 11:757973. [PMID: 34804953 PMCID: PMC8604098 DOI: 10.3389/fonc.2021.757973] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy is one of the main therapeutic methods for treating cancer. The digestive system consists of the gastrointestinal tract and the accessory organs of digestion (the tongue, salivary glands, pancreas, liver and gallbladder). The digestive system is easily impaired during radiotherapy, especially in thoracic and abdominal radiotherapy. In this review, we introduce the physical classification, basic pathogenesis, clinical characteristics, predictive/diagnostic factors, and possible treatment targets of radiotherapy-induced digestive injury. Radiotherapy-induced digestive injury complies with the dose-volume effect and has a radiation-based organ correlation. Computed tomography (CT), MRI (magnetic resonance imaging), ultrasound (US) and endoscopy can help diagnose and evaluate the radiation-induced lesion level. The latest treatment approaches include improvement in radiotherapy (such as shielding, hydrogel spacers and dose distribution), stem cell transplantation and drug administration. Gut microbiota modulation may become a novel approach to relieving radiogenic gastrointestinal syndrome. Finally, we summarized the possible mechanisms involved in treatment, but they remain varied. Radionuclide-labeled targeting molecules (RLTMs) are promising for more precise radiotherapy. These advances contribute to our understanding of the assessment and treatment of radiation-induced digestive injury.
Collapse
Affiliation(s)
- Guangxia Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Yi Han
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Haihan Zhang
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Wenling Tu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Shuyu Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.,West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|