1
|
Tang Z, Jiang Y, Zong Y, Ding S, Wu C, Tang Z, Liao L, Jiang S, Tang R, Li F, Luo P. LncRNA SSTR5-AS1 promotes esophageal carcinoma through regulating ITGB6/JAK1/STAT3 signaling. Epigenomics 2024; 16:1133-1148. [PMID: 39234955 PMCID: PMC11457597 DOI: 10.1080/17501911.2024.2388018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Aim: To investigate function of somatostatin receptor 5 antisense RNA 1 (SSTR5-AS1) in esophageal carcinoma (ESCA).Materials & methods: The cellular function was assessed using EdU staining and Transwell assay. The localization of SSTR5-AS1 was measured using fluorescence in situ hybridization staining.Results: SSTR5-AS1 shRNA repressed invasion and migration and induced apoptosis in ESCA cells. SSTR5-AS1 was distributed in cytoplasm, and it regulated its subunit integrin beta 6 (ITGB6) via eukaryotic translation initiation factor 4A3 (EIF4A3). SSTR5-AS1 shRNA inactivated ITGB6 and JAK1/STAT3 signaling. SSTR5-AS1 silencing attenuated the malignant behavior of ESCA cells through the ITGB6-mediated JAK1/STAT3 axis.Conclusion: SSTR5-AS1 promotes tumorigenesis of ESCA by interacting with EIF4A3 to regulate ITGB6/JAK1/STAT3 axis, which serves a basis for discovering strategies against ESCA.
Collapse
Affiliation(s)
- Zhaohui Tang
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Yongjun Jiang
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Yuyu Zong
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Sijuan Ding
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Chen Wu
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Zhangwen Tang
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Lin Liao
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Shaohui Jiang
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Ruoting Tang
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Fang Li
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Pengfei Luo
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| |
Collapse
|
2
|
Wu X, Liu S, Li F, Chen Y. Association between preoperative neutrophil-to-lymphocyte ratio and the survival outcomes of esophageal cancer patients underwent esophagectomy: a systematic review and meta-analysis. Front Oncol 2024; 14:1404711. [PMID: 39224809 PMCID: PMC11366628 DOI: 10.3389/fonc.2024.1404711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Objectives The purpose of this study was to assess the association between preoperative neutrophil-to-lymphocyte ratio (NLR) and the survival outcomes of esophageal cancer patients who underwent esophagectomy, the latest and comprehensive systematic review performed. Methods Related literature retrieved from PubMed, Web of Science, Embase, and Cochrane before January 2024, according to the inclusion criteria. Outcomes measured were overall survival (OS), disease-free survival (DFS), relapse-free survival (RFS), and cancer-specific survival (CSS). Results Eighteen studies with 6,119 esophageal cancer patients were retained for analysis. Meta-analysis demonstrated that OS (HR: 1.47; 95% CI: 1.29, 1.67; P < 0.00001), DFS (HR: 1.62; 95% CI: 1.29, 2.05; P < 0.0001), and CSS (HR: 1.62; 95% CI: 1.29, 2.05; P < 0.0001) were significantly shorter in the high NLR group compared with the low NLR group. In addition, meta-analysis revealed a similar RFS (HR: 1.47; 95% CI: 0.92, 2.35; P = 0.10) among the two groups. Subgroup analysis of OS and DFS based on mean/median age, NLR cutoff, and region found that all subgroups remained significant difference between two groups. Conclusion Among esophageal cancer patients who underwent esophagectomy, preoperative NLR can be used as prognostic factor independently. High-preoperative NLR is associated with poor prognosis. More large-scale, multicenter prospective clinical studies are needed to further validate the relationship between preoperative NLR and prognosis of esophageal cancer.
Collapse
Affiliation(s)
| | | | | | - YingTai Chen
- Department of Thoracic Surgery, Beijing Aerospace General Hospital, Beijing, China
| |
Collapse
|
3
|
Zhang J, Liu X, Zeng L, Hu Y. GABRP inhibits the progression of oesophageal cancer by regulating CFTR: Integrating bioinformatics analysis and experimental validation. Int J Exp Pathol 2024; 105:118-132. [PMID: 38989629 PMCID: PMC11263814 DOI: 10.1111/iep.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024] Open
Abstract
Oesophageal cancer (EC) is a malignancy which accounts for a substantial number of cancer-related deaths worldwide. The molecular mechanisms underlying the pathogenesis of EC have not been fully elucidated. GSE17351 and GSE20347 data sets from the Gene Expression Omnibus (GEO) database were employed to screen differentially expressed genes (DEGs). Reverse transcription quantitative PCR (RT-qPCR) was used to examine hub gene expression. ECA-109 and TE-12 cells were transfected using the pcDNA3.1 expression vector encoding GABRP. The cell counting kit-8 (CCK-8), cell scratch and Transwell assays were performed to assess the effect of GABRP on EC cell proliferation, migration and invasion. Epithelial-mesenchymal transition (EMT)-associated protein levels were measured by Western blotting. Subsequently, CFTR was knocked down to verify whether GABRP affected biological events in EC cells by targeting CFTR. Seven hub genes were identified, including GABRP, FLG, ENAH, KLF4, CD24, ABLIM3 and ABLIM1, which all could be used as diagnostic biomarkers for EC. The RT-qPCR results indicated that the expression levels of GABRP, FLG, KLF4, CD24, ABLIM3 and ABLIM1 were downregulated, whereas the expression level of ENAH was upregulated. In vitro functional assays demonstrated that GABRP overexpression suppressed the proliferation, migration, invasion and EMT of EC cells. Mechanistically, GABRP promoted the expression of CFTR, and CFTR knockdown significantly counteracted the influence of GABRP overexpression on biological events in EC cells. Overexpression of GABRP inhibited EC progression by increasing CFTR expression, which might be a new target for EC treatment.
