1
|
Cerna-Chavez R, Ortega-Gasco A, Baig HMA, Ehrenreich N, Metais T, Scandura MJ, Bujakowska K, Pierce EA, Garita-Hernandez M. Optimized Prime Editing of Human Induced Pluripotent Stem Cells to Efficiently Generate Isogenic Models of Mendelian Diseases. Int J Mol Sci 2024; 26:114. [PMID: 39795970 DOI: 10.3390/ijms26010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Prime editing (PE) is a CRISPR-based tool for genome engineering that can be applied to generate human induced pluripotent stem cell (hiPSC)-based disease models. PE technology safely introduces point mutations, small insertions, and deletions (indels) into the genome. It uses a Cas9-nickase (nCas9) fused to a reverse transcriptase (RT) as an editor and a PE guide RNA (pegRNA), which introduces the desired edit with great precision without creating double-strand breaks (DSBs). PE leads to minimal off-targets or indels when introducing single-strand breaks (SSB) in the DNA. Low efficiency can be an obstacle to its use in hiPSCs, especially when the genetic context precludes the screening of multiple pegRNAs, and other strategies must be employed to achieve the desired edit. We developed a PE platform to efficiently generate isogenic models of Mendelian disorders. We introduced the c.25G>A (p.V9M) mutation in the NMNAT1 gene with over 25% efficiency by optimizing the PE workflow. Using our optimized system, we generated other isogenic models of inherited retinal diseases (IRDs), including the c.1481C>T (p.T494M) mutation in PRPF3 and the c.6926A>C (p.H2309P) mutation in PRPF8. We modified several determinants of the hiPSC PE procedure, such as plasmid concentrations, PE component ratios, and delivery method settings, showing that our improved workflow increased the hiPSC editing efficiency.
Collapse
Affiliation(s)
- Rodrigo Cerna-Chavez
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Alba Ortega-Gasco
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Hafiz Muhammad Azhar Baig
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Nathan Ehrenreich
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Thibaud Metais
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Michael J Scandura
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Kinga Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Marcela Garita-Hernandez
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
2
|
Prieto-Garcia C, Matkovic V, Mosler T, Li C, Liang J, Oo JA, Haidle F, Mačinković I, Cabrera-Orefice A, Berkane R, Giuliani G, Xu F, Jacomin AC, Tomaskovic I, Basoglu M, Hoffmann ME, Rathore R, Cetin R, Boutguetait D, Bozkurt S, Hernández Cañás MC, Keller M, Busam J, Shah VJ, Wittig I, Kaulich M, Beli P, Galej WP, Ebersberger I, Wang L, Münch C, Stolz A, Brandes RP, Tse WKF, Eimer S, Stainier DYR, Legewie S, Zarnack K, Müller-McNicoll M, Dikic I. Pathogenic proteotoxicity of cryptic splicing is alleviated by ubiquitination and ER-phagy. Science 2024; 386:768-776. [PMID: 39541449 DOI: 10.1126/science.adi5295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/22/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
RNA splicing enables the functional adaptation of cells to changing contexts. Impaired splicing has been associated with diseases, including retinitis pigmentosa, but the underlying molecular mechanisms and cellular responses remain poorly understood. In this work, we report that deficiency of ubiquitin-specific protease 39 (USP39) in human cell lines, zebrafish larvae, and mice led to impaired spliceosome assembly and a cytotoxic splicing profile characterized by the use of cryptic 5' splice sites. Disruptive cryptic variants evaded messenger RNA (mRNA) surveillance pathways and were translated into misfolded proteins, which caused proteotoxic aggregates, endoplasmic reticulum (ER) stress, and, ultimately, cell death. The detrimental consequence of splicing-induced proteotoxicity could be mitigated by up-regulating the ubiquitin-proteasome system and selective autophagy. Our findings provide insight into the molecular pathogenesis of spliceosome-associated diseases.
