1
|
Claeys W, Geerts A, Van Hoecke L, Van Steenkiste C, Vandenbroucke RE. Role of astrocytes and microglia in hepatic encephalopathy associated with advanced chronic liver disease: lessons from animal studies. Neural Regen Res 2025; 20:3461-3475. [PMID: 39688562 PMCID: PMC11974659 DOI: 10.4103/nrr.nrr-d-24-00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/05/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatic encephalopathy, defined as neuropsychiatric dysfunction secondary to liver disease, is a frequent decompensating event in cirrhosis. Its clinical impact is highlighted by a notable increase in patient mortality rates and a concomitant reduction in overall quality of life. Systemically, liver disease, liver function failure, portosystemic shunting, and associated multi-organ dysfunction result in the increase of disease-causing neurotoxins in the circulation, which impairs cerebral homeostasis. Key circulating neurotoxins are ammonia and inflammatory mediators. In the brain, pathophysiology is less well understood, but is thought to be driven by glial cell dysfunction. Astrocytes are the only brain resident cells that have ammonia-metabolizing machinery and are therefore putatively most susceptible to ammonia elevation. Based on a large body of mostly in vitro evidence, ammonia-induced cellular and molecular disturbances include astrocyte swelling and oxidative stress. Microglia, the brain resident macrophages, have been linked to the translation of systemic inflammation to the brain microenvironment. Recent evidence from animal studies has provided novel insights into old and new downstream effects of astrocyte and microglial dysfunction such as toxin clearance disruption and myeloid cell attraction to the central nervous system parenchyma. Furthermore, state of the art research increasingly implicates neuronal dysfunction and possibly even irreversible neuronal cell death. Cell-type specific investigation in animal models highlights the need for critical revision of the contribution of astrocytes and microglia to well-established and novel cellular and molecular alterations in hepatic encephalopathy. In this review, we therefore give a current and comprehensive overview of causes, features, and consequences of astrocyte and microglial dysfunction in hepatic encephalopathy, including areas of interest for future investigation.
Collapse
Affiliation(s)
- Wouter Claeys
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Anja Geerts
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Lien Van Hoecke
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christophe Van Steenkiste
- Department of Gastroenterology and Hepatology, Antwerp University, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Maria Middelares Hospital, Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Wang T, Li MY, Pei Z, Chen QX, Cheng QS, Li Z. Down-regulation of platelet-derived growth factor receptor β in pericytes increases blood-brain barrier permeability and significantly enhances α-synuclein in a Parkinson's Disease 3D cell model in vitro under hyperglycemic condition. Tissue Cell 2025; 93:102751. [PMID: 39847894 DOI: 10.1016/j.tice.2025.102751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/24/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Parkinson's Disease (PD) often presents with a compromised blood-brain barrier (BBB), which hyperglycemia may exacerbate. Pericytes, a key cell for BBB integrity, are potential therapeutic targets for neurodegenerative disorders. Few studies have developed 3D PD cell models incorporating neurovascular units (NVU) through the co-culture of human endothelial, pericytes, astrocytes, and SH-SY5Y cells to evaluate BBB impairment and the role of pericytes under hyperglycemic condition. METHOD A 3D PD like cell model was developed using 6-OHDA-affected SH-SY5Y cells, combined with endothelial cells, pericytes, and astrocytes through the Real Architecture for Tissue (RAFT) 3D co-culture system. PD incorporating reduced (30 % and 89 %) PDGFRβ NVU (RPN) with or without hyperglycemic model (HM) were also established. BBB permeability to sodium fluorescein was assessed, and BBB impairment was evaluated using BBB-associated proteins (ZO-1, CD54, CD144), cell-specific proteins (CD31, GFAP, PDGFRβ, CD13), tyrosine hydroxylase (TH), α-synuclein, oligomeric α-synuclein, and α-synuclein (ser9). RESULTS PD 3D cell models incorporating RPN with or without hyperglycemia were successfully established in vitro. Graduately increased BBB impairment was observed in PD, PD with RPN, and PD with RPN combined with HM, indicated by decreased BBB-associated and cell-specific proteins, reduced TH, and increased α-synuclein, oligomeric α-synuclein, and α-synuclein (ser9) compared to the NVU model. CONCLUSION Reduced pericyte PDGFRβ could increase BBB permeability, accelerate PD progression, and exacerbate under hyperglycemic condition.
Collapse
Affiliation(s)
- Ting Wang
- Department of Neurology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510282, PR China.
| | - Meng-Yan Li
- Department of Neurology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510282, PR China.
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou 510080, PR China.
| | - Qiu-Xia Chen
- Department of Neurology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510282, PR China; Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China.
| | - Qiu-Sheng Cheng
- Department of Neurology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510282, PR China.
| | - Ze Li
- Department of Neurology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510282, PR China.
| |
Collapse
|
3
|
Li HY, Wang J, Xiao T, Gu Q, Fan Y, Ge P, Xu J, Wang C, Xie P, Hu Z. STING immune activation of microglia aggravating neurovascular unit damage in diabetic retinopathy. Free Radic Biol Med 2025; 233:S0891-5849(25)00192-3. [PMID: 40158743 DOI: 10.1016/j.freeradbiomed.2025.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/09/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness and is pathologically characterized by neuroinflammation and neovascularization. Retinal homeostasis is critically maintained by the retinal neurovascular unit (NVU), which can be disrupted by abnormal activation of microglia in DR. However, the underlying mechanism remains unclear. Here, we provide the first evidence of upregulated stimulator of interferon genes (STING) in microglia within fibrovascular membranes (FVMs) and retinas from oxygen-induced retinopathy (OIR) and streptozotocin (STZ)-induced diabetic mice. Furthermore, we identified STING upregulation in BV2 cells stimulated with high glucose (HG) or hypoxia, accompanied by mitochondrial dysfunction and cytoplasmic leakage of damaged mitochondrial DNA (mtDNA). Pharmacologic or genetic inhibition of STING in microglia prevented their activation and polarization. Next, we demonstrated that STING-deficient BV2 cells reversed the proangiogenic behavior of endothelial cells and protected retinal ganglion cells (RGCs) from oxidative stress. Finally, intravitreal injection of AAV-STING alleviated retinal neurovascular pathologies in both OIR and STZ mice. This study demonstrated that the release of mtDNA mediates STING immune activation of microglia, which further exacerbates NVU damage in DR. In contrast, immunosuppressing STING in microglia could serve as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Hong-Ying Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jingfan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Tianhao Xiao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qinyuan Gu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Fan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Pengfei Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jingyi Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- School of Materials Science and Engineering & Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| | - Zizhong Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
McDonough A, Weinstein JR. Glial 'omics in ischemia: Acute stroke and chronic cerebral small vessel disease. Glia 2025; 73:495-518. [PMID: 39463002 PMCID: PMC11785505 DOI: 10.1002/glia.24634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Vascular injury and pathologies underlie common diseases including ischemic stroke and cerebral small vessel disease (CSVD). Prior work has identified a key role for glial cells, including microglia, in the multifaceted and temporally evolving neuroimmune response to both stroke and CSVD. Transcriptional profiling has led to important advances including identification of distinct gene expression signatures in ischemia-exposed, flow cytometrically sorted microglia and more recently single cell RNA sequencing-identified microglial subpopulations or clusters. There is a reassuring degree of overlap in the results from these two distinct methodologies with both identifying a proliferative and a separate type I interferon responsive microglial element. Similar patterns were later seen using multimodal and spatial transcriptomal profiling in ischemia-exposed microglia and astrocytes. Methodological advances including enrichment of specific neuroanatomic/functional regions (such as the neurovascular unit) prior to single cell RNA sequencing has led to identification of novel cellular subtypes and generation of new credible hypotheses as to cellular function based on the enhanced cell sub-type specific gene expression patterns. A ribosomal tagging strategy focusing on the cellular translatome analyses carried out in the acute phases post stroke has revealed distinct inflammation-regulating roles for microglia and astrocytes in this setting. Early spatial transcriptomics experiments using cerebral ischemia models have identified regionally distinct microglial cell clusters in ischemic core versus penumbra. There is great potential for combination of these methods for multi-omics approaches to further elucidate glial responses in the context of both acute ischemic stroke and chronic CSVD.
Collapse
Affiliation(s)
- Ashley McDonough
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington 98195-6465
| | - Jonathan R. Weinstein
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington 98195-6465
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, Washington 98195-6465
| |
Collapse
|
5
|
D'Angelo A, Lixi F, Vitiello L, Gagliardi V, Pellegrino A, Giannaccare G. The Role of Diet and Oral Supplementation for the Management of Diabetic Retinopathy and Diabetic Macular Edema: A Narrative Review. BIOMED RESEARCH INTERNATIONAL 2025; 2025:6654976. [PMID: 40041571 PMCID: PMC11876532 DOI: 10.1155/bmri/6654976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/08/2025] [Indexed: 03/06/2025]
Abstract
Globally, diabetic retinopathy (DR) and diabetic macular edema (DME) are the leading causes of visual loss in working people. Current treatment approaches mostly target proliferative DR and DME, such as intravitreal injections of antivascular endothelial growth factor agents and laser photocoagulation. Before DR progresses into the more severe, sight-threatening proliferative stage, patients with early stages of the disease must get early and appropriate care. It has been suggested that nutraceuticals, which are natural functional foods with minimal adverse effects, may help diabetic patients with DR and DME. Several in vitro and in vivo studies were carried out over the last years, showing the potential benefits of several nutraceuticals in DR due to their neuroprotective, vasoprotective, anti-inflammatory, and antioxidant properties. Although most of the research is restricted to animal models and many nutraceuticals have low bioavailability, these compounds may adjuvate and implement conventional DR therapies. The purpose of this review is (i) to summarize the complex pathophysiology underlying DR and DME and (ii) to examine the main natural-derived molecules and dietary habits that can assist conventional therapies for the clinical management of DR and DME.
Collapse
Affiliation(s)
- Angela D'Angelo
- Department of Clinical Sciences and Community Health–Department of Excellence 2023–2027, University of Milan, Milan, Italy
| | - Filippo Lixi
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, Cagliari, Italy
| | - Livio Vitiello
- Department of Head and Neck, Eye Unit, “Luigi Curto” Hospital-Azienda Sanitaria Locale Salerno, Polla, Italy
| | - Vincenzo Gagliardi
- Department of Head and Neck, Eye Unit, “Luigi Curto” Hospital-Azienda Sanitaria Locale Salerno, Polla, Italy
| | - Alfonso Pellegrino
- Department of Head and Neck, Eye Unit, “Luigi Curto” Hospital-Azienda Sanitaria Locale Salerno, Polla, Italy
| | - Giuseppe Giannaccare
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, Cagliari, Italy
| |
Collapse
|
6
|
Cassina P, Miquel E, Martínez-Palma L, Cassina A. Mitochondria and astrocyte reactivity: Key mechanism behind neuronal injury. Neuroscience 2025; 567:227-234. [PMID: 39788313 DOI: 10.1016/j.neuroscience.2024.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
In this special issue to celebrate the 30th anniversary of the Uruguayan Society for Neuroscience (SNU), we find it pertinent to highlight that research on glial cells in Uruguay began almost alongside the history of SNU and contributed to the understanding of neuron-glia interactions within the international scientific community. Glial cells, particularly astrocytes, traditionally regarded as supportive components in the central nervous system (CNS), undergo notable morphological and functional alterations in response to neuronal damage, a phenomenon referred to as glial reactivity. Among the myriad functions of astrocytes, metabolic support holds significant relevance for neuronal function, given the high energy demand of the nervous system. Although astrocytes are typically considered to exhibit low mitochondrial respiratory chain activity, they possess a noteworthy mitochondrial network. Interestingly, both the morphology and activity of these organelles change following glial reactivity. Despite receiving less attention compared to studies on neuronal mitochondria, recent studies indicate that mitochondria play a crucial role in driving the transition of astrocytes from a quiescent to a reactive state in various neurological disorders. Notably, stimulating mitochondria in astrocytes has been shown to reduce damage associated with the neurodegenerative disease amyotrophic lateral sclerosis. Here, we focus on studies supporting the emerging paradigm that metabolic reprogramming occurs in astrocytes following damage, which is associated with their phenotypic shift to a new functional state that significantly influences the progression of pathology. Thus, exploring mitochondrial activity and metabolic reprogramming within glial cells may provide valuable insights for developing innovative therapeutic approaches to mitigate neuronal damage. In this review, we focus on studies supporting the emerging paradigm that metabolic reprogramming occurs in astrocytes following damage, which is associated with their phenotypic shift to a new functional state that significantly influences the progression of pathology. Thus, exploring mitochondrial activity and metabolic reprogramming within glial cells may provide valuable insights for developing innovative therapeutic approaches to mitigate neuronal damage.