Collapse
Affiliation(s)
- Jingzhi Zhang
- Department of GastroenterologyThe Affiliated Ganzhou Hospital of Nanchang UniversityGanzhou CityChina
| | - Xue Liu
- Department of GastroenterologyThe Affiliated Ganzhou Hospital of Nanchang UniversityGanzhou CityChina
| | - Ling Zeng
- Department of GastroenterologyThe Affiliated Ganzhou Hospital of Nanchang UniversityGanzhou CityChina
| | - Ying Hu
- Department of GastroenterologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityChina
| |
Collapse
|
4
|
Ma H, Ma X, Qi L, Zhang Q, Wang T, Guo Q, Li P, Zhang S, Liu S. Lysophosphatidic acid promotes ESCC progression by increasing the level of CCL2 secreted by esophageal epithelial cells. J Gene Med 2024; 26:e3708. [PMID: 38837511 DOI: 10.1002/jgm.3708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/15/2024] [Accepted: 03/28/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Lysophosphatidic acid (LPA) is a small bioactive lipid which acts as a potent regulator in various tumor progressions through six G-protein-coupled receptors (LPA1-LPA6). Our previous study demonstrated that the LPA-producing enzyme, autotaxin (ATX), was upregulated in esophageal squamous cell carcinoma (ESCC) and ATX high expression levels indicated a poor prognosis. Esophageal squamous cell carcinoma is a type of malignant tumor which originates from epithelial cells. Its progression can be affected by the interaction between cancer cells and normal cells. However, the impact of LPA on the interaction between esophageal epithelial cells and cancer cells in the development of ESCC remains uncertain. METHODS MTS and Edu assays were performed to determine ESCC cell proliferation in culture medium (CM) derived from LPA-stimulated esophageal epithelial cells (Het-1a). A wound healing assay, transwell migration and an invasion assay were performed to assess the metastatic ability of ESCC cells. Cytokine array analysis was conducted to detect the differentially secreted cytokines in CM. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to uncover the pathways and cytokines that are influenced by LPA in ESCC. Immunohistochemical staining was employed to measure the expression of ATX and CCL2 in early-stage ESCC. Quantitative real-time PCR, western blot, enzyme-linked immunosorbent assay and an antibody neutralization assay were employed to measure the mechanism of LPA-mediated communication between epithelial cells and cancer cells. RESULTS Functional experiments showed that exposing ESCC cancer cells to CM from LPA-treated Het-1a results in promoting proliferation, migration, invasion and epithelial-mesenchymal transition processes. Using cytokine array analysis, we discovered that LPA triggers the release of multiple cytokines from epithelial cells. After screening of the TCGA and GEO databases, CCL2 was identified and found to be correlated with ATX expression in ESCC. Furthermore, CCL2 levels in both mRNA expression and secretion were observed to be upregulated in epithelial cells upon stimulation with LPA. Blocking CCL2 effectively reduced the pro-migration influence of CM derived from LPA-treated Het-1a. Mechanism studies have demonstrated that LPA activated the NF-κB signaling pathway through LPA1/3, ultimately causing an increase in CCL2 expression and secretion in Het-1a. CONCLUSIONS Our findings, taken together, demonstrate that CM from LPA-treated esophageal epithelial cells plays a significant role in promoting the progression of ESCC, with CCL2 acting as the primary regulator.