Collapse
Affiliation(s)
- Cristian Prieto-Garcia
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Vigor Matkovic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Thorsten Mosler
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Congxin Li
- Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Jie Liang
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - James A Oo
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, Germany
- Cardiopulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - Felix Haidle
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Igor Mačinković
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Alfredo Cabrera-Orefice
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt, Germany
- Center for Functional Proteomics, Goethe University Frankfurt, Frankfurt, Germany
| | - Rayene Berkane
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Giulio Giuliani
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Fenfen Xu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Anne-Claire Jacomin
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Ines Tomaskovic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Marion Basoglu
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Marina E Hoffmann
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Rajeshwari Rathore
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Ronay Cetin
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Doha Boutguetait
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Molecular Systems Medicine, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Süleyman Bozkurt
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Molecular Systems Medicine, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Mario Keller
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Jonas Busam
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Varun Jayeshkumar Shah
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Ilka Wittig
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, Germany
- Center for Functional Proteomics, Goethe University Frankfurt, Frankfurt, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-University, Mainz, Germany
| | | | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIK-F), Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt, Germany
| | - Likun Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Center for Functional Proteomics, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Molecular Systems Medicine, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Alexandra Stolz
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, Germany
- Cardiopulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Stefan Eimer
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Stefan Legewie
- Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Michaela Müller-McNicoll
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
- Max-Planck Institute for Biophysics, Frankfurt, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Max-Planck Institute for Biophysics, Frankfurt, Germany
| |
Collapse
|
3
|
Wang L, Yang X, Xie Y, Xu C, Dai X, Wang M, Liu Y. Nanoparticle-Protein Corona-Based Tissue Proteomics for the Aging Mouse Proteome Atlas. Anal Chem 2024; 96:14363-14371. [PMID: 39192740 DOI: 10.1021/acs.analchem.4c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Highly abundant proteins present in biological fluids and tissues significantly interfere with low-abundance protein identification by mass spectrometry (MS), limiting proteomic depth and hindering protein biomarker discovery. Herein, to enhance the coverage of tissue proteomics, we developed a nanoparticle-protein corona (NP-PC)-based method for the aging mouse proteome atlas. Based on this method, we investigated the complexity of life process of 5 major organs, including the heart, liver, spleen, lungs, and kidneys, from 4 groups of mice at different ages. Compared with the conventional strategy, NP-PC-based proteomics significantly increased the number of identified protein groups in the heart (from 3007 to 3927; increase of 30.6%), liver (from 2982 to 4610; increase of 54.6%), spleen (from 5047 to 7351; increase of 45.7%), lungs (from 4984 to 6903; increase of 38.5%), and kidneys (from 3550 to 5739; increase of 61.7%), and we identified a total of 10 104 protein groups. The overall data indicated that 3-week-old mice showed more differences compared with the other three age groups. The proteins of amino acid-related metabolism were increased in aged mice compared with those in the 3-week-old mice. Protein-related infections were increased in the spleen of the aged mice. Interestingly, the spliceosome-related pathway significantly changed from youth to elders in the liver, spleen, and lungs, indicating the vital role of the spliceosome during the aging process. Our established aging mouse organ proteome atlas provides comprehensive insights into understanding the aging process, and it may help in prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Lichao Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xu Yang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yueli Xie
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Chenlu Xu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xin Dai
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Mengjie Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuan Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
4
|
Laseca N, Molina A, Perdomo-González D, Ziadi C, Azor PJ, Valera M. Exploring the Genetic Landscape of Vitiligo in the Pura Raza Español Horse: A Genomic Perspective. Animals (Basel) 2024; 14:2420. [PMID: 39199954 PMCID: PMC11350783 DOI: 10.3390/ani14162420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Vitiligo is a depigmentation autoimmune disorder characterized by the progressive loss of melanocytes leading to the appearance of patchy depigmentation of the skin. The presence of vitiligo in horses is greater in those with grey coats. The aim of this study was therefore to perform a genome-wide association study (GWAS) to identify genomic regions and putative candidate loci associated with vitiligo depigmentation and susceptibility in the Pura Raza Español population. For this purpose, we performed a wssGBLUP (weighted single step genomic best linear unbiased prediction) using data from a total of 2359 animals genotyped with Affymetrix Axiom™ Equine 670 K and 1346 with Equine GeneSeek Genomic Profiler™ (GGP) Array V5. A total of 60,136 SNPs (single nucleotide polymorphisms) present on the 32 chromosomes from the consensus dataset after quality control were employed for the analysis. Vitiligo-like depigmentation was phenotyped by visual inspection of the different affected areas (eyes, mouth, nostrils) and was classified into nine categories with three degrees of severity (absent, slight, and severe). We identified one significant genomic region for vitiligo around the eyes, eight significant genomic regions for vitiligo around the mouth, and seven significant genomic regions for vitiligo around the nostrils, which explained the highest percentage of variance. These significant genomic regions contained candidate genes related to melanocytes, skin, immune system, tumour suppression, metastasis, and cutaneous carcinoma. These findings enable us to implement selective breeding strategies to decrease the incidence of vitiligo and to elucidate the genetic architecture underlying vitiligo in horses as well as the molecular mechanisms involved in the disease's development. However, further studies are needed to better understand this skin disorder in horses.
