1
|
Ghosh A, Jaaback K, Boulton A, Wong-Brown M, Raymond S, Dutta P, Bowden NA, Ghosh A. Fusobacterium nucleatum: An Overview of Evidence, Demi-Decadal Trends, and Its Role in Adverse Pregnancy Outcomes and Various Gynecological Diseases, including Cancers. Cells 2024; 13:717. [PMID: 38667331 PMCID: PMC11049087 DOI: 10.3390/cells13080717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Gynecological and obstetric infectious diseases are crucial to women's health. There is growing evidence that links the presence of Fusobacterium nucleatum (F. nucleatum), an anaerobic oral commensal and potential periodontal pathogen, to the development and progression of various human diseases, including cancers. While the role of this opportunistic oral pathogen has been extensively studied in colorectal cancer in recent years, research on its epidemiological evidence and mechanistic link to gynecological diseases (GDs) is still ongoing. Thus, the present review, which is the first of its kind, aims to undertake a comprehensive and critical reappraisal of F. nucleatum, including the genetics and mechanistic role in promoting adverse pregnancy outcomes (APOs) and various GDs, including cancers. Additionally, this review discusses new conceptual advances that link the immunomodulatory role of F. nucleatum to the development and progression of breast, ovarian, endometrial, and cervical carcinomas through the activation of various direct and indirect signaling pathways. However, further studies are needed to explore and elucidate the highly dynamic process of host-F. nucleatum interactions and discover new pathways, which will pave the way for the development of better preventive and therapeutic strategies against this pathobiont.
Collapse
Affiliation(s)
- Arunita Ghosh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia;
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| | - Ken Jaaback
- Hunter New England Centre for Gynecological Cancer, John Hunter Hospital, Newcastle, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Angela Boulton
- Newcastle Private Hospital, Newcastle, NSW 2305, Australia; (A.B.); (S.R.)
| | - Michelle Wong-Brown
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Steve Raymond
- Newcastle Private Hospital, Newcastle, NSW 2305, Australia; (A.B.); (S.R.)
| | - Partha Dutta
- Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nikola A. Bowden
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Arnab Ghosh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia;
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| |
Collapse
|
2
|
Filippou C, Themistocleous SC, Marangos G, Panayiotou Y, Fyrilla M, Kousparou CA, Pana ZD, Tsioutis C, Johnson EO, Yiallouris A. Microbial Therapy and Breast Cancer Management: Exploring Mechanisms, Clinical Efficacy, and Integration within the One Health Approach. Int J Mol Sci 2024; 25:1110. [PMID: 38256183 PMCID: PMC10816061 DOI: 10.3390/ijms25021110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review elucidates the profound relationship between the human microbiome and breast cancer management. Recent findings highlight the significance of microbial alterations in tissue, such as the gut and the breast, and their role in influencing the breast cancer risk, development, progression, and treatment outcomes. We delve into how the gut microbiome can modulate systemic inflammatory responses and estrogen levels, thereby impacting cancer initiation and therapeutic drug efficacy. Furthermore, we explore the unique microbial diversity within breast tissue, indicating potential imbalances brought about by cancer and highlighting specific microbes as promising therapeutic targets. Emphasizing a holistic One Health approach, this review underscores the importance of integrating insights from human, animal, and environmental health to gain a deeper understanding of the complex microbe-cancer interplay. As the field advances, the strategic manipulation of the microbiome and its metabolites presents innovative prospects for the enhancement of cancer diagnostics and therapeutics. However, rigorous clinical trials remain essential to confirm the potential of microbiota-based interventions in breast cancer management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andreas Yiallouris
- School of Medicine, European University Cyprus, 6 Diogenis Str., 2404 Engomi, P.O. Box 22006, Nicosia 1516, Cyprus
| |
Collapse
|
3
|
Ruiz-Saavedra S, Zapico A, González S, Salazar N, de los Reyes-Gavilán CG. Role of the intestinal microbiota and diet in the onset and progression of colorectal and breast cancers and the interconnection between both types of tumours. MICROBIOME RESEARCH REPORTS 2023; 3:6. [PMID: 38455079 PMCID: PMC10917624 DOI: 10.20517/mrr.2023.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 03/09/2024]
Abstract
Colorectal cancer (CRC) is among the leading causes of mortality in adults of both sexes worldwide, while breast cancer (BC) is among the leading causes of death in women. In addition to age, gender, and genetic predisposition, environmental and lifestyle factors exert a strong influence. Global diet, including alcohol consumption, is one of the most important modifiable factors affecting the risk of CRC and BC. Western dietary patterns promoting high intakes of xenobiotics from food processing and ethanol have been associated with increased cancer risk, whereas the Mediterranean diet, generally leading to a higher intake of polyphenols and fibre, has been associated with a protective effect. Gut dysbiosis is a common feature in CRC, where the usual microbiota is progressively replaced by opportunistic pathogens and the gut metabolome is altered. The relationship between microbiota and BC has been less studied. The estrobolome is the collection of genes from intestinal bacteria that can metabolize oestrogens. In a dysbiosis condition, microbial deconjugating enzymes can reactivate conjugated-deactivated oestrogens, increasing the risk of BC. In contrast, intestinal microorganisms can increase the biological activity and bioavailability of dietary phytochemicals through diverse microbial metabolic transformations, potentiating their anticancer activity. Members of the intestinal microbiota can increase the toxicity of xenobiotics through metabolic transformations. However, most of the microorganisms involved in diet-microbiota interactions remain poorly characterized. Here, we provide an overview of the associations between microbiota and diet in BC and CRC, considering the diverse types and heterogeneity of these cancers and their relationship between them and with gut microbiota.
