1
|
Ba H, Guo Q, Shang Y, Hu P, Ma C, Li J, Coates DE, Li C. Insights into the molecular characteristics of embryonic cranial neural crest cells and their derived mesenchymal cell pools. Commun Biol 2024; 7:1347. [PMID: 39424998 PMCID: PMC11489408 DOI: 10.1038/s42003-024-07056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Neural crest cells (NCCs) are central to vertebrate embryonic development, giving rise to diverse cell types with unique migratory and differentiation capacities. This study examines the molecular characteristics of cranial neural crest cell (CNCC)-derived mesenchymal cells, specifically those from teeth which in deer show continuous but limited growth, and antlers, which exhibit remarkable regenerative capabilities. Here, through single-cell RNA sequencing analysis, we uncover shared gene expression profiles between adult antlerogenic and dental mesenchymal cells, indicating common developmental pathways. We identify a striking resemblance in transcriptomic features between antlerogenic progenitor cells and dental pulp mesenchymal cells. Comparative analysis of CNCC-derived and non-CNCC-derived mesenchymal cell pools across species reveals core signature genes associated with CNCCs and their derivatives, delineating essential connections between CNCCs and CNCC-derived adult mesenchymal pools. Furthermore, whole-genome DNA methylation analysis unveils hypomethylation of CNCC derivate signature genes in regenerative antlerogenic periosteum, implying a role in maintaining multipotency. These findings offer crucial insights into the developmental biology and regenerative potential of CNCC-derived mesenchymal cells, laying a foundation for innovative therapeutic strategies in tissue regeneration.
Collapse
Affiliation(s)
- Hengxing Ba
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China.
| | - Qianqian Guo
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Yudong Shang
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Pengfei Hu
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Chao Ma
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Jiping Li
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Dawn Elizabeth Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Chunyi Li
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
2
|
Kibalnyk Y, Afanasiev E, Noble RMN, Watson AES, Poverennaya I, Dittmann NL, Alexiou M, Goodkey K, Greenwell AA, Ussher JR, Adameyko I, Massey J, Graf D, Bourque SL, Stratton JA, Voronova A. The chromatin regulator Ankrd11 controls cardiac neural crest cell-mediated outflow tract remodeling and heart function. Nat Commun 2024; 15:4632. [PMID: 38951500 PMCID: PMC11217281 DOI: 10.1038/s41467-024-48955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/17/2024] [Indexed: 07/03/2024] Open
Abstract
ANKRD11 (Ankyrin Repeat Domain 11) is a chromatin regulator and a causative gene for KBG syndrome, a rare developmental disorder characterized by multiple organ abnormalities, including cardiac defects. However, the role of ANKRD11 in heart development is unknown. The neural crest plays a leading role in embryonic heart development, and its dysfunction is implicated in congenital heart defects. We demonstrate that conditional knockout of Ankrd11 in the murine embryonic neural crest results in persistent truncus arteriosus, ventricular dilation, and impaired ventricular contractility. We further show these defects occur due to aberrant cardiac neural crest cell organization leading to outflow tract septation failure. Lastly, knockout of Ankrd11 in the neural crest leads to impaired expression of various transcription factors, chromatin remodelers and signaling pathways, including mTOR, BMP and TGF-β in the cardiac neural crest cells. In this work, we identify Ankrd11 as a regulator of neural crest-mediated heart development and function.
Collapse
Affiliation(s)
- Yana Kibalnyk
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
| | - Elia Afanasiev
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Ronan M N Noble
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Adrianne E S Watson
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
| | - Irina Poverennaya
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Nicole L Dittmann
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Maria Alexiou
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Kara Goodkey
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
| | - Amanda A Greenwell
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Edmonton, AB, T6G 2H1, Canada
| | - John R Ussher
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden
| | | | - Daniel Graf
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Stephane L Bourque
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada.
- Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
3
|
Shaikh Qureshi WM, Hentges KE. Functions of cilia in cardiac development and disease. Ann Hum Genet 2024; 88:4-26. [PMID: 37872827 PMCID: PMC10952336 DOI: 10.1111/ahg.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
Errors in embryonic cardiac development are a leading cause of congenital heart defects (CHDs), including morphological abnormalities of the heart that are often detected after birth. In the past few decades, an emerging role for cilia in the pathogenesis of CHD has been identified, but this topic still largely remains an unexplored area. Mouse forward genetic screens and whole exome sequencing analysis of CHD patients have identified enrichment for de novo mutations in ciliary genes or non-ciliary genes, which regulate cilia-related pathways, linking cilia function to aberrant cardiac development. Key events in cardiac morphogenesis, including left-right asymmetric development of the heart, are dependent upon cilia function. Cilia dysfunction during left-right axis formation contributes to CHD as evidenced by the substantial proportion of heterotaxy patients displaying complex CHD. Cilia-transduced signaling also regulates later events during heart development such as cardiac valve formation, outflow tract septation, ventricle development, and atrioventricular septa formation. In this review, we summarize the role of motile and non-motile (primary cilia) in cardiac asymmetry establishment and later events during heart development.
Collapse
Affiliation(s)
- Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Kathryn E. Hentges
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
4
|
Bileckyj C, Blotz B, Cripps RM. Drosophila as a Model to Understand Second Heart Field Development. J Cardiovasc Dev Dis 2023; 10:494. [PMID: 38132661 PMCID: PMC10744189 DOI: 10.3390/jcdd10120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The genetic model system Drosophila has contributed fundamentally to our understanding of mammalian heart specification, development, and congenital heart disease. The relatively simple Drosophila heart is a linear muscular tube that is specified and develops in the embryo and persists throughout the life of the animal. It functions at all stages to circulate hemolymph within the open circulatory system of the body. During Drosophila metamorphosis, the cardiac tube is remodeled, and a new layer of muscle fibers spreads over the ventral surface of the heart to form the ventral longitudinal muscles. The formation of these fibers depends critically upon genes known to be necessary for mammalian second heart field (SHF) formation. Here, we review the prior contributions of the Drosophila system to the understanding of heart development and disease, discuss the importance of the SHF to mammalian heart development and disease, and then discuss how the ventral longitudinal adult cardiac muscles can serve as a novel model for understanding SHF development and disease.
Collapse
Affiliation(s)
| | | | - Richard M. Cripps
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
5
|
Craven PA, Wycoco V, Prentice D. Adult William's Syndrome: The Cause of an Unusual Vasculopathy and Biliary Abnormalities. Cureus 2023; 15:e47695. [PMID: 38022355 PMCID: PMC10674085 DOI: 10.7759/cureus.47695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
A man in his 50s was diagnosed with William's syndrome (WS) following the investigation of severe vasculopathy and bile duct abnormalities. The vascular lesions included: right carotid artery hypoplasia, tortuous dilated left carotid artery, severe aortic hypoplasia, and pulmonary branch arterial stenoses. The bile ducts were dilated with damaged and inflamed intrahepatic ducts. The patient had been labeled with fetal alcohol syndrome as a consequence of his mother's alcohol addiction. The etiology is thought to be the combined effects and his genetic condition and prenatal alcohol exposure.
Collapse
Affiliation(s)
- Philip A Craven
- Gastroenterology and Hepatology, Royal Perth Hospital, Perth, AUS
| | - Victor Wycoco
- Radiology, The Neurological Intervention & Imaging Service of Western Australia (NIISWA), Perth, AUS
| | - David Prentice
- Neurosciences, Perron Institute for Neurological and Translational Science, Nedlands, AUS
| |
Collapse
|
6
|
Abstract
Neural crest cells (NCCs) are a dynamic, multipotent, vertebrate-specific population of embryonic stem cells. These ectodermally-derived cells contribute to diverse tissue types in developing embryos including craniofacial bone and cartilage, the peripheral and enteric nervous systems and pigment cells, among a host of other cell types. Due to their contribution to a significant number of adult tissue types, the mechanisms that drive their formation, migration and differentiation are highly studied. NCCs have a unique ability to transition from tightly adherent epithelial cells to mesenchymal and migratory cells by altering their polarity, expression of cell-cell adhesion molecules and gaining invasive abilities. In this Review, we discuss classical and emerging factors driving NCC epithelial-to-mesenchymal transition and migration, highlighting the role of signaling and transcription factors, as well as novel modifying factors including chromatin remodelers, small RNAs and post-translational regulators, which control the availability and longevity of major NCC players.