Collapse
Affiliation(s)
- Hui Ma
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Xiaoqian Ma
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Lingyu Qi
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Qian Zhang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Tiange Wang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Qingdong Guo
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Peng Li
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Shutian Zhang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Si Liu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| |
Collapse
|
5
|
Sun M, Yang P, Wang W, Yu Y, Yang D, Ping Y, Zhu B. Advancements in the research of immune checkpoint inhibitors for the treatment of advanced esophageal squamous cell carcinoma. Am J Cancer Res 2024; 14:1981-1998. [PMID: 38859835 PMCID: PMC11162652 DOI: 10.62347/xuwc6412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
Esophageal cancer (EC) has a high mortality rate and poor prognosis. Most patients are diagnosed at an advanced stage or with distant metastasis, making surgery impossible. Traditional curative radiotherapy and chemotherapy have limited efficacy. In recent years, with the development of clinical trials, immune checkpoint inhibitors (ICIs) have shown promising results in treating advanced and metastatic esophageal squamous cell carcinoma (ESCC) patients. ICIs have gradually become a primary therapeutic approach for EC. This review summarizes and provides an overview of the current research status and progress of ICIs in the treatment of advanced ESCC patients.
Collapse
Affiliation(s)
- Mengfei Sun
- College of Pharmacy, Inner Mongolia Medical UniversityHohhot, Inner Mongolia Autonomous Region, China
| | - Pengjie Yang
- Department of Thoracic Surgery, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia Autonomous Region, China
| | - Weisong Wang
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia Autonomous Region, China
| | - Yongjun Yu
- Department of Thoracic Surgery, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia Autonomous Region, China
| | - Dongdong Yang
- Department of Pharmacy, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia Autonomous Region, China
| | - Yaodong Ping
- Department of Pharmacy, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia Autonomous Region, China
- Department of Pharmacy, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and InstituteBeijing, China
| | - Benben Zhu
- Department of Pharmacy, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical UniversityHohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
6
|
Zhang XJ, Yu Y, Zhao HP, Guo L, Dai K, Lv J. Mechanisms of tumor immunosuppressive microenvironment formation in esophageal cancer. World J Gastroenterol 2024; 30:2195-2208. [PMID: 38690024 PMCID: PMC11056912 DOI: 10.3748/wjg.v30.i16.2195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
As a highly invasive malignancy, esophageal cancer (EC) is a global health issue, and was the eighth most prevalent cancer and the sixth leading cause of cancer-related death worldwide in 2020. Due to its highly immunogenic nature, emer-ging immunotherapy approaches, such as immune checkpoint blockade, have demonstrated promising efficacy in treating EC; however, certain limitations and challenges still exist. In addition, tumors may exhibit primary or acquired resistance to immunotherapy in the tumor immune microenvironment (TIME); thus, understanding the TIME is urgent and crucial, especially given the im-portance of an immunosuppressive microenvironment in tumor progression. The aim of this review was to better elucidate the mechanisms of the suppressive TIME, including cell infiltration, immune cell subsets, cytokines and signaling pathways in the tumor microenvironment of EC patients, as well as the downregulated expression of major histocompatibility complex molecules in tumor cells, to obtain a better understanding of the differences in EC patient responses to immunotherapeutic strategies and accurately predict the efficacy of immunotherapies. Therefore, personalized treatments could be developed to maximize the advantages of immunotherapy.
Collapse
Affiliation(s)
- Xiao-Jun Zhang
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Yan Yu
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Lei Guo
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Kun Dai
- Department of Clinical Laboratory, Yanliang Railway Hospital of Xi’an, Xi’an 710089, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| |
Collapse
|
7
|
Sweeney R, Omstead AN, Fitzpatrick JT, Zheng P, Gorbunova A, Grayhack EE, Goel A, Khan AF, Kosovec JE, Wagner PL, Jobe BA, Kelly RJ, Zaidi AH. Sitravatinib combined with PD-1 blockade enhances cytotoxic T-cell infiltration by M2 to M1 tumor macrophage repolarization in esophageal adenocarcinoma. Carcinogenesis 2024; 45:210-219. [PMID: 38019590 DOI: 10.1093/carcin/bgad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is a leading cause of cancer-related mortality. Sitravatinib is a novel multi-gene tyrosine kinase inhibitor (TKI) that targets tumor-associated macrophage (TAM) receptors, VEGF, PDGF and c-Kit. Currently, sitravatinib is actively being studied in clinical trials across solid tumors and other TKIs have shown efficacy in combination with immune checkpoint inhibitors (ICI) in cancer models. In this study, we investigated the anti-tumor activity of sitravatinib alone and in combination with PD-1 blockade in an EAC rat model. Treatment response was evaluated by mortality, pre- and post-treatment MRI, gene expression, immunofluorescence and immunohistochemistry. Our results demonstrated adequate safety and significant tumor shrinkage in animals treated with sitravatinib, and more profoundly, sitravatinib and PD-1 inhibitor, AUNP-12 (P < 0.01). Suppression of TAM receptors resulted in increased gene expression of pro-inflammatory cytokines and decreased expression of anti-inflammatory cytokines, enhanced infiltration of CD8+ T cells, and M2 to M1 macrophage phenotype repolarization in the tumor microenvironment of treated animals (P < 0.01). Moreover, endpoint immunohistochemistry staining corroborated the anti-tumor activity by downregulation of Ki67 and upregulation of Caspase-3 in the treated animals. Additionally, pretreatment gene expression of TAM receptors and PD-L1 were significantly higher in major responders compared with the non-responders, in animals that received sitravatinib and AUNP-12 (P < 0.02), confirming that TAM suppression enhances the efficacy of PD-1 blockade. In conclusion, this study proposes a promising immunomodulatory strategy using a multi-gene TKI to overcome developed resistance to an ICI in EAC, establishing rationale for future clinical development.