Collapse
Affiliation(s)
- Sergio Ruiz-Saavedra
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Aida Zapico
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
- Department of Functional Biology, University of Oviedo, Oviedo 33006, Spain
| | - Sonia González
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
- Department of Functional Biology, University of Oviedo, Oviedo 33006, Spain
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Clara G. de los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| |
Collapse
|
4
|
Taha SFM, Bhassu S, Omar H, Raju CS, Rajamanikam A, Govind SKP, Mohamad SB. Gut microbiota of healthy Asians and their discriminative features revealed by metagenomics approach. 3 Biotech 2023; 13:275. [PMID: 37457869 PMCID: PMC10338424 DOI: 10.1007/s13205-023-03671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
This study is conducted to identify the microbial architecture and its functional capacity in the Asian population via the whole metagenomics approach. A brief comparison of the Asian countries namely Malaysia, India, China, and Thailand, was conducted, giving a total of 916 taxa under observation. Results show a close representation of the taxonomic diversity in the gut microbiota of Malaysia, India, and China, where Bacteroidetes, Firmicutes, and Actinobacteria were more predominant compared to other phyla. Mainly due to the multi-racial population in Malaysia, which also consists of Malays, Indian, and Chinese, the population tend to share similar dietary preferences, culture, and lifestyle, which are major influences that shapes the structure of the gut microbiota. Moreover, Thailand showed a more distinct diversity in the gut microbiota which was highly dominated by Firmicutes. Meanwhile, functional profiles show 1034 gene families that are common between the four countries. The Malaysia samples are having the most unique gene families with a total of 67,517 gene families, and 51 unique KEGG Orthologs, mainly dominated by the metabolic pathways, followed by microbial metabolism in diverse environments. In conclusion, this study provides some general overview on the structure of the Asian gut microbiota, with some additional highlights on the Malaysian population. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03671-3.
Collapse
Affiliation(s)
- Siti Fatimah Mohd Taha
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hasmahzaiti Omar
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Museum of Zoology (Block J14), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chandramati Samudi Raju
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Arutchelvan Rajamanikam
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Suresh Kumar P. Govind
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Saharuddin Bin Mohamad
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Roderburg C, Loosen SH, Joerdens MS, Demir M, Luedde T, Kostev K. Antibiotic therapy is associated with an increased incidence of cancer. J Cancer Res Clin Oncol 2023; 149:1285-1293. [PMID: 35441344 PMCID: PMC9984516 DOI: 10.1007/s00432-022-03998-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE There is a growing body of evidence suggesting the decisive involvement of the human microbiome in cancer development. The consumption of antibiotics may fundamentally change the microbiome and thereby create a precancerous environment promoting cancer development and growth. However, clinical data on the association between the consumption of antibiotics and cancer incidence have remained inconclusive. In this study, we quantified the association between the intake of different antibiotics and various cancer entities among outpatients from Germany. METHODS This retrospective case-control study based on the IQVIA Disease Analyzer database included 111,828 cancer patients and 111,828 non-cancer controls who were matched to cancer cases using propensity scores. Patients were categorized as non-users, low-consumption (up to 50th percentile), and high-consumption (above 50th percentile) users of antibiotics overall and for each antibiotic class. Multivariable logistic conditional regression models were used to study the association between antibiotic intake within 5 years prior to the index date (first cancer diagnosis for cases or randomly selected date for controls) and cancer incidence. RESULTS The probability of cancer was significantly higher among patients with a history of antibiotic intake than in matched controls. Patients using penicillin or cephalosporins displayed a higher incidence of cancer, while the intake of tetracyclines and macrolides actually reduced the risk of cancer development slightly. A complex picture was observed in our cancer site-stratified analyses. Most notably, the consumption of penicillin was significantly and positively associated with cancer development in the respiratory organs only (low consumption OR: 1.33, 95% CI 1.20-1.47; high consumption OR 1.42, 95% CI 1.22-1.64) and cephalosporin consumption was significantly associated with respiratory organ cancer (low consumption OR: 1.32, 95% CI 1.17-1.48, high consumption OR: 1.47, 95% CI 1.29-1.66), breast cancer (high consumption OR: 1.40, 95% CI 1.25-1.56), and lymphoid and hematopoietic tissue cancer (high consumption OR: 1.50, 95% CI 1.35-1.66). CONCLUSION Our data strongly support the hypothesis that the intake of antibiotics is positively associated with the risk of cancer development.