Collapse
Affiliation(s)
- Patricia Cassina
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Ernesto Miquel
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Martínez-Palma
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- Departemento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
7
|
Taylor O, Kelly L, El-Hodiri H, Fischer AJ. Sphingosine-1-phosphate signaling through Müller glia regulates neuroprotection and the accumulation of immune cells in the rodent retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636254. [PMID: 39975061 PMCID: PMC11838470 DOI: 10.1101/2025.02.03.636254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The purpose of this study was to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, neuroprotection, and reprogramming of Müller glia (MG) into neurogenic MG-derived progenitor cells (MGPCs) in the adult mouse retina. We found that S1P-related genes were dynamically regulated following retinal damage. S1pr1 (encoding S1P receptor 1) and Sphk1 (encoding sphingosine kinase 1) are expressed at low levels by resting MG and are rapidly upregulated following acute damage. Overexpression of the neurogenic bHLH transcription factor Ascl1 in MG downregulates S1pr1, and inhibition of Sphk1 and S1pr1/3 enhances Ascl1-driven differentiation of bipolar-like cells and suppresses glial differentiation. Treatments that activate S1pr1 or increase retinal levels of S1P initiate pro-inflammatory NFκB-signaling in MG, whereas treatments that inhibit S1pr1 or decreased levels of S1P suppress NFκB-signaling in MG in damaged retinas. Conditional knock-out of NFκB-signaling in MG increases glial expression of S1pr1 but decreases levels of S1pr3 and Sphk1. Conditional knock-out (cKO) of S1pr1 in MG, but not Sphk1, enhances the accumulation of immune cells in acutely damaged retinas. cKO of S1pr1 is neuroprotective to ganglion cells, whereas cKO of Sphk1 is neuroprotective to amacrine cells in NMDA-damaged retinas. Consistent with these findings, pharmacological treatments that inhibit S1P receptors or inhibit Sphk1 had protective effects upon inner retinal neurons. We conclude that the S1P-signaling pathway is activated in MG after damage and this pathway acts secondarily to restrict the accumulation of immune cells, impairs neuron survival and suppresses the reprogramming of MG into neurogenic progenitors in the adult mouse retina.
Collapse
Affiliation(s)
- Olivia Taylor
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Lisa Kelly
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Heithem El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Andy J. Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Dragoni S, Moccia F, Bootman MD. The Roles of Transient Receptor Potential (TRP) Channels Underlying Aberrant Calcium Signaling in Blood-Retinal Barrier Dysfunction. Cold Spring Harb Perspect Biol 2025; 17:a041763. [PMID: 39586624 PMCID: PMC11864113 DOI: 10.1101/cshperspect.a041763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The inner blood-retinal barrier (iBRB) protects the retinal vasculature from the peripheral circulation. Endothelial cells (ECs) are the core component of the iBRB; their close apposition and linkage via tight junctions limit the passage of fluids, proteins, and cells from the bloodstream to the parenchyma. Dysfunction of the iBRB is a hallmark of many retinal disorders. Vascular endothelial growth factor (VEGF) has been identified as the primary driver leading to a dysfunctional iBRB, thereby becoming the main target for therapy. However, a complete understanding of the molecular mechanisms underlying iBRB dysfunction is elusive and alternative therapeutic targets remain unexplored. Calcium (Ca2+) is a universal intracellular messenger whose homeostasis and dynamics are dysregulated in many pathological disorders. Among the extensive components of the cellular Ca2+-signaling toolkit, cation-selective transient receptor potential (TRP) channels are broadly involved in cell physiology and disease and, therefore, are widely studied as possible targets for therapy. Albeit that TRP channels have been discovered in the photoreceptors of Drosophila and have been studied in the neuroretina, their presence and function in the iBRB have only recently emerged. Within this article, we discuss the structure and functions of the iBRB with a particular focus on Ca2+ signaling in retinal ECs and highlight the potential of TRP channels as new targets for retinal diseases.
Collapse
Affiliation(s)
- Silvia Dragoni
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Martin D Bootman
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, United Kingdom
| |
Collapse
|
9
|
Li K, Zhang C, Wang LX, Wang X, Wang R. KLF4's role in regulating nitric oxide production and promoting microvascular formation following ischemic stroke. Nitric Oxide 2025; 154:86-104. [PMID: 39557151 DOI: 10.1016/j.niox.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
This study examines KLF4's role in endothelial cells (ECs), emphasizing its effects on nitric oxide (NO) production, microvascular formation, and oxidative stress regulation following ischemic stroke. Through high-throughput sequencing, we identified eight cell subpopulations in carotid artery tissues post-stroke, with KLF4 notably elevated in ECs. KLF4 overexpression in ECs promoted NO synthesis, enhanced endothelial tube formation, mitigated oxidative stress, and improved smooth muscle cells (SMCs) function, collectively boosting blood flow in ischemic regions. These findings highlight KLF4 as pivotal in vascular regeneration and oxidative stress reduction, positioning it as a promising target for cardiovascular and cerebrovascular therapies.
Collapse
Affiliation(s)
- Kuo Li
- No. 2, Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061000, China.
| | - Chuansuo Zhang
- No. 2, Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Li Xuan Wang
- No. 2, Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Xiaoxuan Wang
- No. 2, Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Ruyue Wang
- No. 2, Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061000, China
| |
Collapse
|
10
|
Chaudhuri S, Cho M, Stumpff JC, Bice PJ, İş Ö, Ertekin-Taner N, Saykin AJ, Nho K. Cell-specific transcriptional signatures of vascular cells in Alzheimer's disease: perspectives, pathways, and therapeutic directions. Mol Neurodegener 2025; 20:12. [PMID: 39876020 PMCID: PMC11776188 DOI: 10.1186/s13024-025-00798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD. Here, we provide an overview of rich transcriptional signatures derived from recent single-cell and single-nucleus transcriptomic studies of human brain vascular cells and their implications for targeted therapy for AD. We conducted an in-depth literature search using Medline and Covidence to identify pertinent AD studies that utilized single-cell technologies in human post-mortem brain tissue by focusing on understanding the transcriptional differences in cerebrovascular cell types and subtypes in AD and cognitively normal older adults. We also discuss impaired cellular crosstalk between vascular cells and neuroglial units, as well as astrocytes in AD. Additionally, we contextualize the findings from single-cell studies of distinct endothelial cells, smooth muscle cells, fibroblasts, and pericytes in the human AD brain and highlight pathways for potential therapeutic interventions as a concerted multi-omic effort with spatial transcriptomics technology, neuroimaging, and neuropathology. Overall, we provide a detailed account of the vascular cell-specific transcriptional signatures in AD and their crucial cellular crosstalk with the neuroglial unit.
Collapse
Affiliation(s)
- Soumilee Chaudhuri
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Graduate Program, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Minyoung Cho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Julia C Stumpff
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paula J Bice
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Özkan İş
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
11
|
Kim S, Jung UJ, Kim SR. The Crucial Role of the Blood-Brain Barrier in Neurodegenerative Diseases: Mechanisms of Disruption and Therapeutic Implications. J Clin Med 2025; 14:386. [PMID: 39860392 PMCID: PMC11765772 DOI: 10.3390/jcm14020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The blood-brain barrier (BBB) is a crucial structure that maintains brain homeostasis by regulating the entry of molecules and cells from the bloodstream into the central nervous system (CNS). Neurodegenerative diseases such as Alzheimer's and Parkinson's disease, as well as ischemic stroke, compromise the integrity of the BBB. This leads to increased permeability and the infiltration of harmful substances, thereby accelerating neurodegeneration. In this review, we explore the mechanisms underlying BBB disruption, including oxidative stress, neuroinflammation, vascular dysfunction, and the loss of tight junction integrity, in patients with neurodegenerative diseases. We discuss how BBB breakdown contributes to neuroinflammation, neurotoxicity, and the abnormal accumulation of pathological proteins, all of which exacerbate neuronal damage and facilitate disease progression. Furthermore, we discuss potential therapeutic strategies aimed at preserving or restoring BBB function, such as anti-inflammatory treatments, antioxidant therapies, and approaches to enhance tight junction integrity. Given the central role of the BBB in neurodegeneration, maintaining its integrity represents a promising therapeutic approach to slow or prevent the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
12
|
Grosche A, Grosche J, Verkhratsky A. Physiology and pathophysiology of the retinal neuroglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:239-265. [PMID: 40148047 DOI: 10.1016/b978-0-443-19102-2.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Neuroglia of the retina are represented by Müller glia, parenchymal astrocytes, microglia and oligodendrocytes mainly associated with the optic nerve. Müller glia are the most numerous glia, endowed with multiple homeostatic functions and indispensable for the retinal morphofunctional organization. Müller cells integrate retinal neurons into individual functional units (known as retinal columns) and act as a living light guide, transmitting photons to photoreceptors. In pathology, retinal neuroglia undergo complex changes, which include upregulation of neuroprotection, reactive gliosis, and functional asthenia. The balance between all these changes defines the progression and outcome of retinal disorders.
Collapse
Affiliation(s)
- Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, München, Germany.
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
13
|
Ali OBK, Vidal A, Grova C, Benali H. Dialogue mechanisms between astrocytic and neuronal networks: A whole-brain modelling approach. PLoS Comput Biol 2025; 21:e1012683. [PMID: 39804928 PMCID: PMC11730384 DOI: 10.1371/journal.pcbi.1012683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways. This network model proposes that neural dynamics are constrained by a two-layered structural network interconnecting both astrocytic and neuronal populations, allowing us to investigate astrocytes' modulatory influences on whole-brain activity and emerging functional connectivity patterns. By developing a simulation methodology, informed by bifurcation and multilayer network theories, we demonstrate that the dialogue between astrocytic and neuronal networks manifests over fast-slow fluctuation mechanisms as well as through phase-amplitude connectivity processes. The findings from our research represent a significant leap forward in the modeling of glial-neuronal collaboration, promising deeper insights into their collaborative roles across health and disease states.