Collapse
Affiliation(s)
- Nora Laseca
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctra. Utrera Km 1, 41013 Sevilla, Spain; (N.L.); (D.P.-G.)
- Real Asociación Nacional de Criadores de Caballos de Pura Raza Española (ANCCE), Cortijo de Cuarto (Viejo), 41014 Sevilla, Spain;
| | - Antonio Molina
- Departamento de Genética, Universidad de Córdoba, Ctra. Madrid Km 396, 44014 Córdoba, Spain; (A.M.); (C.Z.)
| | - Davinia Perdomo-González
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctra. Utrera Km 1, 41013 Sevilla, Spain; (N.L.); (D.P.-G.)
| | - Chiraz Ziadi
- Departamento de Genética, Universidad de Córdoba, Ctra. Madrid Km 396, 44014 Córdoba, Spain; (A.M.); (C.Z.)
| | - Pedro J. Azor
- Real Asociación Nacional de Criadores de Caballos de Pura Raza Española (ANCCE), Cortijo de Cuarto (Viejo), 41014 Sevilla, Spain;
| | - Mercedes Valera
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctra. Utrera Km 1, 41013 Sevilla, Spain; (N.L.); (D.P.-G.)
| |
Collapse
|
5
|
Su Y, Wu J, Chen W, Shan J, Chen D, Zhu G, Ge S, Liu Y. Spliceosomal snRNAs, the Essential Players in pre-mRNA Processing in Eukaryotic Nucleus: From Biogenesis to Functions and Spatiotemporal Characteristics. Adv Biol (Weinh) 2024; 8:e2400006. [PMID: 38797893 DOI: 10.1002/adbi.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Spliceosomal small nuclear RNAs (snRNAs) are a fundamental class of non-coding small RNAs abundant in the nucleoplasm of eukaryotic cells, playing a crucial role in splicing precursor messenger RNAs (pre-mRNAs). They are transcribed by DNA-dependent RNA polymerase II (Pol II) or III (Pol III), and undergo subsequent processing and 3' end cleavage to become mature snRNAs. Numerous protein factors are involved in the transcription initiation, elongation, termination, splicing, cellular localization, and terminal modification processes of snRNAs. The transcription and processing of snRNAs are regulated spatiotemporally by various mechanisms, and the homeostatic balance of snRNAs within cells is of great significance for the growth and development of organisms. snRNAs assemble with specific accessory proteins to form small nuclear ribonucleoprotein particles (snRNPs) that are the basal components of spliceosomes responsible for pre-mRNA maturation. This article provides an overview of the biological functions, biosynthesis, terminal structure, and tissue-specific regulation of snRNAs.