Collapse
Affiliation(s)
- Ryan Sweeney
- Allegheny Health Network, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA
| | - Ashten N Omstead
- Allegheny Health Network, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA
| | - John T Fitzpatrick
- Allegheny Health Network, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA
| | - Ping Zheng
- Allegheny Health Network, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA
| | - Anastasia Gorbunova
- Allegheny Health Network, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA
| | - Erin E Grayhack
- Allegheny Health Network, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Alisha F Khan
- Allegheny Health Network, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA
| | | | - Patrick L Wagner
- Allegheny Health Network, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA
| | - Blair A Jobe
- Allegheny Health Network, Esophageal Institute, Pittsburgh, PA, USA
| | - Ronan J Kelly
- Baylor University Medical Center at Dallas, Charles A. Sammons Cancer Center, Dallas, TX, USA
| | - Ali H Zaidi
- Allegheny Health Network, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Song XQ, Chen BB, Jin YM, Wang CY. DNMT1-mediated epigenetic suppression of FBXO32 expression promoting cyclin dependent kinase 9 (CDK9) survival and esophageal cancer cell growth. Cell Cycle 2024; 23:262-278. [PMID: 38597826 PMCID: PMC11057636 DOI: 10.1080/15384101.2024.2309022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/25/2023] [Indexed: 04/11/2024] Open
Abstract
Esophageal cancer (EC) is a common and serious form of cancer, and while DNA methyltransferase-1 (DNMT1) promotes DNA methylation and carcinogenesis, the role of F-box protein 32 (FBXO32) in EC and its regulation by DNMT1-mediated methylation is still unclear. FBXO32 expression was examined in EC cells with high DNMT1 expression using GSE163735 dataset. RT-qPCR assessed FBXO32 expression in normal and EC cells, and impact of higher FBXO32 expression on cell proliferation, migration, and invasion was evaluated, along with EMT-related proteins. The xenograft model established by injecting EC cells transfected with FBXO32 was used to evaluate tumor growth, apoptosis, and tumor cells proliferation and metastasis. Chromatin immunoprecipitation (ChIP) assay was employed to study the interaction between DNMT1 and FBXO32. HitPredict, co-immunoprecipitation (Co-IP), and Glutathione-S-transferase (GST) pulldown assay analyzed the interaction between FBXO32 and cyclin dependent kinase 9 (CDK9). Finally, the ubiquitination assay identified CDK9 ubiquitination, and its half-life was measured using cycloheximide and confirmed through western blotting. DNMT1 negatively correlated with FBXO32 expression in esophageal cells. High FBXO32 expression was associated with better overall survival in patients. Knockdown of DNMT1 in EC cells increased FBXO32 expression and suppressed malignant phenotypes. FBXO32 repressed EC tumor growth and metastasis in mice. Enrichment of DNMT1 in FBXO32 promoter region led to increased DNA methylation and reduced transcription. Mechanistically, FBXO32 degraded CDK9 through promoting its ubiquitination.
Collapse
Affiliation(s)
- Xian-Qiang Song
- Department of Radiotherapy, Qinhuai Medical District, General Hospital of Eastern Theater Command, Nanjing, PR China
| | - Bin-Bin Chen
- Departments of Laboratory Medicine, Qinhuai Medical District, General Hospital of Eastern Theater Command, Nanjing, PR China
| | - Yong-Mei Jin
- Department of Cardiothoracic Surgery, Qinhuai Medical District, General Hospital of Eastern Theater Command, Nanjing, PR China
| | - Chang-Yong Wang
- Department of Cardiothoracic Surgery, Qinhuai Medical District, General Hospital of Eastern Theater Command, Nanjing, PR China
| |
Collapse
|
9
|
Park D, Jeon WJ, Yang C, Castillo DR. Advancing Esophageal Cancer Treatment: Immunotherapy in Neoadjuvant and Adjuvant Settings. Cancers (Basel) 2024; 16:318. [PMID: 38254805 PMCID: PMC10813716 DOI: 10.3390/cancers16020318] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Locally advanced esophageal cancer (LAEC) poses a significant and persistent challenge in terms of effective treatment. Traditionally, the primary strategy for managing LAEC has involved concurrent neoadjuvant chemoradiation followed by surgery. However, achieving a pathologic complete response (pCR) has proven to be inconsistent, and despite treatment, roughly half of patients experience locoregional recurrence or metastasis. Consequently, there has been a paradigm shift towards exploring the potential of immunotherapy in reshaping the landscape of LAEC management. Recent research has particularly focused on immune checkpoint inhibitors, investigating their application in both neoadjuvant and adjuvant settings. These inhibitors, designed to block specific proteins in immune cells, are meant to enhance the immune system's ability to target and combat cancer cells. Emerging evidence from these studies suggests the possibility of a mortality benefit, indicating that immunotherapy may contribute to improved overall survival rates for individuals grappling with esophageal cancer. This manuscript aims to meticulously review the existing literature surrounding neoadjuvant and adjuvant immunotherapy in the context of LAEC management. The intention is to thoroughly examine the methodologies and findings of relevant studies, providing a comprehensive synthesis of the current understanding of the impact of immunotherapy on esophageal cancer.