Collapse
Affiliation(s)
- Obaï Bin Ka’b Ali
- Physics Department, Concordia University, Montreal, Canada
- Electrical and Computer Engineering Department, Concordia University, Montreal, Canada
| | - Alexandre Vidal
- Laboratoire de Mathématiques et Modélisation d’Evry (LAMME), Université Evry, CNRS, Université Paris-Saclay, France
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Department of Physics, Concordia School of Health, Concordia University, Montreal, Canada
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Canada
| | - Habib Benali
- Electrical and Computer Engineering Department, Concordia University, Montreal, Canada
- INSERM U1146, Paris, France
| |
Collapse
|
14
|
Fernandes MGF, Pernin F, Antel JP, Kennedy TE. From BBB to PPP: Bioenergetic requirements and challenges for oligodendrocytes in health and disease. J Neurochem 2025; 169:e16219. [PMID: 39253904 PMCID: PMC11657931 DOI: 10.1111/jnc.16219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
Mature myelinating oligodendrocytes, the cells that produce the myelin sheath that insulates axons in the central nervous system, have distinct energetic and metabolic requirements compared to neurons. Neurons require substantial energy to execute action potentials, while the energy needs of oligodendrocytes are directed toward building the lipid-rich components of myelin and supporting neuronal metabolism by transferring glycolytic products to axons as additional fuel. The utilization of energy metabolites in the brain parenchyma is tightly regulated to meet the needs of different cell types. Disruption of the supply of metabolites can lead to stress and oligodendrocyte injury, contributing to various neurological disorders, including some demyelinating diseases. Understanding the physiological properties, structures, and mechanisms involved in oligodendrocyte energy metabolism, as well as the relationship between oligodendrocytes and neighboring cells, is crucial to investigate the underlying pathophysiology caused by metabolic impairment in these disorders. In this review, we describe the particular physiological properties of oligodendrocyte energy metabolism and the response of oligodendrocytes to metabolic stress. We delineate the relationship between oligodendrocytes and other cells in the context of the neurovascular unit, and the regulation of metabolite supply according to energetic needs. We focus on the specific bioenergetic requirements of oligodendrocytes and address the disruption of metabolic energy in demyelinating diseases. We encourage further studies to increase understanding of the significance of metabolic stress on oligodendrocyte injury, to support the development of novel therapeutic approaches for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Milton Guilherme Forestieri Fernandes
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Florian Pernin
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Jack P. Antel
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Timothy E. Kennedy
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
15
|
Schultz A, Albertos-Arranz H, Sáez XS, Morgan J, Darland DC, Gonzalez-Duarte A, Kaufmann H, Mendoza-Santiesteban CE, Cuenca N, Lefcort F. Neuronal and glial cell alterations involved in the retinal degeneration of the familial dysautonomia optic neuropathy. Glia 2024; 72:2268-2294. [PMID: 39228100 DOI: 10.1002/glia.24612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/27/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
Familial dysautonomia (FD) is a rare genetic neurodevelopmental and neurodegenerative disorder. In addition to the autonomic and peripheral sensory neuropathies that challenge patient survival, one of the most debilitating symptoms affecting patients' quality of life is progressive blindness resulting from the steady loss of retinal ganglion cells (RGCs). Within the FD community, there is a concerted effort to develop treatments to prevent the loss of RGCs. However, the mechanisms underlying the death of RGCs are not well understood. To study the mechanisms underlying RGC death, Pax6-cre;Elp1loxp/loxp male and female mice and postmortem retinal tissue from an FD patient were used to explore the neuronal and non-neuronal cellular pathology associated with the FD optic neuropathy. Neurons, astrocytes, microglia, Müller glia, and endothelial cells were investigated using a combination of histological analyses. We identified a novel disruption of cellular homeostasis and gliosis in the FD retina. Beginning shortly after birth and progressing with age, the FD retina is marked by astrogliosis and perturbations in microglia, which coincide with vascular remodeling. These changes begin before the onset of RGC death, suggesting alterations in the retinal neurovascular unit may contribute to and exacerbate RGC death. We reveal for the first time that the FD retina pathology includes reactive gliosis, increased microglial recruitment to the ganglion cell layer (GCL), disruptions in the deep and superficial vascular plexuses, and alterations in signaling pathways. These studies implicate the neurovascular unit as a disease-modifying target for therapeutic interventions in FD.
Collapse
Affiliation(s)
- Anastasia Schultz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Henar Albertos-Arranz
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Xavier Sánchez Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Jamie Morgan
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Diane C Darland
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | | | - Horacio Kaufmann
- Department of Neurology, NYU Langone Health, New York, New York, USA
| | - Carlos E Mendoza-Santiesteban
- Department of Neurology, NYU Langone Health, New York, New York, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
16
|
Zheng X, Zhang H, Zhang Y, Ding Z, Huang Z, Li H, Yao M, Song W, Liu J. Salidroside ameliorates cerebral ischemic injury and regulates the glutamate metabolism pathway in astrocytes. Front Pharmacol 2024; 15:1472100. [PMID: 39600364 PMCID: PMC11588439 DOI: 10.3389/fphar.2024.1472100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Background and Aim Salidroside (SA) is the main active component of Rhodiola rosea L., with potential in treating cardiovascular and cerebrovascular diseases and cerebral ischemia. However, its efficacy and mechanism in cerebral ischemia remain unclear, particularly regarding its effect on glutamate (Glu) metabolism. In this paper, we aimed to investigate the efficacy of SA in treating cerebral ischemia and its pharmacological mechanism. Experimental procedure We studied the effects of SA on SD rats with cerebral ischemia, evaluating neurobehavior, cerebral water content, infarct size, and brain microstructure. We also assessed its impact on glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and glutamate transporter 1 (GLT-1) proteins using immunohistochemistry and Western blot. Additionally, we used SVGp12 cells to simulate cerebral ischemia and measured Glu levels and used Western blot to observe the level of GS and GLT-1. Results SA improved neural function, reduced infarct size, and regulated GSH and Glu levels in rats. In cell experiments, SA increased cell viability and decreased Glu concentration after ischemia induction. It also regulated the expression of GFAP, GS, and GLT-1. Conclusion SA alleviates cerebral ischemia-induced injury by acting on astrocytes, possibly through regulating the glutamate metabolic pathway.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, China
| | - Hongwei Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Yehao Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, China
| | - Zhao Ding
- Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, China
| | - Zishan Huang
- Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, China
- Research Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haoran Li
- Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, China
- Research Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mingjiang Yao
- Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, China
| | - Wenting Song
- Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, China
| | - Jianxun Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Vujosevic S, Lupidi M, Donati S, Astarita C, Gallinaro V, Pilotto E. Role of inflammation in diabetic macular edema and neovascular age-related macular degeneration. Surv Ophthalmol 2024; 69:870-881. [PMID: 39029747 DOI: 10.1016/j.survophthal.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Diabetic macular edema (DME) and neovascular age-related macular degeneration (nAMD) are multifactorial disorders that affect the macula and cause significant vision loss. Although inflammation and neoangiogenesis are hallmarks of DME and nAMD, respectively, they share some biochemical mediators. While inflammation is a trigger for the processes that lead to the development of DME, in nAMD inflammation seems to be the consequence of retinal pigment epithelium and Bruch membrane alterations. These pathophysiologic differences may be the key issue that justifies the difference in treatment strategies. Vascular endothelial growth factor inhibitors have changed the treatment of both diseases, however, many patients with DME fail to achieve the established therapeutic goals. From a clinical perspective, targeting inflammatory pathways with intravitreal corticosteroids has been proven to be effective in patients with DME. On the contrary, the clinical relevance of addressing inflammation in patients with nAMD has not been proven yet. We explore the role and implication of inflammation in the development of nAMD and DME and its therapeutical relevance.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences University of Milan, Milan, Italy; Eye Clinic, IRCCS MultiMedica, Milan, Italy
| | - Marco Lupidi
- Eye Clinic, Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona, Italy.
| | - Simone Donati
- Department of Medicine and Surgery, University of Insubria of Varese, Varese, Italy
| | - Carlo Astarita
- AbbVie S.r.l., SR 148 Pontina, Campoverde, LT 04011, Italy
| | | | - Elisabetta Pilotto
- Department of Neuroscience-Ophthalmology, University of Padova, Padova, Italy
| |
Collapse
|
18
|
González Ibáñez F, VanderZwaag J, Deslauriers J, Tremblay MÈ. Ultrastructural features of psychological stress resilience in the brain: a microglial perspective. Open Biol 2024; 14:240079. [PMID: 39561812 PMCID: PMC11576122 DOI: 10.1098/rsob.240079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
Psychological stress is the major risk factor for major depressive disorder. Sustained stress causes changes in behaviour, brain connectivity and in its cells and organelles. Resilience to stress is understood as the ability to recover from stress in a positive way or the resistance to the negative effects of psychological stress. Microglia, the resident immune cells of the brain, are known players of stress susceptibility, but less is known about their role in stress resilience and the cellular changes involved. Ultrastructural analysis has been a useful tool in the study of microglia and their function across contexts of health and disease. Despite increased access to electron microscopy, the interpretation of electron micrographs remains much less accessible. In this review, we will first present microglia and the concepts of psychological stress susceptibility and resilience. Afterwards, we will describe ultrastructural analysis, notably of microglia, as a readout to study the mechanisms underlying psychological stress resilience. Lastly, we will cover nutritional ketosis as a therapeutic intervention that was shown to be effective in promoting psychological stress resilience as well as modifying microglial function and ultrastructure.
Collapse
Affiliation(s)
- Fernando González Ibáñez
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Department of Molecular Medicine, Université Laval, Québec, Québec, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, British Columbia, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
19
|
Zhao Y, Zhang P, Zhang J. Microglia-mediated endothelial protection: the role of SHPL-49 in ischemic stroke. Biomed Pharmacother 2024; 180:117530. [PMID: 39388998 DOI: 10.1016/j.biopha.2024.117530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
It was previously shown that SHPL-49, a glycoside derivative of salidroside formed through structural modification, exhibited neuroprotective effects in a rat cerebral ischemia model of permanent middle cerebral artery occlusion (pMCAO). Additionally, SHPL-49 enhanced the mRNA expression of vascular endothelial growth factor-a (Vegf-a) in macrophages. Microglia, functioning as resident macrophages within the brain, promptly respond to cerebral ischemia and engage in interactions with the cells of the Glial-Vascular Unit to orchestrate nerve injury responses. We postulated that the neuroprotective effects of SHPL-49 were mediated through microglia-dependent amelioration of endothelial dysfunction following cerebral ischemia. The present study demonstrates that SHPL-49 effectively mitigated microglia-dependent endothelial dysfunction in the pMCAO model by upregulating the expression of VEGF and suppressing the release of MMP-9 from microglia. Further MRI analyses confirmed that SHPL-49 significantly reduced nerve and endothelial function when microglia were depleted in the brains of pMCAO rats. The above phenomenon was also confirmed in the in vitro experiment investigating microglia-mediated brain endothelial cell function. Furthermore, we discovered that SHPL-49 activates the VEGFR2/Akt/eNOS pathways in endothelial cells and suppresses the p38 MAPK/MMP-9 pathways in microglia cells, thereby facilitating brain endothelial cell protection. Altogether, we have demonstrated that SHPL-49 effectively ameliorates endothelial dysfunction induced by cerebral ischemia through a microglia-dependent mechanism, thereby providing more valuable insights and references for the clinical evaluation of SHPL-49 injection for ischemic stroke.
Collapse
Affiliation(s)
- Yu Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
20
|
Wang J, Du K, Liu C, Chen X, Ban W, Zhu G, Yang J. Exploring the effects of moxibustion on cognitive function in rats with multiple cerebral infarctions from the perspective of glial vascular unit repairing. Front Pharmacol 2024; 15:1428907. [PMID: 39508044 PMCID: PMC11539022 DOI: 10.3389/fphar.2024.1428907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Objective This study aimed to explore the effect of moxibustion at Governor Vessel (GV) acupoints, including Baihui (GV 20), Shenting (GV 24) and Dazhui (GV 14) for 14 days on glial vascular unit (GVU) in rats with multiple microinfarctions (MMI), and to explore its action mechanism. Methods The effect and mechanism of moxibustion on vascular dementia (VD) were studied in MMI rats by means of behavioral and molecular biology experiments. Results Rats receiving MMI showed impairment of memory function, reduction of cerebral blood flow, damage of blood-brain barrier (BBB) integrity and increased brain mass. MMI also increased neuronal degeneration in the hippocampus. Notably, levels of glial fibrillary acidic protein (GFAP) and complement component 3 significantly increased, but those of Connexin43 (CX43) and platelet derived growth factor receptor β (PDGFRβ) significantly decreased in the hippocampus of the rats receiving MMI. Moxibustion, as well as oxiracetam (ORC) treatment improved memory function and neuronal degeneration, ameliorated BBB integrity, increased cerebral blood flow and decreased brain mass. In addition, moxibustion as well as oxiracetam (ORC) treatment reduced the decrease of CX43 protein and increased PDGFRβ protein level in the hippocampus of MMI rats. Moreover, moxibustion treatment reversed MMI-induced increase of the GFAP/CX43 ratio in vascular structural units. Importantly, after PDGFRβ inhibition, VD rats treated with moxibustion had impaired learning and memory, decreased cerebral blood flow, and BBB disruption. Conclusion Moxibustion treatment at various GV acupoints improved cerebral blood flow and repaired BBB function in rats with MMI, likely through protecting GVU.