Collapse
Affiliation(s)
- Yuan Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiaming Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Junling Shan
- Department of basic medicine, Guangxi Medical University of Nursing College, Nanning, Guangxi, 530021, China
| | - Dan Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Guangyu Zhu
- Guangxi Medical University Hospital of Stomatology, Nanning, Guangxi, 530021, China
| | - Shengchao Ge
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
6
|
Atkinson R, Georgiou M, Yang C, Szymanska K, Lahat A, Vasconcelos EJR, Ji Y, Moya Molina M, Collin J, Queen R, Dorgau B, Watson A, Kurzawa-Akanbi M, Laws R, Saxena A, Shyan Beh C, Siachisumo C, Goertler F, Karwatka M, Davey T, Inglehearn CF, McKibbin M, Lührmann R, Steel DH, Elliott DJ, Armstrong L, Urlaub H, Ali RR, Grellscheid SN, Johnson CA, Mozaffari-Jovin S, Lako M. PRPF8-mediated dysregulation of hBrr2 helicase disrupts human spliceosome kinetics and 5´-splice-site selection causing tissue-specific defects. Nat Commun 2024; 15:3138. [PMID: 38605034 PMCID: PMC11009313 DOI: 10.1038/s41467-024-47253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5'-splice site (5'SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5'SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches.
Collapse
Affiliation(s)
| | - Maria Georgiou
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Chunbo Yang
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | - Albert Lahat
- Department of Biosciences, Durham University, Durham, UK
| | | | - Yanlong Ji
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Marina Moya Molina
- Biosciences Institute, Newcastle University, Newcastle, UK
- Newcells Biotech, Newcastle, UK
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Rachel Queen
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Avril Watson
- Biosciences Institute, Newcastle University, Newcastle, UK
- Newcells Biotech, Newcastle, UK
| | | | - Ross Laws
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - Abhijit Saxena
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Chia Shyan Beh
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | | | | | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | | | - Martin McKibbin
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Reinhard Lührmann
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - David H Steel
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Henning Urlaub
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences, Georg August University of Göttingen, Göttingen, Germany
| | - Robin R Ali
- Centre for Cell and Gene Therapy, Kings College London, London, UK
| | - Sushma-Nagaraja Grellscheid
- Department of Biosciences, Durham University, Durham, UK
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Colin A Johnson
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
| | - Sina Mozaffari-Jovin
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Medical Genetics and Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle, UK.
| |
Collapse
|
7
|
Stanković D, Tain LS, Uhlirova M. Xrp1 governs the stress response program to spliceosome dysfunction. Nucleic Acids Res 2024; 52:2093-2111. [PMID: 38303573 PMCID: PMC10954486 DOI: 10.1093/nar/gkae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Co-transcriptional processing of nascent pre-mRNAs by the spliceosome is vital to regulating gene expression and maintaining genome integrity. Here, we show that the deficiency of functional U5 small nuclear ribonucleoprotein particles (snRNPs) in Drosophila imaginal cells causes extensive transcriptome remodeling and accumulation of highly mutagenic R-loops, triggering a robust stress response and cell cycle arrest. Despite compromised proliferative capacity, the U5 snRNP-deficient cells increased protein translation and cell size, causing intra-organ growth disbalance before being gradually eliminated via apoptosis. We identify the Xrp1-Irbp18 heterodimer as the primary driver of transcriptional and cellular stress program downstream of U5 snRNP malfunction. Knockdown of Xrp1 or Irbp18 in U5 snRNP-deficient cells attenuated JNK and p53 activity, restored normal cell cycle progression and growth, and inhibited cell death. Reducing Xrp1-Irbp18, however, did not rescue the splicing defects, highlighting the requirement of accurate splicing for cellular and tissue homeostasis. Our work provides novel insights into the crosstalk between splicing and the DNA damage response and defines the Xrp1-Irbp18 heterodimer as a critical sensor of spliceosome malfunction and mediator of the stress-induced cellular senescence program.