Collapse
Affiliation(s)
- Christoph Roderburg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, 40225, Düsseldorf, Germany.
| | - Sven H Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Markus S Joerdens
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, 40225, Düsseldorf, Germany.
| | | |
Collapse
|
6
|
Temel HY, Kaymak Ö, Kaplan S, Bahcivanci B, Gkoutos GV, Acharjee A. Role of microbiota and microbiota-derived short-chain fatty acids in PDAC. Cancer Med 2023; 12:5661-5675. [PMID: 36205023 PMCID: PMC10028056 DOI: 10.1002/cam4.5323] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive lethal diseases among other cancer types. Gut microbiome and its metabolic regulation play a crucial role in PDAC. Metabolic regulation in the gut is a complex process that involves microbiome and microbiome-derived short-chain fatty acids (SCFAs). SCFAs regulate inflammation, as well as lipid and glucose metabolism, through different pathways. This review aims to summarize recent developments in PDAC in the context of gut and oral microbiota and their associations with short-chain fatty acid (SCFA). In addition to this, we discuss possible therapeutic applications using microbiota in PDAC.
Collapse
Affiliation(s)
- Hülya Yılmaz Temel
- Department of Bioengineering, Faculty of EngineeringEge UniversityIzmirTurkey
| | - Öznur Kaymak
- Department of Bioengineering, Faculty of EngineeringEge UniversityIzmirTurkey
| | - Seren Kaplan
- Department of Bioengineering, Faculty of EngineeringEge UniversityIzmirTurkey
| | - Basak Bahcivanci
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUK
| | - Georgios V. Gkoutos
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUK
- National Institute for Health Research Surgical Reconstruction, Queen Elizabeth Hospital BirminghamBirminghamUK
- MRC Health Data Research UK (HDR UK)BirminghamUK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUK
- National Institute for Health Research Surgical Reconstruction, Queen Elizabeth Hospital BirminghamBirminghamUK
- MRC Health Data Research UK (HDR UK)BirminghamUK
| |
Collapse
|
7
|
Gut Microbiota Composition in Undernourished Children Associated with Diet and Sociodemographic Factors: A Case–Control Study in Indonesia. Microorganisms 2022; 10:microorganisms10091748. [PMID: 36144350 PMCID: PMC9502830 DOI: 10.3390/microorganisms10091748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 12/16/2022] Open
Abstract
Malnutrition, which consists of undernutrition and overnutrition, is associated with gut microbiota composition, diet, and sociodemographic factors. Undernutrition is a nutrient deficiency that that should be identified to prevent other diseases. In this study, we evaluate the gut microbiota composition in undernourished children in association with diet and sociodemographic factors. We observed normal children (n= 20) and undernourished children (n= 20) for ten days in Lombok and Yogyakarta. Diet, sociodemographic factors, and medical records were recorded using food records, screening forms, and standard household questionnaires. Gut microbiota analysis was performed using 16S rRNA gene sequencing targeting the V3–V4 region. The result showed that the undernourished group had lower energy intake. In addition, the undernourished group had lower quality of medical records, parent knowledge, education, and exclusive breastfeeding. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia were significantly different between normal and undernourished children. Based on LefSe, we determined that Akkermansia is a biomarker for undernourished children. In conclusion, diet and sociodemographic factors affect the gut microbiota composition of undernourished children.
Collapse
|
8
|
Dey P, Ray Chaudhuri S. Cancer-Associated Microbiota: From Mechanisms of Disease Causation to Microbiota-Centric Anti-Cancer Approaches. BIOLOGY 2022; 11:757. [PMID: 35625485 PMCID: PMC9138768 DOI: 10.3390/biology11050757] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection is the only well-established bacterial cause of cancer. However, due to the integral role of tissue-resident commensals in maintaining tissue-specific immunometabolic homeostasis, accumulated evidence suggests that an imbalance of tissue-resident microbiota that are otherwise considered as commensals, can also promote various types of cancers. Therefore, the present review discusses compelling evidence linking tissue-resident microbiota (especially gut bacteria) with cancer initiation and progression. Experimental evidence supporting the cancer-causing role of gut commensal through the modulation of host-specific processes (e.g., bile acid metabolism, hormonal effects) or by direct DNA damage and toxicity has been discussed. The opportunistic role of commensal through pathoadaptive mutation and overcoming colonization resistance is discussed, and how chronic inflammation triggered by microbiota could be an intermediate in cancer-causing infections has been discussed. Finally, we discuss microbiota-centric strategies, including fecal microbiota transplantation, proven to be beneficial in preventing and treating cancers. Collectively, this review provides a comprehensive understanding of the role of tissue-resident microbiota, their cancer-promoting potentials, and how beneficial bacteria can be used against cancers.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh 160036, India;
| |
Collapse
|