1
|
Zhang Y, Hu J, Zhang X, Liang M, Wang X, Gan D, Li J, Lu X, Wan J, Feng S, Lu X. Protein Signature Differentiating Neutrophils and Myeloid-Derived Suppressor Cells Determined Using a Human Isogenic Cell Line Model and Protein Profiling. Cells 2024; 13:795. [PMID: 38786019 PMCID: PMC11119164 DOI: 10.3390/cells13100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play an essential role in suppressing the antitumor activity of T lymphocytes in solid tumors, thus representing an attractive therapeutic target to enhance the efficacy of immunotherapy. However, the differences in protein expression between MDSCs and their physiological counterparts, particularly polymorphonuclear neutrophils (PMNs), remain inadequately characterized, making the specific identification and targeting of MDSCs difficult. PMNs and PMN-MDSCs share markers such as CD11b+CD14-CD15+/CD66b+, and some MDSC-enriched markers are emerging, such as LOX-1 and CD84. More proteomics studies are needed to identify the signature and markers for MDSCs. Recently, we reported the induced differentiation of isogenic PMNs or MDSCs (referred to as iPMNs and iMDSCs, respectively) from the human promyelocytic cell line HL60. Here, we profiled the global proteomics and membrane proteomics of these cells with quantitative mass spectrometry, which identified a 41-protein signature ("cluster 6") that was upregulated in iMDSCs compared with HL60 and iPMN. We further integrated our cell line-based proteomics data with a published proteomics dataset of normal human primary monocytes and monocyte-derived MDSCs induced by cancer-associated fibroblasts. The analysis identified a 38-protein signature that exhibits an upregulated expression pattern in MDSCs compared with normal monocytes or PMNs. These signatures may provide a hypothesis-generating platform to identify protein biomarkers that phenotypically distinguish MDSCs from their healthy counterparts, as well as potential therapeutic targets that impair MDSCs without harming normal myeloid cells.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jin Hu
- Mass Spectrometry & Metabolomics Core Facility, Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou 310024, China
| | - Xiashiyao Zhang
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Minzhi Liang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xuechun Wang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dailin Gan
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xuemin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jun Wan
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University Indianapolis, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou 310024, China
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
- Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46556, USA
| |
Collapse
|
2
|
Kitagawa T, Matsumoto T, Ohta T, Yoshida T, Saito Y, Nakayama Y, Hadate Y, Ashihara E, Watanabe T. Linderapyrone analogue LPD-01 as a cancer treatment agent by targeting importin7. J Nat Med 2024; 78:370-381. [PMID: 38265612 DOI: 10.1007/s11418-023-01774-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
The Wnt/β-catenin signaling pathway plays important roles in several cancer cells, including cell proliferation and development. We previously succeeded in synthesizing a small molecule compound inhibiting the Wnt/β-catenin signaling pathway, named LPD-01 (1), and 1 inhibited the growth of human colorectal cancer (HT-29) cells. In this study, we revealed that 1 inhibits the growth of HT-29 cells stronger than that of another human colorectal cancer (SW480) cells. Therefore, we have attempted to identify the target proteins of 1 in HT-29 cells. Firstly, we investigated the effect on the expression levels of the Wnt/β-catenin signaling pathway-related proteins. As a result, 1 inhibited the expression of target proteins of Wnt/β-catenin signaling pathway (c-Myc and Survivin) and their genes, whereas the amount of transcriptional co-activator (β-catenin) was not decreased, suggesting that 1 inhibited the Wnt/β-catenin signaling pathway without affecting β-catenin. Next, we investigated the target proteins of 1 using magnetic FG beads. Chemical pull-down assay combined with mass spectrometry suggested that 1 directly binds to importin7. As expected, 1 inhibited the nuclear translocation of importin7 cargoes such as Smad2 and Smad3 in TGF-β-stimulated HT-29 cells. In addition, the knockdown of importin7 by siRNA reduced the expression of target genes of Wnt/β-catenin signaling pathway. These results suggest that importin7 is one of the target proteins of 1 for inhibition of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Takahiro Kitagawa
- Laboratory of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Takahiro Matsumoto
- Laboratory of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan.