Collapse
Affiliation(s)
- Dimitrije Stanković
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Luke S Tain
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
8
|
Watson A, Lako M. Retinal organoids provide unique insights into molecular signatures of inherited retinal disease throughout retinogenesis. J Anat 2023; 243:186-203. [PMID: 36177499 PMCID: PMC10335378 DOI: 10.1111/joa.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022] Open
Abstract
The demand for induced pluripotent stem cells (iPSC)-derived retinal organoid and retinal pigment epithelium (RPE) models for the modelling of inherited retinopathies has increased significantly in the last decade. These models are comparable with foetal retinas up until the later stages of retinogenesis, expressing all of the key neuronal markers necessary for retinal function. These models have proven to be invaluable in the understanding of retinogenesis, particular in the context of patient-specific diseases. Inherited retinopathies are infamously described as clinically and phenotypically heterogeneous, such that developing gene/mutation-specific animal models in each instance of retinal disease is not financially or ethically feasible. Further to this, many animal models are insufficient in the study of disease pathogenesis due to anatomical differences and failure to recapitulate human disease phenotypes. In contrast, iPSC-derived retinal models provide a high throughput platform which is physiologically relevant for studying human health and disease. They also serve as a platform for drug screening, gene therapy approaches and in vitro toxicology of novel therapeutics in pre-clinical studies. One unique characteristic of stem cell-derived retinal models is the ability to mimic in vivo retinogenesis, providing unparalleled insights into the effects of pathogenic mutations in cells of the developing retina, in a highly accessible way. This review aims to give the reader an overview of iPSC-derived retinal organoids and/or RPE in the context of disease modelling of several inherited retinopathies including Retinitis Pigmentosa, Stargardt disease and Retinoblastoma. We describe the ability of each model to recapitulate in vivo disease phenotypes, validate previous findings from animal models and identify novel pathomechanisms that underpin individual IRDs.
Collapse
Affiliation(s)
- Avril Watson
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Majlinda Lako
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
9
|
Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet 2023; 24:421-441. [PMID: 37072495 PMCID: PMC7615029 DOI: 10.1038/s41576-023-00587-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
Primary cilia, antenna-like sensory organelles protruding from the surface of most vertebrate cell types, are essential for regulating signalling pathways during development and adult homeostasis. Mutations in genes affecting cilia cause an overlapping spectrum of >30 human diseases and syndromes, the ciliopathies. Given the immense structural and functional diversity of the mammalian cilia repertoire, there is a growing disconnect between patient genotype and associated phenotypes, with variable severity and expressivity characteristic of the ciliopathies as a group. Recent technological developments are rapidly advancing our understanding of the complex mechanisms that control biogenesis and function of primary cilia across a range of cell types and are starting to tackle this diversity. Here, we examine the structural and functional diversity of primary cilia, their dynamic regulation in different cellular and developmental contexts and their disruption in disease.
Collapse
Affiliation(s)
- Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | | | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Wu KY, Kulbay M, Toameh D, Xu AQ, Kalevar A, Tran SD. Retinitis Pigmentosa: Novel Therapeutic Targets and Drug Development. Pharmaceutics 2023; 15:685. [PMID: 36840007 PMCID: PMC9963330 DOI: 10.3390/pharmaceutics15020685] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of hereditary diseases characterized by progressive degeneration of retinal photoreceptors leading to progressive visual decline. It is the most common type of inherited retinal dystrophy and has a high burden on both patients and society. This condition causes gradual loss of vision, with its typical manifestations including nyctalopia, concentric visual field loss, and ultimately bilateral central vision loss. It is one of the leading causes of visual disability and blindness in people under 60 years old and affects over 1.5 million people worldwide. There is currently no curative treatment for people with RP, and only a small group of patients with confirmed RPE65 mutations are eligible to receive the only gene therapy on the market: voretigene neparvovec. The current therapeutic armamentarium is limited to retinoids, vitamin A supplements, protection from sunlight, visual aids, and medical and surgical interventions to treat ophthalmic comorbidities, which only aim to slow down the progression of the disease. Considering such a limited therapeutic landscape, there is an urgent need for developing new and individualized therapeutic modalities targeting retinal degeneration. Although the heterogeneity of gene mutations involved in RP makes its target treatment development difficult, recent fundamental studies showed promising progress in elucidation of the photoreceptor degeneration mechanism. The discovery of novel molecule therapeutics that can selectively target specific receptors or specific pathways will serve as a solid foundation for advanced drug development. This article is a review of recent progress in novel treatment of RP focusing on preclinical stage fundamental research on molecular targets, which will serve as a starting point for advanced drug development. We will review the alterations in the molecular pathways involved in the development of RP, mainly those regarding endoplasmic reticulum (ER) stress and apoptotic pathways, maintenance of the redox balance, and genomic stability. We will then discuss the therapeutic approaches under development, such as gene and cell therapy, as well as the recent literature identifying novel potential drug targets for RP.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Merve Kulbay