Collapse
Affiliation(s)
- Jingji Wang
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Kunrui Du
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Chang Liu
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoyu Chen
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Wenming Ban
- Department of Neurology, Taihe County Hospital of Traditional Chinese Medicine, Fuyang, China
| | - Guoqi Zhu
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Jun Yang
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
- The First Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
21
|
Xu W, Cui LJ, Yang XY, Cui XY, Guo J, Xu GX. Impaired pericyte-Müller glia interaction via PDGFRβ suppression aggravates photoreceptor loss in a rodent model of light-induced retinal injury. Int J Ophthalmol 2024; 17:1800-1808. [PMID: 39430007 PMCID: PMC11422380 DOI: 10.18240/ijo.2024.10.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/21/2024] [Indexed: 10/22/2024] Open
Abstract
AIM To investigate the involvement of pericyte-Müller glia interaction in retinal damage repair and assess the influence of suppressing the platelet-derived growth factor receptor β (PDGFRβ) signaling pathway in retinal pericytes on photoreceptor loss and Müller glial response. METHODS Sprague-Dawley rats were exposed to intense light to induce retinal injury. Neutralizing antibody against PDGFRβ were deployed to block the signaling pathway in retinal pericytes through intravitreal injection. Retinal histology and Müller glial reaction were assessed following light injury. In vitro, normal and PDGFRβ-blocked retinal pericytes were cocultured with Müller cell line (rMC-1) to examine morphological and protein expression changes upon supplementation with light-injured supernatants of homogenized retinas (SHRs). RESULTS PDGFRβ blockage 24h prior to intense light exposure resulted in a significant exacerbation of photoreceptor loss. The upregulation of GFAP and p-STAT3, observed after intense light exposure, was significantly inhibited in the PDGFRβ blockage group. Further upregulation of cytokines monocyte chemoattractant protein 1 (MCP-1) and interleukin-1β (IL-1β) was also observed following PDGFRβ inhibition. In the in vitro coculture system, the addition of light-injured SHRs induced pericyte deformation and upregulation of proliferating cell nuclear antigen (PCNA) expression, while Müller cells exhibited neuron-like morphology and expressed Nestin. However, PDGFRβ blockage in retinal pericytes abolished these cellular responses to light-induced damage, consistent with the in vivo PDGFRβ blockage findings. CONCLUSION Pericyte-Müller glia interaction plays a potential role in the endogenous repair process of retinal injury. Impairment of this interaction exacerbates photoreceptor degeneration in light-induced retinal injury.
Collapse
Affiliation(s)
- Wei Xu
- Department of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
- Department of Ophthalmology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, Fujian Province, China
- Fujian Institute of Ophthalmology, Fuzhou 350001, Fujian Province, China
| | - Li-Jin Cui
- Department of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
- Department of Ophthalmology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, Fujian Province, China
- Fujian Institute of Ophthalmology, Fuzhou 350001, Fujian Province, China
| | - Xiao-Ying Yang
- Department of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Xiao-Yuan Cui
- Department of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Jian Guo
- Department of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
- Department of Ophthalmology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, Fujian Province, China
- Fujian Institute of Ophthalmology, Fuzhou 350001, Fujian Province, China
| | - Guo-Xing Xu
- Department of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
- Department of Ophthalmology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, Fujian Province, China
- Fujian Institute of Ophthalmology, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
22
|
Mancuso S, Bhalerao A, Cucullo L. Advances and Challenges of Bioassembly Strategies in Neurovascular In Vitro Modeling: An Overview of Current Technologies with a Focus on Three-Dimensional Bioprinting. Int J Mol Sci 2024; 25:11000. [PMID: 39456783 PMCID: PMC11506837 DOI: 10.3390/ijms252011000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Bioassembly encompasses various techniques such as bioprinting, microfluidics, organoids, and self-assembly, enabling advances in tissue engineering and regenerative medicine. Advancements in bioassembly technologies have enabled the precise arrangement and integration of various cell types to more closely mimic the complexity functionality of the neurovascular unit (NVU) and that of other biodiverse multicellular tissue structures. In this context, bioprinting offers the ability to deposit cells in a spatially controlled manner, facilitating the construction of interconnected networks. Scaffold-based assembly strategies provide structural support and guidance cues for cell growth, enabling the formation of complex bio-constructs. Self-assembly approaches utilize the inherent properties of cells to drive the spontaneous organization and interaction of neuronal and vascular components. However, recreating the intricate microarchitecture and functional characteristics of a tissue/organ poses additional challenges. Advancements in bioassembly techniques and materials hold great promise for addressing these challenges. The further refinement of bioprinting technologies, such as improved resolution and the incorporation of multiple cell types, can enhance the accuracy and complexity of the biological constructs; however, developing bioinks that support the growth of cells, viability, and functionality while maintaining compatibility with the bioassembly process remains an unmet need in the field, and further advancements in the design of bioactive and biodegradable scaffolds will aid in controlling cell adhesion, differentiation, and vascularization within the engineered tissue. Additionally, integrating advanced imaging and analytical techniques can provide real-time monitoring and characterization of bioassembly, aiding in quality control and optimization. While challenges remain, ongoing research and technological advancements propel the field forward, paving the way for transformative developments in neurovascular research and tissue engineering. This work provides an overview of the advancements, challenges, and future perspectives in bioassembly for fabricating neurovascular constructs with an add-on focus on bioprinting technologies.
Collapse
Affiliation(s)
- Salvatore Mancuso
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA; (S.M.); (A.B.)
| | - Aditya Bhalerao
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA; (S.M.); (A.B.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, 586 Pioneer Dr, 460 O’Dowd Hall, Rochester, MI 48309, USA
| |
Collapse
|
23
|
Raj S, Sarangi P, Goyal D, Kumar H. The Hidden Hand in White Matter: Pericytes and the Puzzle of Demyelination. ACS Pharmacol Transl Sci 2024; 7:2912-2923. [PMID: 39421660 PMCID: PMC11480894 DOI: 10.1021/acsptsci.4c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/01/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024]
Abstract
Disruption of myelin, the fatty sheath-insulating nerve fibers in the white matter, blocks or slows the rapid transmission of electrical signals along nerve cells and contributes to several neurodegenerative diseases such as multiple sclerosis. Traditionally, research has focused on neuronal dysfunction as the primary factor, including autoimmunity, infections, inflammation, and genetic disorders causing demyelination. However, recent insights emphasize the critical role of pericytes, non-neuronal cells that regulate blood flow and maintain the health of blood vessels within white matter. This Perspective explores the principal mechanisms through which pericyte dysfunction contributes to damage and demyelination, including impaired communication with neurons (neurovascular uncoupling), excessive formation of scar tissue (fibrosis), and the infiltration of detrimental substances from the bloodstream. Understanding these mechanisms of pericyte-driven demyelination may lead to the creation of new therapeutic strategies for tackling a range of neurodegenerative conditions.
Collapse
Affiliation(s)
- Siddharth Raj
- Department of Pharmacology
and Toxicology, National Institute of Pharmaceutical
Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India, 382355
| | - Priyabrata Sarangi
- Department of Pharmacology
and Toxicology, National Institute of Pharmaceutical
Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India, 382355
| | - Divya Goyal
- Department of Pharmacology
and Toxicology, National Institute of Pharmaceutical
Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India, 382355
| | - Hemant Kumar
- Department of Pharmacology
and Toxicology, National Institute of Pharmaceutical
Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India, 382355
| |
Collapse
|
24
|
Sha L, Zhao Y, Li S, Wei D, Tao Y, Wang Y. Insights to Ang/Tie signaling pathway: another rosy dawn for treating retinal and choroidal vascular diseases. J Transl Med 2024; 22:898. [PMID: 39367441 PMCID: PMC11451039 DOI: 10.1186/s12967-024-05441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/27/2024] [Indexed: 10/06/2024] Open
Abstract
Retinal neurovascular unit (NVU) is a multi-cellular structure that consists of the functional coupling between neural tissue and vascular system. Disrupted NVU will result in the occurrence of retinal and choroidal vascular diseases, which are characterized by the development of neovascularization, increased vascular permeability, and inflammation. This pathological entity mainly includes neovascular age-related macular degeneration (neovascular-AMD), diabetic retinopathy (DR) retinal vein occlusion (RVO), and retinopathy of prematurity (ROP). Emerging evidences suggest that the angopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Ang/Tie) signaling pathway is essential for the development of retinal and choroidal vascular. Tie receptors and their downstream pathways play a key role in modulating the vascular development, vascular stability, remodeling and angiogenesis. Angiopoietin 1 (Ang1) is a natural agonist of Tie2 receptor, which can promote vascular stability. On the other hand, angiopoietin 2 (Ang2) is an antagonist of Tie2 receptor that causes vascular instability. Currently, agents targeting the Ang/Tie signaling pathway have been used to inhibit neovascularization and vascular leakage in neovascular-AMD and DR animal models. Particularly, the AKB-9778 and Faricimab have shown promising efficacy in improving visual acuity in patients with neovascular-AMD and DR. These experimental and clinical evidences suggest that activation of Ang/Tie signaling pathway can inhibit the vascular permeability, neovascularization, thereby maintaining the normal function and structure of NVU. This review seeks to introduce the versatile functions and elucidate the modulatory mechanisms of Ang/Tie signaling pathway. Recent pharmacologic therapies targeting this pathway are also elaborated and summarized. Further translation of these findings may afford a new therapeutic strategy from bench to bedside.
Collapse
Affiliation(s)
- Lulu Sha
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yameng Zhao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Yange Wang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
25
|
Li D, Jia J, Zeng H, Zhong X, Chen H, Yi C. Efficacy of exercise rehabilitation for managing patients with Alzheimer's disease. Neural Regen Res 2024; 19:2175-2188. [PMID: 38488551 PMCID: PMC11034587 DOI: 10.4103/1673-5374.391308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 11/25/2023] [Indexed: 04/24/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and degenerative neurological disease characterized by the deterioration of cognitive functions. While a definitive cure and optimal medication to impede disease progression are currently unavailable, a plethora of studies have highlighted the potential advantages of exercise rehabilitation for managing this condition. Those studies show that exercise rehabilitation can enhance cognitive function and improve the quality of life for individuals affected by AD. Therefore, exercise rehabilitation has been regarded as one of the most important strategies for managing patients with AD. Herein, we provide a comprehensive analysis of the currently available findings on exercise rehabilitation in patients with AD, with a focus on the exercise types which have shown efficacy when implemented alone or combined with other treatment methods, as well as the potential mechanisms underlying these positive effects. Specifically, we explain how exercise may improve the brain microenvironment and neuronal plasticity. In conclusion, exercise is a cost-effective intervention to enhance cognitive performance and improve quality of life in patients with mild to moderate cognitive dysfunction. Therefore, it can potentially become both a physical activity and a tailored intervention. This review may aid the development of more effective and individualized treatment strategies to address the challenges imposed by this debilitating disease, especially in low- and middle-income countries.
Collapse
Affiliation(s)
- Dan Li
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Jinning Jia
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Haibo Zeng
- Department of Pathology, Huichang County People’s Hospital, Ganzhou, Jiangxi Province, China
| | - Xiaoyan Zhong
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China
| |
Collapse
|
26
|
Wu X, Zhu H, Liu J, Ouyang S, Lyu Z, Jin Y, Chen X, Meng Q. Jagged1-Notch1 Signaling Pathway Induces M1 Microglia to Disrupt the Barrier Function of Retinal Microvascular Endothelial Cells. Curr Eye Res 2024; 49:1098-1106. [PMID: 38783634 DOI: 10.1080/02713683.2024.2357601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Microglia-related inflammation is closely linked to the pathogenesis of retinal diseases. The primary objective of this research was to investigate the impact and mechanism of M1 phenotype microglia on the barrier function of retina microvascular endothelial cells. METHODS Quantitative polymerase chain reactions and western blot techniques were utilized to analysis the mRNA and protein expressions of M1 and M2 markers of human microglial clone 3 cell line (HMC3), as well as the levels of Notch ligands and receptors under the intervention of lipopolysaccharide (LPS) or interleukin (IL)-4. ELISA was utilized to detect the pro-inflammatory and anti-inflammatory cytokines from HMC3 cells. The cellular tight junction and apoptosis of human retinal microvascular endothelial cells (HRMECs) were assessed by western blot and fluorescein isothiocyanate-dextran permeability assay. The inhibitors of Notch1 and RNA interference (RNAi) targeting Jagged1 were used to assess their contribution to the barrier function of vascular endothelial cells. RESULTS Inducible nitric oxide synthase (iNOS) and IL-1β were considerably elevated in LPS-treated HMC3, while CD206 and Arg-1 markedly elevated under IL-4 stimulation. The conditioned medium derived from LPS-treated HMC3 cells promoted permeability, diminished the expression of zonula occludens-1 and Occludin, and elevated the expression of Cleaved caspase-3 in HRMECs. RNAi targeting Jagged1 or Notch1 inhibitor could block M1 HMC3 polarization and maintain barrier function of HRMECs. CONCLUSION Our findings suggest that Jagged1-Notch1 signaling pathway induces M1 microglial cells to disrupt the barrier function of HRMECs, which may lead to retinal diseases.