| | - Tomoe Ohta
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, 859-3298, Japan
| | - Tatsusada Yoshida
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, 859-3298, Japan
| | - Youhei Saito
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Yuji Nakayama
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Yuki Hadate
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Eishi Ashihara
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Tetsushi Watanabe
- Laboratory of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan.
| |
Collapse
|
3
|
Wang G, Fu J, Liu M, Zheng Q. CXC chemokines: Potential biomarker and immunotherapeutic target for uterine corpus endometrial carcinoma. PLoS One 2024; 19:e0277872. [PMID: 38232115 DOI: 10.1371/journal.pone.0277872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/11/2022] [Indexed: 01/19/2024] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common type of gynecological malignancies. Multiple lines of evidence indicated that CXC chemokines exerted an anti-tumor immunological role in the tumor microenvironment which were critical regulators of cancer immunity. However, the relevance of CXC chemokines in the evaluation of prognosis and immune infiltration of UCEC remains to be explored. This study utilized various online databases, including TCGA, UALCAN, Kaplan-Meier Plotter, cBioPortal, TIMER2.0, TISIDB, and MethSurv to perform the analysis. Gene expression data from the TCGA-UCEC dataset indicated decreased expression of CXCL2/12 and increased expression of CXCL14/17. CXCL2/12 expression was negatively whereas CXCL14/17 expression was positively correlated with clinicopathological features of UCEC patients, including cancer stage, patients' age, weight and menopause status. Patients with higher CXCL12/14 expression corresponded with better clinical outcomes, which were not influenced by the genetic alterations. The differential expression of CXCL2/12/14/17 was not only significantly correlated with immune infiltration levels, but also the abundance of immune checkpoint inhibitors. Heatmaps of DNA methylation of CXCL2/12/14/17 were investigated, and 4 CpGs of CXCL2, 16 CpGs of CXCL12, 3 CpGs of CXCL14/17 were identified where altered methylation affected the prognosis of UCEC patients. These findings provided novel insights into the immunologic features of UCEC and might pave the way toward the prognostic evaluation and immunotherapy selection based on CXCL2/12/14/17 expression status.
Collapse
Affiliation(s)
- Guang Wang
- Department of Dalian Key Laboratory of Reproduction and Mother-child Genetic, Reproductive & Genetic Medicine Center, Dalian Women and Children's Medical Group, Dalian, Liaoning Province, China
| | - Juan Fu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Mulin Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Qin Zheng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
4
|
Goswami R, Gupta A, Bednova O, Coulombe G, Patel D, Rotello VM, Leyton JV. Nuclear localization signal-tagged systems: relevant nuclear import principles in the context of current therapeutic design. Chem Soc Rev 2024; 53:204-226. [PMID: 38031452 PMCID: PMC10798298 DOI: 10.1039/d1cs00269d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nuclear targeting of therapeutics provides a strategy for enhancing efficacy of molecules active in the nucleus and minimizing off-target effects. 'Active' nuclear-directed transport and efficient translocations across nuclear pore complexes provide the most effective means of maximizing nuclear localization. Nuclear-targeting systems based on nuclear localization signal (NLS) motifs have progressed significantly since the beginning of the current millennium. Here, we offer a roadmap for understanding the basic mechanisms of nuclear import in the context of actionable therapeutic design for developing NLS-therapeutics with improved treatment efficacy.
Collapse
Affiliation(s)
- Ritabrita Goswami
- Department of Chemistry, University of Massachusetts, Massachusetts, USA.
| | - Aarohi Gupta
- Department of Chemistry, University of Massachusetts, Massachusetts, USA.
| | - Olga Bednova
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec, Canada
| | - Gaël Coulombe
- Service des stages et du développement professionnel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Dipika Patel
- Service des stages et du développement professionnel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Massachusetts, USA.