Collapse
Affiliation(s)
- Daniel Park
- University of California, San Francisco-Fresno Branch Campus, Fresno, CA 93701, USA;
| | - Won Jin Jeon
- Loma Linda University Medical Center, Loma Linda, CA 92354, USA;
| | - Chieh Yang
- Department of Internal Medicine for UCSF, University of California, and UC Riverside, Riverside, CA 92521, USA;
| | - Dani Ran Castillo
- City of Hope-Duarte, Department of Hematology & Oncology, Duarte, CA 91010, USA
| |
Collapse
|
10
|
Peri SS, Narayanaa Y K, Hubert TD, Rajaraman R, Arfuso F, Sundaram S, Archana B, Warrier S, Dharmarajan A, Perumalsamy LR. Navigating Tumour Microenvironment and Wnt Signalling Crosstalk: Implications for Advanced Cancer Therapeutics. Cancers (Basel) 2023; 15:5847. [PMID: 38136392 PMCID: PMC10741643 DOI: 10.3390/cancers15245847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer therapeutics face significant challenges due to drug resistance and tumour recurrence. The tumour microenvironment (TME) is a crucial contributor and essential hallmark of cancer. It encompasses various components surrounding the tumour, including intercellular elements, immune system cells, the vascular system, stem cells, and extracellular matrices, all of which play critical roles in tumour progression, epithelial-mesenchymal transition, metastasis, drug resistance, and relapse. These components interact with multiple signalling pathways, positively or negatively influencing cell growth. Abnormal regulation of the Wnt signalling pathway has been observed in tumorigenesis and contributes to tumour growth. A comprehensive understanding and characterisation of how different cells within the TME communicate through signalling pathways is vital. This review aims to explore the intricate and dynamic interactions, expressions, and alterations of TME components and the Wnt signalling pathway, offering valuable insights into the development of therapeutic applications.
Collapse
Affiliation(s)
- Shraddha Shravani Peri
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Krithicaa Narayanaa Y
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Therese Deebiga Hubert
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Roshini Rajaraman
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Frank Arfuso
- School of Human Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.); (B.A.)
| | - B. Archana
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.); (B.A.)
| | - Sudha Warrier
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India;
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
- School of Human Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Lakshmi R. Perumalsamy
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| |
Collapse
|
11
|
Wu X, Zhang X, Ge J, Li X, Shi C, Zhang M. Development and validation of a prognostic model for esophageal cancer patients with liver metastasis: a cohort study based on surveillance, epidemiology, and end results database. J Cancer Res Clin Oncol 2023; 149:13501-13510. [PMID: 37493687 DOI: 10.1007/s00432-023-05175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE Our objective is to examine the independent prognostic risk factors for patients with Esophageal Cancer with Liver Metastasis (ECLM) and to develop a predictive model. METHODS In this study, clinical data were obtained from the Surveillance, Epidemiology, and End Results (SEER) database. Cox regression analysis was employed to identify independent prognostic factors and construct nomograms based on the results of multivariate regression. The predictive performance of the nomograms was assessed using several methods, including the consistency index (C-index), calibration curve, time-dependent receiver-operating characteristic curve (ROC), and decision curve analysis (DCA). Additionally, Kaplan-Meier survival curves were generated to demonstrate the variation in overall survival between groups. RESULTS A total of 1163 ECLM patients were included in the study. Multivariate Cox analysis revealed that age, tumor differentiation grade, bone metastasis, therapy, and income were independently associated with overall survival (OS) in the training set. Subsequently, a prognostic nomogram was constructed based on these independent predictors. The C-index values were 0.739 and 0.715 in the training and validation sets, respectively. The area under the curve (AUC) values at 0.5, 1, and 2 years were all higher than 0.700. Calibration curves indicated that the nomogram accurately predicted OS. Decision curve analysis (DCA) showed moderately positive net benefits. Kaplan-Meier survival curves demonstrated significant differences in survival between high- and low-risk groups, which were divided based on the nomogram risk score. CONCLUSIONS The nomogram we developed for ECLM patients has demonstrated good predictive capability, allowing clinicians to accurately evaluate patient prognosis and identify those at high risk, thereby facilitating the development of personalized treatment plans.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Jingjing Ge