Collapse
Affiliation(s)
- Xiyu Wu
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Haoxian Zhu
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Junbin Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shuyi Ouyang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zheng Lyu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yeanqi Jin
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xinyu Chen
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qianli Meng
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Ishizawa K, Komori T, Homma T, Sone J, Nakata Y, Nakazato Y, Takahashi K, Yamamoto T, Sasaki A. The predominance of "astrocytic" intranuclear inclusions in neuronal intranuclear inclusion disease manifesting encephalopathy-like symptoms: A case series with brain biopsy. Neuropathology 2024; 44:351-365. [PMID: 38477063 DOI: 10.1111/neup.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder represented by eosinophilic intranuclear inclusions (EIIs) and GGC/CGG repeat expansion in the NOTCH2NLC gene. We report here two adult cases of NIID, genetically confirmed, with manifestation of encephalopathy-like symptoms and address the histopathologic findings obtained by brain biopsies, with a focus on "astrocytic" intranuclear inclusions (AIIs). Case 1 presented with paroxysmal restlessness, vertigo, or fever and was later involved in severe dementia and tetraparesis. Case 2 presented with forgetfulness and then with paroxysmal fever and headache. In both cases, delimited areas with gadolinium enhancement on magnetic resonance imaging and corresponding hyperperfusion were detected, leading to brain biopsies of the cortex. On histology, Case 1 showed an abnormal lamination, where the thickness of layers was different from usual. Both neurons and astrocytes showed some dysmorphologic features. Notably, astrocytes rather than neurons harbored EIIs. Case 2 showed a cortex, where neurons tended to be arrayed in a columnar fashion. Astrocytes showed some dysmorphologic features. Notably, much more astrocytes than neurons harbored EIIs. By a double-labeling immunofluorescence study for p62/NeuN and p62/glial fibrillary acidic protein, the predominance of AIIs was confirmed in both cases. Considering the physiological functions of astrocytes for the development and maintenance of the cortex, the encephalopathy-like symptoms, dynamic change of cerebral blood flow, and cortical dysmorphology can reasonably be explained by the dysfunction of EII-bearing astrocytes rather than EII-bearing neurons. This study suggests the presence of a subtype of NIID where AIIs rather than "neuronal" intranuclear inclusions are likely a key player in the pathogenesis of NIID, particularly in cases with encephalopathy-like symptoms. The importance of AIIs ("gliopathy") should be more appreciated in future studies of NIID.
Collapse
Affiliation(s)
- Keisuke Ishizawa
- Department of Pathology, Saitama Medical University, Saitama, Japan
- Department of Neurology, Saitama Medical University, Saitama, Japan
- Department of Laboratory Medicine, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Takashi Komori
- Department of Laboratory Medicine, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Taku Homma
- Department of Laboratory Medicine, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
- Department of Diagnostic Pathology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | | | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | | | - Atsushi Sasaki
- Department of Pathology, Saitama Medical University, Saitama, Japan
| |
Collapse
|
28
|
Jin Y, Zhou X, Chen L, Xu X, Yan W, Wang Q, Lin Y, Ding X. Framework Nucleic Acids Loaded with Quercetin: Protecting Retinal Neurovascular Unit via the Protein Kinase B/Heme Oxygenase-1 Pathway. ACS NANO 2024. [PMID: 39268926 DOI: 10.1021/acsnano.4c05845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Retinal neovascular disease is a leading cause of vision loss and blindness globally. It occurs when abnormal new blood vessels form in the retina. In this study, we utilized tetrahedral framework nucleic acids (tFNAs) as vehicles to load quercetin (QUE), a small-molecule flavonoid, forming a deoxyribonucleic acid (DNA) nanocomplex, tFNAs-QUE. Our data show this nanocomplex inhibits pathological neovascularization, reduces the area of retinal nonperfusion area, protects retinal neurons, and preserves the visual function. Further, we discovered that tFNAs-QUE selectively upregulates the AKT/Nrf2/HO-1 signaling pathway, which can suppress pathological vascular growth and exert antioxidative effects. Therefore, this study presents a promising small-molecule-loading mechanism for the treatment of ischemic retinal diseases.
Collapse
Affiliation(s)
- Yili Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaodi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Limei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoxiao Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Wenjia Yan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qiong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|
29
|
Barros LF, Schirmeier S, Weber B. The Astrocyte: Metabolic Hub of the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041355. [PMID: 38438188 PMCID: PMC11368191 DOI: 10.1101/cshperspect.a041355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Astrocytic metabolism has taken center stage. Interposed between the neuron and the vasculature, astrocytes exert control over the fluxes of energy and building blocks required for neuronal activity and plasticity. They are also key to local detoxification and waste recycling. Whereas neurons are metabolically rigid, astrocytes can switch between different metabolic profiles according to local demand and the nutritional state of the organism. Their metabolic state even seems to be instructive for peripheral nutrient mobilization and has been implicated in information processing and behavior. Here, we summarize recent progress in our understanding of astrocytic metabolism and its effects on metabolic homeostasis and cognition.
Collapse
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos, Valdivia 5110465, Chile
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Valdivia 5110693, Chile
| | - Stefanie Schirmeier
- Technische Universität Dresden, Department of Biology, 01217 Dresden, Germany
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland
| |
Collapse
|
30
|
Nagayach A, Bhaskar R, Ghosh S, Singh KK, Han SS, Sinha JK. Advancing the understanding of diabetic encephalopathy through unravelling pathogenesis and exploring future treatment perspectives. Ageing Res Rev 2024; 100:102450. [PMID: 39134179 DOI: 10.1016/j.arr.2024.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/25/2024]
Abstract
Diabetic encephalopathy (DE), a significant micro-complication of diabetes, manifests as neurochemical, structural, behavioral, and cognitive alterations. This condition is especially dangerous for the elderly because aging raises the risk of neurodegenerative disorders and cognitive impairment, both of which can be made worse by diabetes. Despite its severity, diagnosis of this disease is challenging, and there is a paucity of information on its pathogenesis. The pivotal roles of various cellular pathways, activated or influenced by hyperglycemia, insulin sensitivity, amyloid accumulation, tau hyperphosphorylation, brain vasculopathy, neuroinflammation, and oxidative stress, are widely recognized for contributing to the potential causes of diabetic encephalopathy. We also reviewed current pharmacological strategies for DE encompassing a comprehensive approach targeting metabolic dysregulations and neurological manifestations. Antioxidant-based therapies hold promise in mitigating oxidative stress-induced neuronal damage, while anti-diabetic drugs offer neuroprotective effects through diverse mechanisms, including modulation of insulin signaling pathways and neuroinflammation. Additionally, tissue engineering and nanomedicine-based approaches present innovative strategies for targeted drug delivery and regenerative therapies for DE. Despite significant progress, challenges remain in translating these therapeutic interventions into clinical practice, including long-term safety, scalability, and regulatory approval. Further research is warranted to optimize these approaches and address remaining gaps in the management of DE and associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Aarti Nagayach
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301 India
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology, Symbiosis International (Deemed University), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune, Maharashtra 411057, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| | | |
Collapse
|
31
|
Straistă M, Slevin M. C-Reactive Protein, the Gliovascular Unit, and Alzheimer's Disease. Cureus 2024; 16:e67969. [PMID: 39347146 PMCID: PMC11427405 DOI: 10.7759/cureus.67969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Alzheimer's disease (AD) pathogenesis is conditioned by the presence of amyloid beta (Aβ) and neuroinflammation. The gliovascular unit (GVU) illustrates the relationship between the vascular components of the brain and glial cells, particularly astrocytes, which are seen as critical elements mainly affected in this disease. In AD patients, the impairment of the GVU is seen as blood-brain barrier breakdown, decreased clearance of Aβ, and chronic inflammatory status. C-reactive protein (CRP) and its monomeric form (mCRP) are associated with endothelial dysfunction and amyloid plaque instability, contributing to neuroinflammation and neurodegeneration. The interconnections between the GVU and the dissociated form of CRP were demonstrated by mCRP implication in vascular permeability that supports inflammation and extravasation of pro-inflammatory cytokines into the brain parenchyma. Astrocytic activation and endfeet function alterations can exacerbate the progression of AD by elevating pro-inflammatory agents and vascular amyloid accumulations. This review aims to emphasize the synergistic link between the GVU and monomers of CRP in the perpetuation of the inflammatory status, exacerbating neurodegeneration and neuroinflammation. Understanding their implication in AD can bring insights into novel therapeutic strategies to reduce AD progression.
Collapse
Affiliation(s)
- Mihaela Straistă
- General Medicine, The George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, ROU
| | - Mark Slevin
- Center for Advanced Medical and Pharmaceutical Research, The George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, ROU
| |
Collapse
|
32
|
Chen KM, Lai SC. Curative effects and mechanisms of AG1296 and LY294002 co-therapy in Angiostrongylus cantonensis-induced neurovascular unit dysfunction and eosinophilic meningoencephalitis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:647-659. [PMID: 38839542 DOI: 10.1016/j.jmii.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Co-therapy with albendazole and steroid is commonly used in patients with eosinophilic meningoencephalitis caused by Angiostrongylus cantonensis infections. However, anthelminthics often worsen symptoms, possibly due to the inflammatory reaction to antigens released by dying worms. Therefore, the present study was to investigate the curative effects and probable mechanisms of the platelet-derived growth factor receptor-beta (PDGFR-β) inhibitor AG1296 (AG) and the phosphoinositide 3-kinase inhibitor (PI3K) LY294002 (LY) in A. cantonensis-induced neurovascular unit dysfunction and eosinophilic meningoencephalitis. METHODS Western blots were used to detect matrix protein degradation and the expressions of PDGFR-β/PI3K signaling pathway. The co-localization of PDGFR-β and vascular smooth muscle cells (VSMCs), and metalloproteinase-9 (MMP-9) and VSMCs on the blood vessels were measured by confocal laser scanning immunofluorescence microscopy. Sandwich enzyme-linked immunosorbent assays were used to test S100B, interleukin (IL)-6, and transforming growth factor beta in the cerebrospinal fluid to determine their possible roles in mouse resistance to A. cantonensis. RESULTS The results showed that AG and LY cotherapy decreased the MMP-9 activity and inflammatory reaction. Furthermore, S100B, IL-6 and eosinophil counts were reduced by inhibitor treatment. The localization of PDGFR-β and MMP-9 was observed in VSMCs. Furthermore, we showed that the degradation of the neurovascular matrix and blood-brain barrier permeability were reduced in the mouse brain. CONCLUSIONS These findings demonstrate the potential of PDGFR-β inhibitor AG and PI3K inhibitor LY co-therapy as anti-A. cantonensis drug candidates through improved neurovascular unit dysfunction and reduced inflammatory response.
Collapse
Affiliation(s)
- Ke-Min Chen
- Department of Parasitology, Chung Shan Medical University, Taichung 402, Taiwan
| | - Shih-Chan Lai
- Department of Parasitology, Chung Shan Medical University, Taichung 402, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
33
|
Mack AF, Bihlmaier R, Deffner F. Shifting from ependyma to choroid plexus epithelium and the changing expressions of aquaporin-1 and aquaporin-4. J Physiol 2024; 602:3097-3110. [PMID: 37975746 DOI: 10.1113/jp284196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
The cells of the choroid plexus (CP) epithelium are specialized ependymal cells (ECs) but have distinct properties. The CP cells and ECs form single-cell sheets contiguous to each other at a transitional zone. The CP is underlined by a basal lamina and has barrier properties, whereas the ECs do not. The basal lamina of the CP is continuous with the glia limitans superficialis and, consequently, the CP stroma is continuous with the meninges along entering blood vessels. The CP has previously been reported to express aquaporin-1 (AQP1) mostly apically, and ECs show mostly basolateral aquaporin-4 (AQP4) expression. Recent evidence in various systems has shown that in changing conditions the expression and distribution of AQP4 can be modified, involving phosphorylation and calmodulin-triggered translocation. Studies on the human CP revealed that AQP4 is also expressed in some CP cells, which is likely to be increased during ageing based on mouse data. Moreover, subependymal astrocytic processes in the ependyma-CP transition, forming a glial plate around blood vessels and facing the CP stroma, were strongly positive for AQP4. We propose that the increased AQP4 expression might be a compensatory mechanism for the observed reduction in CSF production in the ageing human brain. The high AQP4 density in the transition zone might facilitate the transport of water into and out of the CP stroma and serve as a drainage and clearing pathway for metabolites in the CNS.
