1
|
Wang W, Li J, He Q, Liu C, Zheng Z, Zhang B, Mou S, Sun W, Zhao J. Crosstalk between CD180-overexpression macrophages and glioma cells worsens patient survival through malignant phenotype promotion and immunosuppressive regulation. Mol Med 2024; 30:264. [PMID: 39707188 DOI: 10.1186/s10020-024-01029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Understanding the molecular mechanisms in immunosuppressive regulation is crucial for improving immunotherapeutic strategies. Macrophages, the major immune cells in tumor microenvironment (TME), play a dual role in tumor progression. CD180, primarily expressed in macrophages, remains unclear and requires further investigation. METHODS RNA-seq data were obtained to analyze CD180 expression in gliomas and assess its prognostic value. The comprehensive immune infiltration analysis was performed. Single-cell RNA-seq (scRNA-seq) data were used to examine CD180 expression distribution at the cellular level. CD180-overexpression macrophages were co-cultured with three glioma cell lines. The effects on glioma cell behavior were evaluated through qRT-PCR, Western blot, CCK-8 assay, EdU assay, Transwell assay, TUNEL assay, and flow cytometry. Differentially expressed genes (DEGs) and their potential biological functions were analyzed between different CD180 expression groups. Consensus clustering was used to identify CD180-related glioma subtypes. RESULTS CD180 was significantly upregulated in glioma samples and associated with poor prognosis. High CD180 expression was correlated with increased immune cell infiltration, particularly macrophages, and elevated levels of immune checkpoints. Analysis of scRNA-seq data revealed the predominant expression of CD180 in macrophages within the glioma TME. In vitro experiments demonstrated that CD180-overexpression macrophages promoted glioma cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), while decreasing apoptosis. Mutations in TP53 and PTEN were significantly more prevalent in the high CD180 expression group. We identified nine chemotherapeutic agents that were more effective in glioma patients with high CD180 expression. Additionally, two CD180-related glioma subtypes with distinct prognosis were identified. CONCLUSIONS This study confirmed the prognostic role of CD180 in glioma and its involvement in immunosuppressive regulation and malignant phenotype promotion. Therefore, CD180 was considered as a promising target for immunotherapeutic strategies in glioma treatment.
Collapse
Affiliation(s)
- Wen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Bojian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Siqi Mou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
2
|
Yang J, Zhai Y, Huang C, Xiang Z, Liu H, Wu J, Huang Y, Liu L, Li W, Wang W, Yang J, Zhang J. RP105 Attenuates Ischemia/Reperfusion-Induced Oxidative Stress in the Myocardium via Activation of the Lyn/Syk/STAT3 Signaling Pathway. Inflammation 2024; 47:1371-1385. [PMID: 38568415 DOI: 10.1007/s10753-024-01982-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 08/24/2024]
Abstract
Although our previous studies have established the crucial role of RP105 in myocardial ischemia/reperfusion injury (MI/RI), its involvement in regulating oxidative stress induced by MI/RI remains unclear. To investigate this, we conducted experiments using a rat model of ischemia/reperfusion (I/R) injury. Adenovirus carrying RP105 was injected apically at multiple points, and after 72 h, the left anterior descending coronary artery was ligated for 30 min followed by 2 h of reperfusion. In vitro experiments were performed on H9C2 cells, which were transfected with recombinant adenoviral vectors for 48 h, subjected to 4 h of hypoxia, and then reoxygenated for 2 h. We measured oxidative stress markers, including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, as well as malondialdehyde (MDA) concentration, using a microplate reader. The fluorescence intensity of reactive oxygen species (ROS) in myocardial tissue was measured using a DHE probe. We also investigated the upstream and downstream components of the signal transducer and activator of transcription 3 (STAT3). Upregulation of RP105 increased SOD and GSH-Px activities, reduced MDA concentration, and inhibited ROS production in response to I/R injury in vivo and hypoxia reoxygenation (H/R) stimulation in vitro. The overexpression of RP105 led to a decrease in the myocardial enzyme LDH in serum and cell culture supernatant, as well as a reduction in infarct size. Additionally, left ventricular fraction (LVEF) and fractional shortening (LVFS) were improved in the RP105 overexpression group compared to the control. Upregulation of RP105 promoted the expression of Lyn and Syk and further activated STAT phosphorylation, which was blocked by PP2 (a Lyn inhibitor). Our findings suggest that RP105 can inhibit MI/RI-induced oxidative stress by activating STAT3 via the Lyn/Syk signaling pathway.