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Dana Toameh
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - An Qi Xu
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ananda Kalevar
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
11
|
Love SL, Emerson JD, Koide K, Hoskins AA. Pre-mRNA splicing-associated diseases and therapies. RNA Biol 2023; 20:525-538. [PMID: 37528617 PMCID: PMC10399480 DOI: 10.1080/15476286.2023.2239601] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
Precursor mRNA (pre-mRNA) splicing is an essential step in human gene expression and is carried out by a large macromolecular machine called the spliceosome. Given the spliceosome's role in shaping the cellular transcriptome, it is not surprising that mutations in the splicing machinery can result in a range of human diseases and disorders (spliceosomopathies). This review serves as an introduction into the main features of the pre-mRNA splicing machinery in humans and how changes in the function of its components can lead to diseases ranging from blindness to cancers. Recently, several drugs have been developed that interact directly with this machinery to change splicing outcomes at either the single gene or transcriptome-scale. We discuss the mechanism of action of several drugs that perturb splicing in unique ways. Finally, we speculate on what the future may hold in the emerging area of spliceosomopathies and spliceosome-targeted treatments.
Collapse
Affiliation(s)
- Sierra L. Love
- Genetics Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph D. Emerson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron A. Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
12
|
Fang L, Liu J, Liu Z, Zhou H. Immune modulating nanoparticles for the treatment of ocular diseases. J Nanobiotechnology 2022; 20:496. [DOI: 10.1186/s12951-022-01658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractOcular diseases are increasingly influencing people’s quality of life. Complicated inflammatory mechanisms involved in the pathogenic process of ocular diseases make inflammation-targeting treatment a potential therapeutic approach. The limited efficacy of conventional anti-inflammatory therapeutic strategies, caused by various objective factors, such as complex ocular biological barriers, and subjective factors, such as poor compliance, are promoting the development of new therapeutic methods. With the advantages of considerable tissue permeability, a controllable drug release rate, and selective tissue targeting ability, nanoparticles have successfully captured researchers’ attention and have become a research hotspot in treating ocular diseases. This review will focus on the advantages of nanosystems over traditional therapy, the anti-inflammation mechanisms of nanoparticles, and the anti-inflammatory applications of nanoparticles in different ocular diseases (ocular surface diseases, vitreoretinopathy, uveal diseases, glaucoma, and visual pathway diseases). Furthermore, by analyzing the current situation of nanotherapy and the challenges encountered, we hope to inspire new ideas and incentives for designing nanoparticles more consistent with human physiological characteristics to make progress based on conventional treatments. Overall, some progress has been made in nanoparticles for the treatment of ocular diseases, and nanoparticles have rather broad future clinical translation prospects.
Collapse
|
13
|
Borišek J, Aupič J, Magistrato A. Establishing the catalytic and regulatory mechanism of
RNA
‐based machineries. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jure Borišek
- Theory Department National Institute of Chemistry Ljubljana Slovenia
| | | | | |
Collapse
|
14
|
Xu K, Ou G. Cilia regeneration requires an RNA splicing factor from the ciliary base. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:29. [PMID: 36180752 PMCID: PMC9525525 DOI: 10.1186/s13619-022-00130-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022]
Abstract
Cilia are microtubule-based organelles projected from most eukaryotic cell surfaces performing cell motility and signaling. Several previously recognized non-ciliary proteins play crucial roles in cilium formation and function. Here, we provide additional evidence that the Caenorhabditis elegans RNA splicing factor PRP-8/PRPF8 regulates ciliogenesis and regeneration from the ciliary base. Live imaging of GFP knock-in animals reveals that the endogenous PRP-8 localizes in the nuclei and the ciliary base. A weak loss-of-function allele of prp-8 affects ciliary structure but with little impact on RNA splicing. Conditional degradation of PRP-8 within ciliated sensory neurons showed its direct and specific roles in cilium formation. Notably, the penetrance of ciliary defects correlates with the reduction of PRP-8 at the ciliary base but not nuclei, and sensory neurons regenerated cilia accompanying PRP-8 recovery from the ciliary base rather than the nuclei. We suggest that PRP-8 at the ciliary base contributes to cilium formation and regeneration.