Collapse
Affiliation(s)
- Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Ronja Bihlmaier
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Felix Deffner
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Patil RP, Kumar N, Kaur A, Munian RK, Bhattacharya B, Ganesh S, Parihar R. Retinal vascular pathology in a mouse model of Lafora progressive myoclonus epilepsy. Neurosci Res 2024; 204:58-63. [PMID: 38458494 DOI: 10.1016/j.neures.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Neurodegenerative diseases (ND) affect distinct populations of neurons and manifest various clinical and pathological symptoms. A subset of ND prognoses has been linked to vascular risk factors. Consequently, the current study investigated retinal vascular abnormalities in a murine model of Lafora neurodegenerative disease (LD), a fatal and genetic form of progressive myoclonus epilepsy that affects children. Here, arterial rigidity was evaluated by measuring pulse wave velocity and vasculature deformations in the retina. Our findings in the LD mouse model indicate altered pulse wave velocity, retinal vascular thinning, and convoluted retinal arteries.
Collapse
Affiliation(s)
- Ruchira Pranay Patil
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Nitin Kumar
- Central Experimental Animal Facility, Indian Institute of Technology, Kanpur, India
| | - Arveen Kaur
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Rajendra Kumar Munian
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, India; Department of Mechanical Engineering, Indian Institute of Technology Ropar, India
| | - Bishakh Bhattacharya
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India; Central Experimental Animal Facility, Indian Institute of Technology, Kanpur, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, India.
| | - Rashmi Parihar
- Central Experimental Animal Facility, Indian Institute of Technology, Kanpur, India.
| |
Collapse
|
35
|
Leterrier S, Goutal S, Hugon G, Goislard M, Saba W, Hosten B, Specklin S, Winkeler A, Tournier N. Imaging quantitative changes in blood-brain barrier permeability using [ 18F]2-fluoro-2-deoxy-sorbitol ([ 18F]FDS) PET in relation to glial cell recruitment in a mouse model of endotoxemia. J Cereb Blood Flow Metab 2024; 44:1117-1127. [PMID: 38441006 PMCID: PMC11179610 DOI: 10.1177/0271678x241236755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/06/2024]
Abstract
The quantitative relationship between the disruption of the blood-brain barrier (BBB) and the recruitment of glial cells was explored in a mouse model of endotoxemia. [18F]2-Fluoro-2-deoxy-sorbitol ([18F]FDS) PET imaging was used as a paracellular marker for quantitative monitoring of BBB permeability after i.v injection of increasing doses of lipopolysaccharide (LPS) or vehicle (saline, n = 5). The brain distribution of [18F]FDS (VT, mL.cm-3) was estimated using kinetic modeling. LPS dose-dependently increased the brain VT of [18F]FDS after injection of LPS 4 mg/kg (5.2 ± 2.4-fold, n = 4, p < 0.01) or 5 mg/kg (9.0 ± 9.1-fold, n = 4, p < 0.01) but not 3 mg/kg (p > 0.05, n = 7). In 12 individuals belonging to the different groups, changes in BBB permeability were compared with expression of markers of astrocyte (GFAP) and microglial cell (CD11b) using ex vivo immunohistochemistry. Increased expression of CD11b and GFAP expression was observed in mice injected with 3 mg/kg of LPS, which did not increase with higher LPS doses. Quantitative [18F]FDS PET imaging can capture different levels of BBB permeability in vivo. A biphasic effect was observed with the lowest dose of LPS that triggered neuroinflammation without disruptive changes in BBB permeability, and higher LPS doses that increased BBB permeability without additional recruitment of glial cells.
Collapse
Affiliation(s)
- Sarah Leterrier
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Sébastien Goutal
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Gaëlle Hugon
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Maud Goislard
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Wadad Saba
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Benoit Hosten
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Simon Specklin
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Alexandra Winkeler
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Nicolas Tournier
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| |
Collapse
|
36
|
Sheng X, Zhang C, Zhao J, Xu J, Zhang P, Ding Q, Zhang J. Microvascular destabilization and intricated network of the cytokines in diabetic retinopathy: from the perspective of cellular and molecular components. Cell Biosci 2024; 14:85. [PMID: 38937783 PMCID: PMC11212265 DOI: 10.1186/s13578-024-01269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Microvascular destabilization is the primary cause of the inner blood-retinal barrier (iBRB) breakdown and increased vascular leakage in diabetic retinopathy (DR). Microvascular destabilization results from the combinational effects of increased levels of growth factors and cytokines, involvement of inflammation, and the changed cell-to-cell interactions, especially the loss of endothelial cells and pericytes, due to hyperglycemia and hypoxia. As the manifestation of microvascular destabilization, the fluid transports via paracellular and transcellular routes increase due to the disruption of endothelial intercellular junctional complexes and/or the altered caveolar transcellular transport across the retinal vascular endothelium. With diabetes progression, the functional and the structural changes of the iBRB components, including the cellular and noncellular components, further facilitate and aggravate microvascular destabilization, resulting in macular edema, the neuroretinal damage and the dysfunction of retinal inner neurovascular unit (iNVU). Although there have been considerable recent advances towards a better understanding of the complex cellular and molecular network underlying the microvascular destabilization, some still remain to be fully elucidated. Recent data indicate that targeting the intricate signaling pathways may allow to against the microvascular destabilization. Therefore, efforts have been made to better clarify the cellular and molecular mechanisms that are involved in the microvascular destabilization in DR. In this review, we discuss: (1) the brief introduction of DR and microvascular destabilization; (2) the cellular and molecular components of iBRB and iNVU, and the breakdown of iBRB; (3) the matrix and cell-to-cell contacts to maintain microvascular stabilization, including the endothelial glycocalyx, basement membrane, and various cell-cell interactions; (4) the molecular mechanisms mediated cell-cell contacts and vascular cell death; (5) the altered cytokines and signaling pathways as well as the intricate network of the cytokines involved in microvascular destabilization. This comprehensive review aimed to provide the insights for microvascular destabilization by targeting the key molecules or specific iBRB cells, thus restoring the function and structure of iBRB and iNVU, to treat DR.
Collapse
Affiliation(s)
- Xia Sheng
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Chunmei Zhang
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jiwei Zhao
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jianping Xu
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Peng Zhang
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Quanju Ding
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, National Clinical Research Center for Eye Diseases, Shanghai, China.
- The International Eye Research Institute of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China.
- C-MER (Shenzhen) Dennis Lam Eye Hospital, Shenzhen, China.
- C-MER International Eye Care Group, C-MER Dennis Lam & Partners Eye Center, Hong Kong, China.
| |
Collapse
|
37
|
İş Ö, Wang X, Reddy JS, Min Y, Yilmaz E, Bhattarai P, Patel T, Bergman J, Quicksall Z, Heckman MG, Tutor-New FQ, Can Demirdogen B, White L, Koga S, Krause V, Inoue Y, Kanekiyo T, Cosacak MI, Nelson N, Lee AJ, Vardarajan B, Mayeux R, Kouri N, Deniz K, Carnwath T, Oatman SR, Lewis-Tuffin LJ, Nguyen T, Carrasquillo MM, Graff-Radford J, Petersen RC, Jr Jack CR, Kantarci K, Murray ME, Nho K, Saykin AJ, Dickson DW, Kizil C, Allen M, Ertekin-Taner N. Gliovascular transcriptional perturbations in Alzheimer's disease reveal molecular mechanisms of blood brain barrier dysfunction. Nat Commun 2024; 15:4758. [PMID: 38902234 PMCID: PMC11190273 DOI: 10.1038/s41467-024-48926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer's disease, we performed single nucleus RNA sequencing in 24 Alzheimer's disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer's disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer's disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer's disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer's disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer's disease.
Collapse
Affiliation(s)
- Özkan İş
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Joseph S Reddy
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Yuhao Min
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Elanur Yilmaz
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Prabesh Bhattarai
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Tulsi Patel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Zachary Quicksall
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Michael G Heckman
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | - Birsen Can Demirdogen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| | - Launia White
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Vincent Krause
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yasuteru Inoue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, Dresden, Germany
| | - Nastasia Nelson
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Annie J Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Badri Vardarajan
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Naomi Kouri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Kaancan Deniz
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Troy Carnwath
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Laura J Lewis-Tuffin
- Mayo Clinic Florida Cytometry and Cell Imaging Laboratory, Mayo Clinic, Jacksonville, FL, USA
| | - Thuy Nguyen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Alzheimer's Disease Research Center, Rochester, MN, USA
| | | | - Kejal Kantarci
- Mayo Clinic Alzheimer's Disease Research Center, Rochester, MN, USA
| | | | - Kwangsik Nho
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Caghan Kizil
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
38
|
Bjerkan J, Kobal J, Lancaster G, Šešok S, Meglič B, McClintock PVE, Budohoski KP, Kirkpatrick PJ, Stefanovska A. The phase coherence of the neurovascular unit is reduced in Huntington's disease. Brain Commun 2024; 6:fcae166. [PMID: 38938620 PMCID: PMC11210076 DOI: 10.1093/braincomms/fcae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Huntington's disease is a neurodegenerative disorder in which neuronal death leads to chorea and cognitive decline. Individuals with ≥40 cytosine-adenine-guanine repeats on the interesting transcript 15 gene develop Huntington's disease due to a mutated huntingtin protein. While the associated structural and molecular changes are well characterized, the alterations in neurovascular function that lead to the symptoms are not yet fully understood. Recently, the neurovascular unit has gained attention as a key player in neurodegenerative diseases. The mutant huntingtin protein is known to be present in the major parts of the neurovascular unit in individuals with Huntington's disease. However, a non-invasive assessment of neurovascular unit function in Huntington's disease has not yet been performed. Here, we investigate neurovascular interactions in presymptomatic (N = 13) and symptomatic (N = 15) Huntington's disease participants compared to healthy controls (N = 36). To assess the dynamics of oxygen transport to the brain, functional near-infrared spectroscopy, ECG and respiration effort were recorded. Simultaneously, neuronal activity was assessed using EEG. The resultant time series were analysed using methods for discerning time-resolved multiscale dynamics, such as wavelet transform power and wavelet phase coherence. Neurovascular phase coherence in the interval around 0.1 Hz is significantly reduced in both Huntington's disease groups. The presymptomatic Huntington's disease group has a lower power of oxygenation oscillations compared to controls. The spatial coherence of the oxygenation oscillations is lower in the symptomatic Huntington's disease group compared to the controls. The EEG phase coherence, especially in the α band, is reduced in both Huntington's disease groups and, to a significantly greater extent, in the symptomatic group. Our results show a reduced efficiency of the neurovascular unit in Huntington's disease both in the presymptomatic and symptomatic stages of the disease. The vasculature is already significantly impaired in the presymptomatic stage of the disease, resulting in reduced cerebral blood flow control. The results indicate vascular remodelling, which is most likely a compensatory mechanism. In contrast, the declines in α and γ coherence indicate a gradual deterioration of neuronal activity. The results raise the question of whether functional changes in the vasculature precede the functional changes in neuronal activity, which requires further investigation. The observation of altered dynamics paves the way for a simple method to monitor the progression of Huntington's disease non-invasively and evaluate the efficacy of treatments.
Collapse
Affiliation(s)
- Juliane Bjerkan
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Jan Kobal
- Department of Neurology, University Medical Centre, 1525 Ljubljana, Slovenia
| | - Gemma Lancaster
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Sanja Šešok
- Department of Neurology, University Medical Centre, 1525 Ljubljana, Slovenia
| | - Bernard Meglič
- Department of Neurology, University Medical Centre, 1525 Ljubljana, Slovenia
| | | | - Karol P Budohoski
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peter J Kirkpatrick
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | | |
Collapse
|
39
|
Jia R, Solé-Guardia G, Kiliaan AJ. Blood-brain barrier pathology in cerebral small vessel disease. Neural Regen Res 2024; 19:1233-1240. [PMID: 37905869 PMCID: PMC11467932 DOI: 10.4103/1673-5374.385864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly. Although at first it was considered innocuous, small vessel disease is nowadays regarded as one of the major vascular causes of dementia. Radiological signs of small vessel disease include small subcortical infarcts, white matter magnetic resonance imaging hyperintensities, lacunes, enlarged perivascular spaces, cerebral microbleeds, and brain atrophy; however, great heterogeneity in clinical symptoms is observed in small vessel disease patients. The pathophysiology of these lesions has been linked to multiple processes, such as hypoperfusion, defective cerebrovascular reactivity, and blood-brain barrier dysfunction. Notably, studies on small vessel disease suggest that blood-brain barrier dysfunction is among the earliest mechanisms in small vessel disease and might contribute to the development of the hallmarks of small vessel disease. Therefore, the purpose of this review is to provide a new foundation in the study of small vessel disease pathology. First, we discuss the main structural domains and functions of the blood-brain barrier. Secondly, we review the most recent evidence on blood-brain barrier dysfunction linked to small vessel disease. Finally, we conclude with a discussion on future perspectives and propose potential treatment targets and interventions.