| | - Jeffrey V Leyton
- École des sciences pharmaceutiques, Université d'Ottawa, Ottawa, Ontario, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Cai GX, Kong WY, Liu Y, Zhong SY, Liu Q, Deng YF, Ye GL. Nuclear transport maintenance of USP22-AR by Importin-7 promotes breast cancer progression. Cell Death Discov 2023; 9:211. [PMID: 37391429 DOI: 10.1038/s41420-023-01525-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 06/11/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
The translocation of biological macromolecules between cytoplasm and nucleus is of great significance to maintain various life processes in both normal and cancer cells. Disturbance of transport function likely leads to an unbalanced state between tumor suppressors and tumor-promoting factors. In this study, based on the unbiased analysis of protein expression differences with a mass spectrometer between human breast malignant tumors and benign hyperplastic tissues, we identified that Importin-7, a nuclear transport factor, is highly expressed in breast cancer (BC) and predicts poor outcomes. Further studies showed that Importin-7 promotes cell cycle progression and proliferation. Mechanistically, through co-immunoprecipitation, immunofluorescence, and nuclear-cytoplasmic protein separation experiments, we discovered that AR and USP22 can bind to Importin-7 as cargoes to promote BC progression. In addition, this study provides a rationale for a therapeutic strategy to restream the malignant progression of AR-positive BC by inhibiting the high expression state of Importin-7. Moreover, the knockdown of Importin-7 increased the responsiveness of BC cells to the AR signaling inhibitor, enzalutamide, suggesting that targeting Importin-7 may be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Geng-Xi Cai
- Department of Breast Surgery, The First People's Hospital of Foshan, 528000, Foshan, Guangdong, China
| | - Wei-Yao Kong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Yuan Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Shu-Yi Zhong
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Qing Liu
- Department of Pathology, The First People's Hospital of Foshan, 528000, Foshan, Guangdong, China
| | - Yuan-Fei Deng
- Department of Pathology, The First People's Hospital of Foshan, 528000, Foshan, Guangdong, China.
| | - Guo-Lin Ye
- Department of Breast Surgery, The First People's Hospital of Foshan, 528000, Foshan, Guangdong, China.
| |
Collapse
|
6
|
Yao S, Zhao L, Chen S, Wang H, Gao Y, Shao NY, Dai M, Cai H. Cervical cancer immune infiltration microenvironment identification, construction of immune scores, assisting patient prognosis and immunotherapy. Front Immunol 2023; 14:1135657. [PMID: 36969161 PMCID: PMC10037308 DOI: 10.3389/fimmu.2023.1135657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundThe immune microenvironment is of great significance in cervical cancer. However, there is still a lack of systematic research on the immune infiltration environment of cervical cancer.MethodsWe obtained cervical cancer transcriptome data and clinical information from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, evaluated the immune microenvironment of cervical cancer, determined immune subsets, constructed an immune cell infiltration scoring system, screened key immune-related genes, and performed single-cell data analysis and cell function analysis of key genes.ResultsWe combined the TCGA and GEO data sets and obtained three different immune cell populations. We obtained two gene clusters, extracted 119 differential genes, and established an immune cell infiltration (ICI) scoring system. Finally, three key genes, IL1B, CST7, and ITGA5, were identified, and single-cell sequencing data were mined to distribute these key genes in different cell types. By up-regulating CST7 and down-regulating IL1B and ITGA5, cervical cancer cells’ proliferation ability and invasion ability were successfully reduced.ConclusionWe conducted a comprehensive assessment of the state of the tumor immune microenvironment in cervical cancer, constructed the ICI scoring system, and identified the ICI scoring system as a potential indicator of susceptibility to immunotherapy for cervical cancer, identifying key genes suggesting that IL1B, CST7, and ITGA5 play an essential role in cervical cancer.