Collapse
Affiliation(s)
| | - Crystal D. Rogers
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| |
Collapse
|
7
|
Linglart L, Bonnet D. Epigenetics and Congenital Heart Diseases. J Cardiovasc Dev Dis 2022; 9:185. [PMID: 35735814 PMCID: PMC9225036 DOI: 10.3390/jcdd9060185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/22/2022] Open
Abstract
Congenital heart disease (CHD) is a frequent occurrence, with a prevalence rate of almost 1% in the general population. However, the pathophysiology of the anomalous heart development is still unclear in most patients screened. A definitive genetic origin, be it single-point mutation or larger chromosomal disruptions, only explains about 35% of identified cases. The precisely choreographed embryology of the heart relies on timed activation of developmental molecular cascades, spatially and temporally regulated through epigenetic regulation: chromatin conformation, DNA priming through methylation patterns, and spatial accessibility to transcription factors. This multi-level regulatory network is eminently susceptible to outside disruption, resulting in faulty cardiac development. Similarly, the heart is unique in its dynamic development: growth is intrinsically related to mechanical stimulation, and disruption of the intrauterine environment will have a direct impact on fetal embryology. These two converging axes offer new areas of research to characterize the cardiac epigenetic regulation and identify points of fragility in order to counteract its teratogenic consequences.
Collapse
Affiliation(s)
- Léa Linglart
- M3C-Necker, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France;
| | - Damien Bonnet
- M3C-Necker, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France;
- School of Medicine, Université de Paris Cité, 75006 Paris, France
| |
Collapse
|
8
|
Hong L, Li N, Gasque V, Mehta S, Ye L, Wu Y, Li J, Gewies A, Ruland J, Hirschi KK, Eichmann A, Hendry C, van Dijk D, Mani A. Prdm6 controls heart development by regulating neural crest cell differentiation and migration. JCI Insight 2022; 7:156046. [PMID: 35108221 PMCID: PMC8876496 DOI: 10.1172/jci.insight.156046] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022] Open
Abstract
The molecular mechanisms that drive the acquisition of distinct neural crest cell (NCC) fates is still poorly understood. Here, we identified Prdm6 as an epigenetic modifier that temporally and spatially regulates the expression of NCC specifiers and determines the fate of a subset of migrating cardiac NCCs (CNCCs). Using transcriptomic analysis and genetic and fate mapping approaches in transgenic mice, we showed that disruption of Prdm6 was associated with impaired CNCC differentiation, delamination, and migration and led to patent ductus arteriosus (DA) and ventricular noncompaction. Bulk and single-cell RNA-Seq analyses of the DA and CNCCs identified Prdm6 as a regulator of a network of CNCC specification genes, including Wnt1, Tfap2b, and Sox9. Loss of Prdm6 in CNCCs diminished its expression in the pre-epithelial–mesenchymal transition (pre-EMT) cluster, resulting in the retention of NCCs in the dorsal neural tube. This defect was associated with diminished H4K20 monomethylation and G1-S progression and augmented Wnt1 transcript levels in pre-EMT and neural tube clusters, which we showed was the major driver of the impaired CNCC migration. Altogether, these findings revealed Prdm6 as a key regulator of CNCC differentiation and migration and identified Prdm6 and its regulated network as potential targets for the treatment of congenital heart diseases.
Collapse
Affiliation(s)
- Lingjuan Hong
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| | - Na Li
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| | - Victor Gasque
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| | - Sameet Mehta
- Yale Center for Genome Analysis, Yale University School of Medicine, New Haven, United States of America
| | - Lupeng Ye
- Department of Genetics, Yale University School of Medicine, New Haven, United States of America
| | - Yinyu Wu
- Department of Genetics, Yale University School of Medicine, New Haven, United States of America
| | - Jinyu Li
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| | | | | | - Karen K Hirschi
- University of Virginia School of Medicine, Charlottesville, United States of America
| | - Anne Eichmann
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| | - Caroline Hendry
- Department of Genetics, Yale University School of Medicine, New Haven, United States of America
| | - David van Dijk
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| | - Arya Mani
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| |
Collapse
|