Collapse
Affiliation(s)
- Kaiming Xu
- grid.12527.330000 0001 0662 3178Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Guangshuo Ou
- grid.12527.330000 0001 0662 3178Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Modeling PRPF31 retinitis pigmentosa using retinal pigment epithelium and organoids combined with gene augmentation rescue. NPJ Regen Med 2022; 7:39. [PMID: 35974011 PMCID: PMC9381579 DOI: 10.1038/s41536-022-00235-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in the ubiquitously expressed pre-mRNA processing factor (PRPF) 31 gene, one of the most common causes of dominant form of Retinitis Pigmentosa (RP), lead to a retina-specific phenotype. It is uncertain which retinal cell types are affected and animal models do not clearly present the RP phenotype observed in PRPF31 patients. Retinal organoids and retinal pigment epithelial (RPE) cells derived from human-induced pluripotent stem cells (iPSCs) provide potential opportunities for studying human PRPF31-related RP. We demonstrate here that RPE cells carrying PRPF31 mutations present important morphological and functional changes and that PRPF31-mutated retinal organoids recapitulate the human RP phenotype, with a rod photoreceptor cell death followed by a loss of cones. The low level of PRPF31 expression may explain the defective phenotypes of PRPF31-mutated RPE and photoreceptor cells, which were not observed in cells derived from asymptomatic patients or after correction of the pathogenic mutation by CRISPR/Cas9. Transcriptome profiles revealed differentially expressed and mis-spliced genes belonging to pathways in line with the observed defective phenotypes. The rescue of RPE and photoreceptor defective phenotypes by PRPF31 gene augmentation provide the proof of concept for future therapeutic strategies.
Collapse
|
16
|
Liang Y, Tan F, Sun X, Cui Z, Gu J, Mao S, Chan HF, Tang S, Chen J. Aberrant Retinal Pigment Epithelial Cells Derived from Induced Pluripotent Stem Cells of a Retinitis Pigmentosa Patient with the PRPF6 Mutation. Int J Mol Sci 2022; 23:ijms23169049. [PMID: 36012314 PMCID: PMC9409096 DOI: 10.3390/ijms23169049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Pre-mRNA processing factors (PRPFs) are vital components of the spliceosome and are involved in the physiological process necessary for pre-mRNA splicing to mature mRNA. As an important member, PRPF6 mutation resulting in autosomal dominant retinitis pigmentosa (adRP) is not common. Recently, we reported the establishment of an induced pluripotent stem cells (iPSCs; CSUASOi004-A) model by reprogramming the peripheral blood mononuclear cells of a PRPF6-related adRP patient, which could recapitulate a consistent disease-specific genotype. In this study, a disease model of retinal pigment epithelial (RPE) cells was generated from the iPSCs of this patient to further investigate the underlying molecular and pathological mechanisms. The results showed the irregular morphology, disorganized apical microvilli and reduced expressions of RPE-specific genes in the patient’s iPSC-derived RPE cells. In addition, RPE cells carrying the PRPF6 mutation displayed a decrease in the phagocytosis of fluorescein isothiocyanate-labeled photoreceptor outer segments and exhibited impaired cell polarity and barrier function. This study will benefit the understanding of PRPF6-related RPE cells and future cell therapy.