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xin Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Cunzhen Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
| |
Collapse
|
12
|
Andrys-Olek J, Selvanesan BC, Varghese S, Arriaza RH, Tiwari PB, Chruszcz M, Borowski T, Upadhyay G. Experimental and Computational Studies Reveal Novel Interaction of Lymphocytes Antigen 6K to TGF-β Receptor Complex. Int J Mol Sci 2023; 24:12779. [PMID: 37628960 PMCID: PMC10454365 DOI: 10.3390/ijms241612779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
TGF-β signaling promotes migration, invasion, and distant colonization of cancer cells in advanced metastatic cancers. TGF-β signaling suppresses the anti-tumor immune response in a tumor microenvironment, allowing sustained tumor growth. TGF-β plays an important role in normal physiology; thus it is no surprise that the clinical development of effective and safe TGF-β inhibitors has been hampered due to their high toxicity. We discovered that increased expression of LY6K in cancer cells led to increased TGF-β signaling and that inhibition of LY6K could lead to reduced TGF-β signaling and reduced in vivo tumor growth. LY6K is a highly cancer-specific protein, and it is not expressed in normal organs except in the testes. Thus, LY6K is a valid target for developing therapeutic strategies to inhibit TGF-β signaling in cancer cells. We employed in vitro pull-down assays and molecular dynamics simulations to understand the structural determinants of the TGF-β receptor complex with LY6K. This combined approach allowed us to identify the critical residues and dynamics of the LY6K interaction with the TGF-β receptor complex. These data are critical in designing novel drugs for the inhibition of TGF-β in LY6K expressing cancer, induction of anti-tumor immune response, and inhibition of tumor growth and metastatic spread.
Collapse
Affiliation(s)
- Justyna Andrys-Olek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Cracow, Poland
| | - Benson Chellakkan Selvanesan
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20824, USA
- Henry M. Jackson Foundation, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sheelu Varghese
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20824, USA
- Henry M. Jackson Foundation, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Ricardo Hernandez Arriaza
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48825, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Maksymilian Chruszcz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48825, USA
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Cracow, Poland
| | - Geeta Upadhyay
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20824, USA
- John P. Murtha Cancer Center, Bethesda, MD 20814, USA
| |
Collapse
|
13
|
Huang CL, Achudhan D, Liu PI, Lin YY, Liu SC, Guo JH, Liu CL, Wu CY, Wang SW, Tang CH. Visfatin upregulates VEGF-C expression and lymphangiogenesis in esophageal cancer by activating MEK1/2-ERK and NF-κB signaling. Aging (Albany NY) 2023; 15:204762. [PMID: 37286356 DOI: 10.18632/aging.204762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Lymph node metastasis is a recognized prognostic factor in esophageal cancer. Adipokines, including visfatin, and the molecule vascular endothelial growth factor (VEGF)-C, are implicated in lymphangiogenesis, but whether any association exists between esophageal cancer, adipokines and VEGF-C is unknown. We examined the relevance of adipokines and VEGF-C in esophageal squamous cell carcinoma (ESCC) in the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. We found significantly higher levels of visfatin and VEGF-C expression in esophageal cancer tissue than in normal tissue. Immunohistochemistry (IHC) staining identified that higher levels of visfatin and VEGF-C expression were correlated with advanced stage ESCC. Visfatin treatment of ESCC cell lines upregulated VEGF-C expression and VEGF-C-dependent lymphangiogenesis in lymphatic endothelial cells. Visfatin induced increases in VEGF-C expression by activating the mitogen-activated protein kinase kinases1/2-extracellular signal-regulated kinase (MEK1/2-ERK) and Nuclear Factor Kappa B (NF-κB) signaling cascades. Transfecting ESCC cells with MEK1/2-ERK and NF-κB inhibitors (PD98059, FR180204, PDTC, and TPCK) and siRNAs inhibited visfatin-induced increases in VEGF-C expression. It appears that visfatin and VEGF-C are promising therapeutic targets in the inhibition of lymphangiogenesis in esophageal cancer.