Collapse
Affiliation(s)
- Shijie Yao
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Liyang Zhao
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, Macau SAR, China
- Ministry of Education (MoE) Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, Macau SAR, China
| | - Siming Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hua Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Yang Gao
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Ning-Yi Shao
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, Macau SAR, China
- Ministry of Education (MoE) Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, Macau SAR, China
- *Correspondence: Hongbing Cai, ; Mengyuan Dai, ; Ning-Yi Shao,
| | - Mengyuan Dai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
- *Correspondence: Hongbing Cai, ; Mengyuan Dai, ; Ning-Yi Shao,
| | - Hongbing Cai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
- *Correspondence: Hongbing Cai, ; Mengyuan Dai, ; Ning-Yi Shao,
| |
Collapse
|
7
|
Wang X, Chen D, Han G, Wang X, Liu X, Xu B, Liu W, Li H, Zhang M, Ma S, Han Y. Downregulation of RBM17 enhances cisplatin sensitivity and inhibits cell invasion in human hypopharyngeal cancer cells. Open Med (Wars) 2023; 18:20230669. [PMID: 36941989 PMCID: PMC10024346 DOI: 10.1515/med-2023-0669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Most of advanced hypopharyngeal squamous cell carcinoma (HSCC) are resistant to chemotherapy, and there is still lack of effective treatment for HSCC now. The present study aimed to investigate whether downregulation of RNA-binding motif protein 17 (RBM17) could enhance cisplatin sensitivity and inhibit cell invasion in HSCC and the underlying mechanism. We observed that RBM17 was upregulated in tumor tissues and associated with poor progression. Treatment of FaDu cells with cisplatin increased RBM17 expression in mRNA levels. Downregulation of RBM17 enhanced cisplatin-mediated inhibition of FaDu cells. In addition, downregulation of RBM17 effectively suppressed tumor cell migration and invasion through the reversion of epithelial-mesenchymal transition. Moreover, downregulation of RBM17 could significantly slow tumor growth in FaDu xenograft tumor model. Liquid chromatography-mass spectrometry/mass spectrometry detection and independent PRM analysis showed that 21 differentially expressed proteins were associated with the downregulation of RBM17. Taken together, our study implied that downregulation of RBM17 could serve as a novel approach to enhance cisplatin sensitivity in HSCC.
Collapse
Affiliation(s)
- Xiaolin Wang
- Department Of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Deshang Chen
- Department Of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Guoying Han
- Department Of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Xiaomin Wang
- Department Of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Xuebao Liu
- Department Of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Binbin Xu
- Department Of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Weiwei Liu
- Department Of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Hui Li
- Department Of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Mingjie Zhang
- Department Of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Shiyin Ma
- Department Of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Yuefeng Han
- Department Of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui 233000, China
| |
Collapse
|
8
|
Herceg S, Janoštiak R. Diagnostic and Prognostic Profiling of Nucleocytoplasmic Shuttling Genes in Hepatocellular Carcinoma. Folia Biol (Praha) 2023; 69:133-148. [PMID: 38410971 DOI: 10.14712/fb2023069040133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
One of the key features of eukaryotic cells is the separation of nuclear and cytoplasmic compartments by a double-layer nuclear envelope. This separation is crucial for timely regulation of gene expression, mRNA biogenesis, cell cycle, and differentiation. Since transcription takes place in the nucleus and the major part of translation in the cytoplasm, proper distribution of biomolecules between these two compartments is ensured by nucleocytoplasmic shuttling proteins - karyopherins. Karyopherins transport biomolecules through nuclear pores bidirectionally in collaboration with Ran GTPases and utilize GTP as the source of energy. Different karyopherins transport different cargo molecules that play important roles in the regulation of cell physiology. In cancer cells, this nucleocytoplasmic transport is significantly dysregulated to support increased demands for the import of cell cycle-promoting biomolecules and export of cell cycle inhibitors and mRNAs. Here, we analysed genomic, transcriptomic and proteomic data from published datasets to comprehensively profile karyopherin genes in hepatocellular carcinoma. We have found out that expression of multiple karyopherin genes is increased in hepatocellular carcinoma in comparison to the normal liver, with importin subunit α-1, exportin 2, importin subunit β-1 and importin 9 being the most over-expressed. More-over, we have found that increased expression of these genes is associated with higher neoplasm grade as well as significantly worse overall survival of liver cancer patients. Taken together, our bioinformatic data-mining analysis provides a comprehensive geno-mic and transcriptomic landscape of karyopherins in hepatocellular carcinoma and identifies potential members that could be targeted in order to develop new treatment regimens.
Collapse
Affiliation(s)
- Samuel Herceg
- BIOCEV - First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radoslav Janoštiak
- BIOCEV - First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|