Collapse
Affiliation(s)
- Ruxue Jia
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, the Netherlands
| | - Gemma Solé-Guardia
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, the Netherlands
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, the Netherlands
| |
Collapse
|
40
|
Arms LM, Duchatel RJ, Jackson ER, Sobrinho PG, Dun MD, Hua S. Current status and advances to improving drug delivery in diffuse intrinsic pontine glioma. J Control Release 2024; 370:835-865. [PMID: 38744345 DOI: 10.1016/j.jconrel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma - DIPG), is the primary cause of brain tumor-related death in pediatric patients. DIPG is characterized by a median survival of <12 months from diagnosis, harboring the worst 5-year survival rate of any cancer. Corticosteroids and radiation are the mainstay of therapy; however, they only provide transient relief from the devastating neurological symptoms. Numerous therapies have been investigated for DIPG, but the majority have been unsuccessful in demonstrating a survival benefit beyond radiation alone. Although many barriers hinder brain drug delivery in DIPG, one of the most significant challenges is the blood-brain barrier (BBB). Therapeutic compounds must possess specific properties to enable efficient passage across the BBB. In brain cancer, the BBB is referred to as the blood-brain tumor barrier (BBTB), where tumors disrupt the structure and function of the BBB, which may provide opportunities for drug delivery. However, the biological characteristics of the brainstem's BBB/BBTB, both under normal physiological conditions and in response to DIPG, are poorly understood, which further complicates treatment. Better characterization of the changes that occur in the BBB/BBTB of DIPG patients is essential, as this informs future treatment strategies. Many novel drug delivery technologies have been investigated to bypass or disrupt the BBB/BBTB, including convection enhanced delivery, focused ultrasound, nanoparticle-mediated delivery, and intranasal delivery, all of which are yet to be clinically established for the treatment of DIPG. Herein, we review what is known about the BBB/BBTB and discuss the current status, limitations, and advances of conventional and novel treatments to improving brain drug delivery in DIPG.
Collapse
Affiliation(s)
- Lauren M Arms
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Ryan J Duchatel
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Evangeline R Jackson
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Pedro Garcia Sobrinho
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
41
|
Overgaard Wichmann T, Hedegaard Højsager M, Hasager Damkier H. Water channels in the brain and spinal cord-overview of the role of aquaporins in traumatic brain injury and traumatic spinal cord injury. Front Cell Neurosci 2024; 18:1414662. [PMID: 38818518 PMCID: PMC11137310 DOI: 10.3389/fncel.2024.1414662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Knowledge about the mechanisms underlying the fluid flow in the brain and spinal cord is essential for discovering the mechanisms implicated in the pathophysiology of central nervous system diseases. During recent years, research has highlighted the complexity of the fluid flow movement in the brain through a glymphatic system and a lymphatic network. Less is known about these pathways in the spinal cord. An important aspect of fluid flow movement through the glymphatic pathway is the role of water channels, especially aquaporin 1 and 4. This review provides an overview of the role of these aquaporins in brain and spinal cord, and give a short introduction to the fluid flow in brain and spinal cord during in the healthy brain and spinal cord as well as during traumatic brain and spinal cord injury. Finally, this review gives an overview of the current knowledge about the role of aquaporins in traumatic brain and spinal cord injury, highlighting some of the complexities and knowledge gaps in the field.
Collapse
|
42
|
Rorex C, Cardona SM, Church KA, Rodriguez D, Vanegas D, Saldivar R, Faz B, Cardona AE. Astrogliosis in the GFAP-Cre ERT2:Rosa26 iDTR Mouse Model Does Not Exacerbate Retinal Microglia Activation or Müller Cell Gliosis under Hypoxic Conditions. Biomolecules 2024; 14:567. [PMID: 38785974 PMCID: PMC11117533 DOI: 10.3390/biom14050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic retinopathy (DR) affects over 140 million people globally. The mechanisms that lead to blindness are still enigmatic but there is evidence that sustained inflammation and hypoxia contribute to vascular damage. Despite efforts to understand the role of inflammation and microglia in DR's pathology, the contribution of astrocytes to hypoxic responses is less clear. To investigate the role of astrocytes in hypoxia-induced retinopathy, we utilized a 7-day systemic hypoxia model using the GFAP-CreERT2:Rosa26iDTR transgenic mouse line. This allows for the induction of inflammatory reactive astrogliosis following tamoxifen and diphtheria toxin administration. We hypothesize that DTx-induced astrogliosis is neuroprotective during hypoxia-induced retinopathy. Glial, neuronal, and vascular responses were quantified using immunostaining, with antibodies against GFAP, vimentin, IBA-1, NeuN, fibrinogen, and CD31. Cytokine responses were measured in both the brain and serum. We report that while both DTx and hypoxia induced a phenotype of reduced microglia morphological activation, DTx, but not hypoxia, induced an increase in the Müller glia marker vimentin. We did not observe that the combination of DTx and hypoxic treatments exacerbated the signs of reactive glial cells, nor did we observe a significant change in the expression immunomodulatory mediators IL-1β, IL2, IL-4, IL-5, IL-6, IL-10, IL-18, CCL17, TGF-β1, GM-CSF, TNF-α, and IFN-γ. Overall, our results suggest that, in this hypoxia model, reactive astrogliosis does not alter the inflammatory responses or cause vascular damage in the retina.
Collapse
Affiliation(s)
- Colin Rorex
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Sandra M. Cardona
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Kaira A. Church
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Derek Rodriguez
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
- Integrative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Difernando Vanegas
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Reina Saldivar
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Brianna Faz
- Integrative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Astrid E. Cardona
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
43
|
Sforza M, Bianchini E, Alivernini D, Spalloni A, Teresi V, Madonia I, Salvetti M, Pontieri FE, Sette G. Cerebral hemodynamics and cognitive functions in the acute and subacute stage of mild ischemic stroke: a longitudinal pilot study. Neurol Sci 2024; 45:2097-2105. [PMID: 38114853 DOI: 10.1007/s10072-023-07260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
The association between cerebral hemodynamics and cognitive impairment has been reported in neurodegenerative and cerebrovascular disorders (CVD). However, it is still unclear whether changes occur in the acute phase of CVD. Here we investigated cognitive and hemodynamic parameters and their association in patients with CVD during the acute and subacute phases. Seventy-three patients with mild stroke, not undergoing endovascular treatment, were recruited. All subjects were devoid of intracranial or external carotid stenosis, significant chronic cerebrovascular pathology, dementia or non-compensated cardiovascular diseases. Patients were evaluated within 7 days from symptoms onset (T1) and after 3 months (T2). Clinical and demographic data were collected. NIHSS, MoCA, FAB, and Word-Color Stroop test (WCST) were used to evaluate disease severity and cognitive functions. Basal hemodynamic parameters in the middle cerebral artery were measured with transcranial Doppler. Differences between T2 and T1, correlations between cognitive and hemodynamic variables at T1 and T2, as well as correlations between the T2-T1 variation in cognitive and hemodynamic parameters were assessed. At T1, cognitive performance of MoCA, FAB, and WCST was lower compared with T2; and pulsatility index, a parameter reflecting distal vascular resistance, was higher. However, no correlations between the changes in cognitive and hemodynamic variables were found; therefore, the two seems to be independent phenomena. In the acute phase, the linear association between cerebral blood flow and cognitive performances was lost, probably due to a differential effect of microenvironment changes and vascular-specific phenomena on cognition and cerebral hemodynamics. This relationship was partially restored in the subacute phase.
Collapse
Affiliation(s)
- Michela Sforza
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via Di Grottarossa, 1035-00189, Rome, Italy
- Sant'Andrea University Hospital, Rome, Italy
| | - Edoardo Bianchini
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via Di Grottarossa, 1035-00189, Rome, Italy
- Sant'Andrea University Hospital, Rome, Italy
| | - Diletta Alivernini
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via Di Grottarossa, 1035-00189, Rome, Italy
| | | | - Valentina Teresi
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via Di Grottarossa, 1035-00189, Rome, Italy
- Sant'Andrea University Hospital, Rome, Italy
| | - Irene Madonia
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via Di Grottarossa, 1035-00189, Rome, Italy
- Sant'Andrea University Hospital, Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via Di Grottarossa, 1035-00189, Rome, Italy
- Sant'Andrea University Hospital, Rome, Italy
- INM Neuromed IRCCS, Pozzilli, IS, Italy
| | - Francesco E Pontieri
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via Di Grottarossa, 1035-00189, Rome, Italy
- Sant'Andrea University Hospital, Rome, Italy
| | - Giuliano Sette
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via Di Grottarossa, 1035-00189, Rome, Italy.
- Sant'Andrea University Hospital, Rome, Italy.
| |
Collapse
|
44
|
Shi X, Li P, Herb M, Liu H, Wang M, Wang X, Feng Y, van Beers T, Xia N, Li H, Prokosch V. Pathological high intraocular pressure induces glial cell reactive proliferation contributing to neuroinflammation of the blood-retinal barrier via the NOX2/ET-1 axis-controlled ERK1/2 pathway. J Neuroinflammation 2024; 21:105. [PMID: 38649885 PMCID: PMC11034147 DOI: 10.1186/s12974-024-03075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND NADPH oxidase (NOX), a primary source of endothelial reactive oxygen species (ROS), is considered a key event in disrupting the integrity of the blood-retinal barrier. Abnormalities in neurovascular-coupled immune signaling herald the loss of ganglion cells in glaucoma. Persistent microglia-driven inflammation and cellular innate immune system dysregulation often lead to deteriorating retinal degeneration. However, the crosstalk between NOX and the retinal immune environment remains unresolved. Here, we investigate the interaction between oxidative stress and neuroinflammation in glaucoma by genetic defects of NOX2 or its regulation via gp91ds-tat. METHODS Ex vivo cultures of retinal explants from wildtype C57BL/6J and Nox2 -/- mice were subjected to normal and high hydrostatic pressure (Pressure 60 mmHg) for 24 h. In vivo, high intraocular pressure (H-IOP) was induced in C57BL/6J mice for two weeks. Both Pressure 60 mmHg retinas and H-IOP mice were treated with either gp91ds-tat (a NOX2-specific inhibitor). Proteomic analysis was performed on control, H-IOP, and treatment with gp91ds-tat retinas to identify differentially expressed proteins (DEPs). The study also evaluated various glaucoma phenotypes, including IOP, retinal ganglion cell (RGC) functionality, and optic nerve (ON) degeneration. The superoxide (O2-) levels assay, blood-retinal barrier degradation, gliosis, neuroinflammation, enzyme-linked immunosorbent assay (ELISA), western blotting, and quantitative PCR were performed in this study. RESULTS We found that NOX2-specific deletion or activity inhibition effectively attenuated retinal oxidative stress, immune dysregulation, the internal blood-retinal barrier (iBRB) injury, neurovascular unit (NVU) dysfunction, RGC loss, and ON axonal degeneration following H-IOP. Mechanistically, we unveiled for the first time that NOX2-dependent ROS-driven pro-inflammatory signaling, where NOX2/ROS induces endothelium-derived endothelin-1 (ET-1) overexpression, which activates the ERK1/2 signaling pathway and mediates the shift of microglia activation to a pro-inflammatory M1 phenotype, thereby triggering a neuroinflammatory outburst. CONCLUSIONS Collectively, we demonstrate for the first time that NOX2 deletion or gp91ds-tat inhibition attenuates iBRB injury and NVU dysfunction to rescue glaucomatous RGC loss and ON axon degeneration, which is associated with inhibition of the ET-1/ERK1/2-transduced shift of microglial cell activation toward a pro-inflammatory M1 phenotype, highlighting NOX2 as a potential target for novel neuroprotective therapies in glaucoma management.