Collapse
Affiliation(s)
- Yuqin Liang
- Aier School of Ophthalmology, Central South University, Changsha 410015, China
- Aier Eye Institute, Changsha 410015, China
| | - Feng Tan
- Aier School of Ophthalmology, Central South University, Changsha 410015, China
- Aier Eye Institute, Changsha 410015, China
| | - Xihao Sun
- Aier School of Ophthalmology, Central South University, Changsha 410015, China
- Aier Eye Institute, Changsha 410015, China
| | - Zekai Cui
- Aier School of Ophthalmology, Central South University, Changsha 410015, China
- Aier Eye Institute, Changsha 410015, China
| | - Jianing Gu
- Aier Eye Institute, Changsha 410015, China
| | | | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha 410015, China
- Aier Eye Institute, Changsha 410015, China
- Correspondence: (S.T.); (J.C.); Tel.: +86-139-2510-0123 (S.T.); +86-186-7583-9029 (J.C.)
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha 410015, China
- Aier Eye Institute, Changsha 410015, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, China
- Correspondence: (S.T.); (J.C.); Tel.: +86-139-2510-0123 (S.T.); +86-186-7583-9029 (J.C.)
| |
Collapse
|
17
|
Bhardwaj A, Yadav A, Yadav M, Tanwar M. Genetic dissection of non-syndromic retinitis pigmentosa. Indian J Ophthalmol 2022; 70:2355-2385. [PMID: 35791117 PMCID: PMC9426071 DOI: 10.4103/ijo.ijo_46_22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Retinitis pigmentosa (RP) belongs to a group of pigmentary retinopathies. It is the most common form of inherited retinal dystrophy, characterized by progressive degradation of photoreceptors that leads to nyctalopia, and ultimately, complete vision loss. RP is distinguished by the continuous retinal degeneration that progresses from the mid-periphery to the central and peripheral retina. RP was first described and named by Franciscus Cornelius Donders in the year 1857. It is one of the leading causes of bilateral blindness in adults, with an incidence of 1 in 3000 people worldwide. In this review, we are going to focus on the genetic heterogeneity of this disease, which is provided by various inheritance patterns, numerosity of variations and inter-/intra-familial variations based upon penetrance and expressivity. Although over 90 genes have been identified in RP patients, the genetic cause of approximately 50% of RP cases remains unknown. Heterogeneity of RP makes it an extremely complicated ocular impairment. It is so complicated that it is known as “fever of unknown origin”. For prognosis and proper management of the disease, it is necessary to understand its genetic heterogeneity so that each phenotype related to the various genetic variations could be treated.
Collapse
Affiliation(s)
- Aarti Bhardwaj
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Anshu Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Manoj Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Mukesh Tanwar
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| |
Collapse
|
18
|
Ogami K, Suzuki HI. Nuclear RNA Exosome and Pervasive Transcription: Dual Sculptors of Genome Function. Int J Mol Sci 2021; 22:13401. [PMID: 34948199 PMCID: PMC8707817 DOI: 10.3390/ijms222413401] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 01/14/2023] Open
Abstract
The genome is pervasively transcribed across various species, yielding numerous non-coding RNAs. As a counterbalance for pervasive transcription, various organisms have a nuclear RNA exosome complex, whose structure is well conserved between yeast and mammalian cells. The RNA exosome not only regulates the processing of stable RNA species, such as rRNAs, tRNAs, small nucleolar RNAs, and small nuclear RNAs, but also plays a central role in RNA surveillance by degrading many unstable RNAs and misprocessed pre-mRNAs. In addition, associated cofactors of RNA exosome direct the exosome to distinct classes of RNA substrates, suggesting divergent and/or multi-layer control of RNA quality in the cell. While the RNA exosome is essential for cell viability and influences various cellular processes, mutations and alterations in the RNA exosome components are linked to the collection of rare diseases and various diseases including cancer, respectively. The present review summarizes the relationships between pervasive transcription and RNA exosome, including evolutionary crosstalk, mechanisms of RNA exosome-mediated RNA surveillance, and physiopathological effects of perturbation of RNA exosome.
Collapse
Affiliation(s)
- Koichi Ogami
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan;
| | - Hiroshi I. Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan;
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|