Collapse
Affiliation(s)
- Chang-Lun Huang
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Surgery, Division of Thoracic Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - David Achudhan
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Po-I Liu
- Department of General Thoracic Surgery, Asia University Hospital, Taichung 41354, Taiwan
- Department of Physical Therapy, Asia University, Taichung 41354, Taiwan
| | - Yen-You Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 65152, Taiwan
| | - Jeng-Hung Guo
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung 404327, Taiwan
| | - Chun-Lin Liu
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung 404327, Taiwan
| | - Chih-Ying Wu
- Department of Neurosurgery, China Medical University Hospital, Taichung 404327, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 406040, Taiwan
- Department of Neurosurgery, China Medical University Hsinchu Hospital, Hsinchu 302, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
- College of Pharmacy, Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 406040, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu 302, Taiwan
| |
Collapse
|
14
|
Deboever N, Hofstetter WL. From NLR to TIN: What Can't Neutrophils Tell Us About Prognosis in Resectable Esophageal Cancer? Ann Surg Oncol 2023; 30:1295-1296. [PMID: 36607524 DOI: 10.1245/s10434-022-12961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Nathaniel Deboever
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, FCT19.5084, Houston, TX, 77030, USA
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, FCT19.5084, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Wang L, Han H, Feng L, Qin Y. Development and validation of a nomogram for patients with stage II/III gastric adenocarcinoma after radical surgery. Front Surg 2022; 9:956256. [PMID: 36386541 PMCID: PMC9659722 DOI: 10.3389/fsurg.2022.956256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/03/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND We aimed to construct nomograms based on clinicopathological features and routine preoperative hematological indices to predict cancer-specific survival (CSS) and disease-free survival (DFS) in patients with stage II/III gastric adenocarcinoma (GA) after radical resection. METHODS We retrospectively analyzed 468 patients with stage II/III GA after curative gastrectomy between 2012 and 2018; 70% of the patients were randomly assigned to the training set (n = 327) and the rest were assigned to the validation set (n = 141). The nomogram was constructed from independent predictors derived from the Cox regression in the training set. Using the consistency index, the calibration and the time-dependent receiver operating characteristic curves were used to evaluate the accuracy of the nomogram. Decision curve analysis was used to assess the value of the model in clinical applications. Patients were further divided into low- and high-risk groups based on the nomogram risk score. RESULTS Multivariate Cox model identified depth of invasion, lymph node invasion, tumor differentiation, adjuvant chemotherapy, CA724, and platelet-albumin ratio as covariates associated with CSS and DFS. CA199 is a risk factor unique to CSS. The nomogram constructed using the results of the multivariate analysis showed high accuracy with a consistency index of 0.771 (CSS) and 0.771 (DFS). Moreover, the area under the curve values for the 3-and 5-year CSS were 0.868 and 0.918, and the corresponding values for DFS were 0.872 and 0.919, respectively. The nomogram had a greater clinical benefit than the TNM staging system. High-risk patients based on the nomogram had a worse prognosis than low-risk patients. CONCLUSION The prognostic nomogram for patients with stage II/III GA after radical gastrectomy established in this study has a good predictive ability, which is helpful for doctors to accurately evaluate the prognosis of patients to make more reasonable treatment plans.
Collapse
|
16
|
MAIP1-Related Tumor Immune Infiltration: As a Potential Prognostic Biomarker for Esophageal Cancer. J Immunol Res 2022; 2022:7282842. [PMID: 35747687 PMCID: PMC9213188 DOI: 10.1155/2022/7282842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background Esophageal cancer (EC), a common malignant tumor of digestive tract, is also one of the most deadly cancers. Accumulating studies have shown that the initiating and progressing multiple human diseases were closely related to the expression of MAIP. However, the specific roles and mechanisms of MAIP1 in EC remain incompletely defined. Purpose This study aims to determine the clinical significance of MAIP1 in EC and explores its potential molecular mechanisms regulating tumor immune infiltration. Methods We obtained RNA-seq datasets and corresponding clinical data for EC patients from the Cancer Genome Atlas (TCGA) database via the UCSC Xena browser to extract MAIP1 expression and plot survival curves to determine their prognosis. Based on the differential expression of MAIP1, EC patients were divided into high and low group to investigate the mechanism of MAIP1 in EC. In addition, the single sample gene set enrichment analysis (ssGSEA) quantified the expression of various immune cell signature marker genes and assessed the degree of immune infiltration in EC. Results In the TCGA-EC cohort, the overexpression of MAIP1 was observed in tumor tissues compared to normal tissues (p = 0.0038). Overall survival analysis showed that EC patients with the overexpression of MAIP1 presented a lower overall survival and worse prognosis (p = 0.004). Enrichment analysis revealed that the differential genes (DEGs) between high and low group are involved in biological functions such as extracellular matrix and organization extracellular structure. The results of ssGSEA showed that DCs, iDCs, macrophages, mast cells, and NK cells were significantly different in MAIP1high and MAIP1low groups, and all showed high expression in the MAIP1low group. Conclusion We proposed that MAIP1 overexpression was associated with poor prognosis and tumor immune infiltration in EC. At present, there are few MAIP1-related tumor immune infiltration studies in EC, and further investigation is needed.