Collapse
Affiliation(s)
- Xin Shi
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Panpan Li
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Goldenfelsstr. 19-21, 50935, Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Maoren Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, P. R. China
| | - Xiaosha Wang
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Yuan Feng
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Tim van Beers
- Institut I für Anatomie, Universitätsklinikum Köln (AöR), Cologne, Germany
| | - Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131, Mainz, Germany
| | - Verena Prokosch
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany.
| |
Collapse
|
45
|
Coraggio F, Bhushan M, Roumeliotis S, Caroti F, Bevilacqua C, Prevedel R, Rapti G. Age-progressive interplay of HSP-proteostasis, ECM-cell junctions and biomechanics ensures C. elegans astroglial architecture. Nat Commun 2024; 15:2861. [PMID: 38570505 PMCID: PMC10991496 DOI: 10.1038/s41467-024-46827-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Tissue integrity is sensitive to temperature, tension, age, and is sustained throughout life by adaptive cell-autonomous or extrinsic mechanisms. Safeguarding the remarkably-complex architectures of neurons and glia ensures age-dependent integrity of functional circuits. Here, we report mechanisms sustaining the integrity of C. elegans CEPsh astrocyte-like glia. We combine large-scale genetics with manipulation of genes, cells, and their environment, quantitative imaging of cellular/ subcellular features, tissue material properties and extracellular matrix (ECM). We identify mutants with age-progressive, environment-dependent defects in glial architecture, consequent disruption of neuronal architecture, and abnormal aging. Functional loss of epithelial Hsp70/Hsc70-cochaperone BAG2 causes ECM disruption, altered tissue biomechanics, and hypersensitivity of glia to environmental temperature and mechanics. Glial-cell junctions ensure epithelia-ECM-CEPsh glia association. Modifying glial junctions or ECM mechanics safeguards glial integrity against disrupted BAG2-proteostasis. Overall, we present a finely-regulated interplay of proteostasis-ECM and cell junctions with conserved components that ensures age-progressive robustness of glial architecture.
Collapse
Affiliation(s)
- Francesca Coraggio
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mahak Bhushan
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Spyridon Roumeliotis
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Francesca Caroti
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carlo Bevilacqua
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Robert Prevedel
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Rome, Italy
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Georgia Rapti
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Rome, Italy.
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
46
|
Tomkins-Netzer O, Niederer R, Greenwood J, Fabian ID, Serlin Y, Friedman A, Lightman S. Mechanisms of blood-retinal barrier disruption related to intraocular inflammation and malignancy. Prog Retin Eye Res 2024; 99:101245. [PMID: 38242492 DOI: 10.1016/j.preteyeres.2024.101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Blood-retinal barrier (BRB) disruption is a common accompaniment of intermediate, posterior and panuveitis causing leakage into the retina and macular oedema resulting in vision loss. It is much less common in anterior uveitis or in patients with intraocular lymphoma who may have marked signs of intraocular inflammation. New drugs used for chemotherapy (cytarabine, immune checkpoint inhibitors, BRAF inhibitors, EGFR inhibitors, bispecific anti-EGFR inhibitors, MET receptor inhibitors and Bruton tyrosine kinase inhibitors) can also cause different types of uveitis and BRB disruption. As malignant disease itself can cause uveitis, particularly from breast, lung and gastrointestinal tract cancers, it can be clinically difficult to sort out the cause of BRB disruption. Immunosuppression due to malignant disease and/or chemotherapy can lead to infection which can also cause BRB disruption and intraocular infection. In this paper we address the pathophysiology of BRB disruption related to intraocular inflammation and malignancy, methods for estimating the extent and effect of the disruption and examine why some types of intraocular inflammation and malignancy cause BRB disruption and others do not. Understanding this may help sort and manage these patients, as well as devise future therapeutic approaches.
Collapse
Affiliation(s)
- Oren Tomkins-Netzer
- Department of Ophthalmology, Lady Davis Carmel Medical Centre, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Rachael Niederer
- Department of Ophthalmology, Te Whatu Ora, Auckland, New Zealand; Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - John Greenwood
- Institute of Ophthalmology, University College London, London, UK
| | - Ido Didi Fabian
- The Goldschleger Eye Institute, Sheba Medical Centre, Tel Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - Yonatan Serlin
- Department of Medical Neuroscience and the Brain Repair Centre, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Alon Friedman
- Department of Medical Neuroscience and the Brain Repair Centre, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada; Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlotowski Centre for Neuroscience, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Sue Lightman
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
47
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Albuhadily AK. New insight on the possible role of statins in Vascular Parkinsonism: A need for presumptive therapy. Ageing Res Rev 2024; 95:102209. [PMID: 38286334 DOI: 10.1016/j.arr.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
Vascular Parkinsonism (VP) is clinical term represents a progressive ischemic changes and subcortical lacunar infarct leading to Parkinsonism mainly in the lower limbs so called lower body Parkinsonism. The VP neuropathology is differed from that of PD neuropathology which rarely associated with basal ganglion lesions. Dopamine transporters are normal in VP but are highly reduced in PD, and dopaminergic agonists had no effective role on VP. The neuropathological mechanisms of VP are related to vascular injury which induces the interruption of the neural connection between basal ganglion and cerebral cortex. Hyperlipidemia and other cardiometabolic risk factors augment VP risk and the related neuropathology. Targeting of these cardiometabolic disorders by lipid-lowering statins may be effective in the management of VP. Therefore, this mini-review aims to clarify the possible role of statins in the management of VP. Statins have neuroprotective effects against different neurodegenerative diseases by anti-inflammatory, antioxidant and antithrombotic effects with enhancement of endothelial function. In conclusion, statins can prevent and treat VP by inhibiting inflammatory and oxidative stress disorders, mitigating of white matter hyperintensities and improving of neuronal signaling pathways. Additional preclinical, clinical trials and prospective studies are warranted in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied Science, University of Technology, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
48
|
Hansra GK, Jayasena T, Hosoki S, Poljak A, Lam BCP, Rust R, Sagare A, Zlokovic B, Thalamuthu A, Sachdev PS. Fluid biomarkers of the neurovascular unit in cerebrovascular disease and vascular cognitive disorders: A systematic review and meta-analysis. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 6:100216. [PMID: 38510579 PMCID: PMC10951911 DOI: 10.1016/j.cccb.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Background The disruption of the neurovascular unit (NVU), which maintains the integrity of the blood brain barrier (BBB), has been identified as a critical mechanism in the development of cerebrovascular and neurodegenerative disorders. However, the understanding of the pathophysiological mechanisms linking NVU dysfunction to the disorders is incomplete, and reliable blood biomarkers to measure NVU dysfunction are yet to be established. This systematic review and meta-analysis aimed to identify biomarkers associated with BBB dysfunction in large vessel disease, small vessel disease (SVD) and vascular cognitive disorders (VCD). Methods A literature search was conducted in PubMed, EMBASE, Scopus and PsychINFO to identify blood biomarkers related to dysfunction of the NVU in disorders with vascular pathologies published until 20 November 2023. Studies that assayed one or more specific markers in human serum or plasma were included. Quality of studies was assessed using the Newcastle-Ottawa Quality Assessment Scale. Effects were pooled and methodological heterogeneity examined using the random effects model. Results A total of 112 studies were included in this review. Where study numbers allowed, biomarkers were analysed using random effect meta-analysis for VCD (1 biomarker; 5 studies) and cerebrovascular disorders, including stroke and SVD (9 biomarkers; 29 studies) while all remaining biomarkers (n = 17 biomarkers; 78 studies) were examined through qualitative analysis. Results of the meta-analysis revealed that cerebrospinal fluid/serum albumin quotient (Q-Alb) reliably differentiates VCD patients from healthy controls (MD = 2.77; 95 % CI = 1.97-3.57; p < 0.0001) while commonly measured biomarkers of endothelial dysfunction (VEGF, VCAM-1, ICAM-1, vWF and E-selectin) and neuronal injury (NfL) were significantly elevated in vascular pathologies. A qualitative assessment of non-meta-analysed biomarkers revealed NSE, NfL, vWF, ICAM-1, VCAM-1, lipocalin-2, MMP-2 and MMP-9 levels to be upregulated in VCD, although these findings were not consistently replicated. Conclusions This review identifies several promising biomarkers of NVU dysfunction which require further validation. A panel of biomarkers representing multiple pathophysiological pathways may offer greater discriminative power in distinguishing possible disease mechanisms of VCD.
Collapse
Affiliation(s)
- Gurpreet Kaur Hansra
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Satoshi Hosoki
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
- Department of Neurology, National Cerebral and Cardiovascular Centre, Suita, Japan
| | - Anne Poljak
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, NSW, Australia
| | - Ben Chun Pan Lam
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Ruslan Rust
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Berislav Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
49
|
Virtuoso A, Galanis C, Lenz M, Papa M, Vlachos A. Regional Microglial Response in Entorhino-Hippocampal Slice Cultures to Schaffer Collateral Lesion and Metalloproteinases Modulation. Int J Mol Sci 2024; 25:2346. [PMID: 38397023 PMCID: PMC10889226 DOI: 10.3390/ijms25042346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Microglia and astrocytes are essential in sustaining physiological networks in the central nervous system, with their ability to remodel the extracellular matrix, being pivotal for synapse plasticity. Recent findings have challenged the traditional view of homogenous glial populations in the brain, uncovering morphological, functional, and molecular heterogeneity among glial cells. This diversity has significant implications for both physiological and pathological brain states. In the present study, we mechanically induced a Schaffer collateral lesion (SCL) in mouse entorhino-hippocampal slice cultures to investigate glial behavior, i.e., microglia and astrocytes, under metalloproteinases (MMPs) modulation in the lesioned area, CA3, and the denervated region, CA1. We observed distinct response patterns in the microglia and astrocytes 3 days after the lesion. Notably, GFAP-expressing astrocytes showed no immediate changes post-SCL. Microglia responses varied depending on their anatomical location, underscoring the complexity of the hippocampal neuroglial network post-injury. The MMPs inhibitor GM6001 did not affect microglial reactions in CA3, while increasing the number of Iba1-expressing cells in CA1, leading to a withdrawal of their primary branches. These findings highlight the importance of understanding glial regionalization following neural injury and MMPs modulation and pave the way for further research into glia-targeted therapeutic strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Assunta Virtuoso
- Neuronal Morphology Networks and Systems Biology Laboratory, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, 30625 Hannover, Germany
| | - Michele Papa
- Neuronal Morphology Networks and Systems Biology Laboratory, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center BrainLinks–BrainTools, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
50
|
Su Z, Liu M, Yuan Y, Jiao H. Transcranial ultrasound stimulation selectively affects cortical neurovascular coupling across neuronal types and LFP frequency bands. Cereb Cortex 2024; 34:bhad465. [PMID: 38044470 DOI: 10.1093/cercor/bhad465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
Previous studies have affirmed that transcranial ultrasound stimulation (TUS) can influence cortical neurovascular coupling across low-frequency (0-2 Hz)/high-frequency (160-200 Hz) neural oscillations and hemodynamics. Nevertheless, the selectivity of this coupling triggered by transcranial ultrasound stimulation for spike activity (> 300 Hz) and additional frequency bands (4-150 Hz) remains elusive. We applied transcranial ultrasound stimulation to mice visual cortex while simultaneously recording total hemoglobin concentration, spike activity, and local field potentials. Our findings include (1) a significant increase in coupling strength between spike firing rates of putative inhibitory neurons/putative excitatory neurons and total hemoglobin concentration post-transcranial ultrasound stimulation; (2) an ~ 2.1-fold higher Pearson correlation coefficient between putative inhibitory neurons and total hemoglobin concentration compared with putative excitatory neurons and total hemoglobin concentration (*P < 0.05); (3) a notably greater cross-correlation between putative inhibitory neurons and total hemoglobin concentration than that between putative excitatory neurons and total hemoglobin concentration (*P < 0.05); (4) an enhancement of Pearson correlation coefficient between the relative power of γ frequency band (30-80 Hz), hγ frequency band (80-150 Hz) and total hemoglobin concentration following transcranial ultrasound stimulation (*P < 0.05); and (5) strongest cross-correlation observed at negative delay for θ frequency band, and positive delay for α, β, γ, hγ frequency bands. Collectively, these results demonstrate that cortical neurovascular coupling evoked by transcranial ultrasound stimulation exhibits selectivity concerning neuronal types and local field potential frequency bands.
Collapse
Affiliation(s)
- Zhaocheng Su
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna 1090, Austria
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Honglei Jiao
- Department of Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|