Collapse
Affiliation(s)
- Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Yuhong Zhai
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Cuiyuan Huang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Zujin Xiang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Haiyin Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Jingyi Wu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Yifan Huang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Li Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Wenqiang Li
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Wei Wang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China.
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China.
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China.
| |
Collapse
|
3
|
Feng C, Liu Y, Zhang BY, Zhang H, Shan FY, Li TQ, Zhao ZN, Wang XX, Zhang XY. Rapamycin Inhibits Osteoclastogenesis and Prevents LPS-Induced Alveolar Bone Loss by Oxidative Stress Suppression. ACS OMEGA 2023; 8:20739-20754. [PMID: 37323396 PMCID: PMC10268267 DOI: 10.1021/acsomega.3c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023]
Abstract
Periodontitis is a progressive inflammatory skeletal disease characterized by periodontal tissue destruction, alveolar bone resorption, and tooth loss. Chronic inflammatory response and excessive osteoclastogenesis play essential roles in periodontitis progression. Unfortunately, the pathogenesis that contributes to periodontitis remains unclear. As a specific inhibitor of the mTOR (mammalian/mechanistic target of rapamycin) signaling pathway and the most common autophagy activator, rapamycin plays a vital role in regulating various cellular processes. The present study investigated the effects of rapamycin on osteoclast (OC) formation in vitro and its effects on the rat periodontitis model. The results showed that rapamycin inhibited OC formation in a dose-dependent manner by up-regulating the Nrf2/GCLC signaling pathway, thus suppressing the intracellular redox status, as measured by 2',7'-dichlorofluorescein diacetate and MitoSOX. In addition, rather than simply increasing the autophagosome formation, rapamycin increased the autophagy flux during OC formation. Importantly, the anti-oxidative effect of rapamycin was regulated by an increase in autophagy flux, which could be attenuated by blocking autophagy with bafilomycin A1. In line with the in vitro results, rapamycin treatment attenuated alveolar bone resorption in rats with lipopolysaccharide-induced periodontitis in a dose-dependent manner, as assessed by micro-computed tomography, hematoxylin-eosin staining, and tartrate-resistant acid phosphatase staining. Besides, high-dose rapamycin treatment could reduce the serum levels of proinflammatory factors and oxidative stress in periodontitis rats. In conclusion, this study expanded our understanding of rapamycin's role in OC formation and protection from inflammatory bone diseases.
Collapse
Affiliation(s)
- Chong Feng
- School
and Hospital of Stomatology, Tianjin Medical
University, Tianjin 300070, China
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yan Liu
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
- Lanzhou
University, Lanzhou 730000, China
| | - Bao-Yi Zhang
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Hao Zhang
- School
and Hospital of Stomatology, Tianjin Medical
University, Tianjin 300070, China
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Fa-Yu Shan
- School
and Hospital of Stomatology, Tianjin Medical
University, Tianjin 300070, China
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Tian-Qi Li
- School
and Hospital of Stomatology, Tianjin Medical
University, Tianjin 300070, China
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhi-Ning Zhao
- School
and Hospital of Stomatology, Tianjin Medical
University, Tianjin 300070, China
| | - Xin-Xing Wang
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiang-Yu Zhang
- School
and Hospital of Stomatology, Tianjin Medical
University, Tianjin 300070, China
| |
Collapse
|
4
|
Jiang X, Ning P, Yan F, Wang J, Cai W, Yang F. Impact of myeloid differentiation protein 1 on cardiovascular disease. Biomed Pharmacother 2023; 157:114000. [PMID: 36379121 DOI: 10.1016/j.biopha.2022.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease remains the leading cause of disability and mortality worldwide and a significant global burden. Many lines of evidence suggest complex remodeling responses to cardiovascular disease, such as myocardial ischemia, hypertension and valve disease, which lead to poor clinical outcomes, including heart failure, arrhythmia and sudden cardiac death (SCD). The mechanisms underlying cardiac remodeling are closely related to reactive oxygen species (ROS) and inflammation. Myeloid differentiation protein 1 (MD1) is a secreted glycoprotein known as lymphocyte antigen 86. The complex of MD1 and radioprotective 105 (RP105) is an important regulator of inflammation and is involved in the modulation of vascular remodeling and atherosclerotic plaque development. A recent study suggested that the expression of MD1 in hypertrophic cardiomyopathy (HCM) patients is decreased compared with that in donor hearts. Therefore, MD1 may play an important role in the pathological processes of cardiovascular disease and have potential clinical value. Here, this review aims to discuss the current knowledge regarding the role of MD1 in the regulation of cardiac pathophysiology.