Collapse
|
17
|
Zheng S, Liu B, Guan X. The Role of Tumor Microenvironment in Invasion and Metastasis of Esophageal Squamous Cell Carcinoma. Front Oncol 2022; 12:911285. [PMID: 35814365 PMCID: PMC9257257 DOI: 10.3389/fonc.2022.911285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers in the world, with a high rate of morbidity. The invasion and metastasis of ESCC is the main reason for high mortality. More and more evidence suggests that metastasized cancer cells require cellular elements that contribute to ESCC tumor microenvironment (TME) formation. TME contains many immune cells and stromal components, which are critical to epithelial–mesenchymal transition, immune escape, angiogenesis/lymphangiogenesis, metastasis niche formation, and invasion/metastasis. In this review, we will focus on the mechanism of different microenvironment cellular elements in ESCC invasion and metastasis and discuss recent therapeutic attempts to restore the tumor-suppressing function of cells within the TME. It will represent the whole picture of TME in the metastasis and invasion process of ESCC.
Collapse
Affiliation(s)
- Shuyue Zheng
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Beilei Liu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xinyuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xinyuan Guan,
| |
Collapse
|
18
|
Li X, Zhang J, Wu Y, Ma C, Wei D, Pan L, Cai L. IGFBP7 remodels the tumor microenvironment of esophageal squamous cell carcinoma by activating the TGFβ1/SMAD signaling pathway. Oncol Lett 2022; 24:251. [PMID: 35761941 PMCID: PMC9214703 DOI: 10.3892/ol.2022.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/25/2022] [Indexed: 01/03/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal cancer, and its development, growth, and invasiveness are regulated by the tumor microenvironment (TME). Insulin-like growth factor-binding protein-7 (IGFBP7), which is closely related to various tumors, transforming growth factor-β1 (TGFβ1), which is a key signal mediator in oncogenesis, α-smooth muscle actin (α-SMA), and collagen I are important components of the TME. IGFBP7 can upregulate the expression of TGFβ1 and activate the TGFβ1/SMAD signaling pathway, which leads to an increase in collagen I in hepatic stellate cells (HSCs). However, the contribution of IGFBP7 to TGFβ1 and the TME in the progression of ESCC remains unknown. In the present study, we investigated IGFBP7 expression and its effects on TGFβ1 and the TME in ESCC. A total of 45 patients were divided into three groups: early-tumor group (n=15), advanced-tumor group (n=15), and paracancer control group (n=15). The EC109 cell line was cultured and treated with AdIGFBP7 and LvshTGFβ1, and the expression levels of IGFBP7, TGFβ1, α-SMA, collagen I, and p-SMAD2/3 were determined by immunohistochemical staining and western blotting analysis. IGFBP7, TGFβ1, α-SMA, and collagen I were upregulated in the ESCC samples compared with the control samples (P<0.05), and the values peaked in the advanced-tumor group (P<0.05). Compared with the control group, the TGFβ1, α-SMA, p-SMAD2/3, and collagen I proteins were gradually increased from 24 to 72 h in the EC109 cells treated with AdIGFBP7 (P<0.05). Inhibition of TGFβ1 expression in the EC109 cells treated with AdIGFBP7 gradually reduced the expression of α-SMA, collagen I, and p-SMAD2/3 from 24 to 72 h (P<0.05). These findings suggest that increased IGFBP7 may accelerate the progression of ESCC by upregulating TGFβ1, α-SMA, and collagen I via activating the TGFβ1/SMAD signaling pathway, which could remodel the TME.
Collapse
Affiliation(s)
- Xiuqing Li
- Department of Gastroenterology and Hepatology, Suzhou Xiangcheng People's Hospital, Suzhou, Jiangsu 215100, P.R. China
| | - Ji Zhang
- Department of Gastroenterology and Hepatology, Yangzhou University Medical College, Yangzhou, Jiangsu 225001, P.R. China
| | - Youshan Wu
- Department of Gastroenterology and Hepatology, Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222042, P.R. China
| | - Chuntao Ma
- Department of Gastroenterology and Hepatology, Suzhou Xiangcheng People's Hospital, Suzhou, Jiangsu 215100, P.R. China
| | - Dongying Wei
- Department of Gastroenterology and Hepatology, Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222042, P.R. China
| | - Lijuan Pan
- Department of Gastroenterology and Hepatology, Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222042, P.R. China
| | - Liangliang Cai
- Department of Gastrointestinal and Anus Surgery, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi 530012, P.R. China,Correspondence to: Dr Liangliang Cai, Department of Gastrointestinal and Anus Surgery, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi 530012, P.R. China, E-mail:
| |
Collapse
|