Collapse
Affiliation(s)
- Xiaobo Jiang
- Geriatric Diseases Institute of Chengdu, Department of Cardiology, Chengdu Fifth People's Hospital, Chengdu 611137, China; The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Peng Ning
- The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Geriatric Diseases Institute of Chengdu, Department of Endocrinology, Chengdu Fifth People's Hospital, Chengdu 611137, China.
| | - Fang Yan
- Geriatric Department, Chengdu Fifth People's Hospital, Chengdu 611137, China; Center for Medicine Research and Translation, Chengdu Fifth People's Hospital, Chengdu 611137, China.
| | - Jianfeng Wang
- Geriatric Diseases Institute of Chengdu, Department of Cardiology, Chengdu Fifth People's Hospital, Chengdu 611137, China; The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wei Cai
- Geriatric Diseases Institute of Chengdu, Department of Cardiology, Chengdu Fifth People's Hospital, Chengdu 611137, China; The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fan Yang
- The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Geriatric Diseases Institute of Chengdu, Department of Endocrinology, Chengdu Fifth People's Hospital, Chengdu 611137, China.
| |
Collapse
|
5
|
Ling D, Zhang X, Wu J, Xu Q, He Z, Zhang J. Identification of Immune Infiltration and Effective Immune Biomarkers in Acute Lung Injury by Bioinformatics Analysis. Cell Transplant 2022; 31:9636897221124485. [PMID: 36165281 PMCID: PMC9523839 DOI: 10.1177/09636897221124485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Acute lung injury (ALI) is a serious complication in clinical settings. This study aimed to elucidate the immune molecular mechanisms underlying ALI by bioinformatics analysis. Human ALI and six ALI mouse model datasets were collected. Immune cell infiltration between the ALI samples and non-ALI controls was estimated using the ssGSEA algorithm. Least absolute shrinkage and selection operator (LASSO) regression analysis and Wilcoxon test were performed to obtain the significantly different immune cell infiltration types. Immune feature genes were screened by differential analysis and the weighted correlation network analysis (WGCNA) algorithm. Functional enrichment was then performed and candidate hub biomarkers were identified. Finally, the receiver operator characteristic curve (ROC) analysis was used to predict their diagnostic performances. Three significantly different immune cell types (B cells, CD4 T cells, and CD8 T cells) were identified between the ALI samples and controls. A total of 13 immune feature genes were obtained by WGCNA and differential analysis and found to be significantly associated with immune functions and lung diseases. Four hub genes, including CD180, CD4, CD74, and MCL1 were identified using cytoHubba and were shown to have good specificity and sensitivity for the diagnosis of ALI. Correlation analysis suggested that CD4 was positively associated with T cells, whereas MCL1 was negatively correlated with B and T cells. We found that CD180, CD4, CD74, and MCL1 can serve as specific immune biomarkers for ALI. MCL1-B cell, MCL1-T cell, and CD4-T cell axes may be involved in the progression of ALI.
Collapse
Affiliation(s)
- Dandan Ling
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiang Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jiamin Wu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qianyun Xu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhiyong He
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|