1
|
Chu S, Zhao T, Li M, Sun Y, Yang Y, Yang Z. Long non-coding RNA (CMR) involved in autoprotection in S. aureus mastitis in dairy cows by regulating miR-877/FOXM1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116456. [PMID: 38744067 DOI: 10.1016/j.ecoenv.2024.116456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Long non-coding RNAs (LncRNAs) are dysregulated in a variety of human diseases and are highly involved in the development and progression of tumors. Studies on lncRNAs associated with cow mastitis have been lagging behind compared to humans or model animals, therefore, the aim of this study was to explore the mechanism of LncRNAs (CMR) involved in autoprotection against S. aureus mastitis in Bovine Mammary Epithelial Cells (BMECs). First, qRT-PCR was used to examine the relative expression of CMR in a S. aureus mastitis model of BMECs. Then, cell proliferation and apoptosis were detected by EdU and apoptosis assay. Finally, the targeting relationship between miRNAs and mRNA/LncRNAs was determined by dual luciferase reporter gene, qRT-PCR and western blotting techniques. The results showed that CMR was upregulated in the S. aureus mastitis model of BMECs and promoted the expression of inflammatory factors, and SiRNA-mediated CMR inhibited the proliferation of mammary epithelial cells and induced apoptosis. Mechanistically, CMR acts as a competitive endogenous RNA (ceRNA) sponge miR-877, leading to upregulation of FOXM1, a target of miR-877. Importantly, either miR-877 overexpression or FOXM1 inhibition abrogated CMR knockdown-induced apoptosis promoting cell proliferation and reducing inflammatory factor expression levels. In summary, CMR is involved in the regulation of autoprotection against S. aureus mastitis through the miR-877/FOXM1 axis in BMECs and induces immune responses in mammary tissues and cells of dairy cows, providing an important reference for subsequent prevention and control of cow mastitis and the development of targeted drugs.
Collapse
Affiliation(s)
- Shuangfeng Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Tianqi Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Mingxun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yujia Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yi Yang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Yangzhou University, College of Veterinary Medicine, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Salamini-Montemurri M, Lamas-Maceiras M, Lorenzo-Catoira L, Vizoso-Vázquez Á, Barreiro-Alonso A, Rodríguez-Belmonte E, Quindós-Varela M, Cerdán ME. Identification of lncRNAs Deregulated in Epithelial Ovarian Cancer Based on a Gene Expression Profiling Meta-Analysis. Int J Mol Sci 2023; 24:10798. [PMID: 37445988 PMCID: PMC10341812 DOI: 10.3390/ijms241310798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest gynecological cancers worldwide, mainly because of its initially asymptomatic nature and consequently late diagnosis. Long non-coding RNAs (lncRNA) are non-coding transcripts of more than 200 nucleotides, whose deregulation is involved in pathologies such as EOC, and are therefore envisaged as future biomarkers. We present a meta-analysis of available gene expression profiling (microarray and RNA sequencing) studies from EOC patients to identify lncRNA genes with diagnostic and prognostic value. In this meta-analysis, we include 46 independent cohorts, along with available expression profiling data from EOC cell lines. Differential expression analyses were conducted to identify those lncRNAs that are deregulated in (i) EOC versus healthy ovary tissue, (ii) unfavorable versus more favorable prognosis, (iii) metastatic versus primary tumors, (iv) chemoresistant versus chemosensitive EOC, and (v) correlation to specific histological subtypes of EOC. From the results of this meta-analysis, we established a panel of lncRNAs that are highly correlated with EOC. The panel includes several lncRNAs that are already known and even functionally characterized in EOC, but also lncRNAs that have not been previously correlated with this cancer, and which are discussed in relation to their putative role in EOC and their potential use as clinically relevant tools.
Collapse
Affiliation(s)
- Martín Salamini-Montemurri
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Lidia Lorenzo-Catoira
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - María Quindós-Varela
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - M Esperanza Cerdán
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| |
Collapse
|
3
|
Wei Y, Khalaf AT, Rui C, Abdul Kadir SY, Zainol J, Oglah Z. The Emergence of TRP Channels Interactome as a Potential Therapeutic Target in Pancreatic Ductal Adenocarcinoma. Biomedicines 2023; 11:biomedicines11041164. [PMID: 37189782 DOI: 10.3390/biomedicines11041164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Integral membrane proteins, known as Transient Receptor Potential (TRP) channels, are cellular sensors for various physical and chemical stimuli in the nervous system, respiratory airways, colon, pancreas, bladder, skin, cardiovascular system, and eyes. TRP channels with nine subfamilies are classified by sequence similarity, resulting in this superfamily's tremendous physiological functional diversity. Pancreatic Ductal Adenocarcinoma (PDAC) is the most common and aggressive form of pancreatic cancer. Moreover, the development of effective treatment methods for pancreatic cancer has been hindered by the lack of understanding of the pathogenesis, partly due to the difficulty in studying human tissue samples. However, scientific research on this topic has witnessed steady development in the past few years in understanding the molecular mechanisms that underlie TRP channel disturbance. This brief review summarizes current knowledge of the molecular role of TRP channels in the development and progression of pancreatic ductal carcinoma to identify potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Basic Medical College, Chengdu University, Chengdu 610106, China
| | | | - Cao Rui
- Basic Medical College, Chengdu University, Chengdu 610106, China
| | - Samiah Yasmin Abdul Kadir
- Faculty of Medicine, Widad University College, BIM Point, Bandar Indera Mahkota, Kuantan 25200, Malaysia
| | - Jamaludin Zainol
- Faculty of Medicine, Widad University College, BIM Point, Bandar Indera Mahkota, Kuantan 25200, Malaysia
| | - Zahraa Oglah
- School of Science, Auckland University of Technology (AUT), 55 Wellesley Street, Auckland 1010, New Zealand
| |
Collapse
|
4
|
Hu C, Li S, Fu X, Zhao X, Peng J. LncRNA NR2F1-AS1 was involved in azacitidine resistance of THP-1 cells by targeting IGF1 with miR-483-3p. Cytokine 2023; 162:156105. [PMID: 36527891 DOI: 10.1016/j.cyto.2022.156105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The long noncoding RNAs' (lncRNAs) effect on cancer therapy resistance by targeting microRNA (miRNA) in the regulation of drug resistance genes has attracted more and more attention. This study attempted to explore the mechanism of "lncRNA NR2F1-AS1/miR-483-3p/IGF1″ axis in azacitidine resistance of THP-1 cells. METHODS THP-1 cells were treated with azacitidine to construct THP1-Aza cells. Cell number and morphological changes were observed by a microscope. CCK8, flow cytometry and transwell were used to detect cell proliferation, apoptosis, cycle, invasion and migration. The targeting relationships between NR2F1-AS1 and miR-483-3p, IGF1 and miR-483-3p were analyzed by dual-luciferase, respectively. RIP assay was applied to verify the interaction between NR2F1-AS1 and miR-483-3p. The relative mRNA expression levels of miR-483-3p, AKT1, PI3K, NR2F1-AS1 and IGF1 were detected by qRT-PCR. PI3K, p-PI3K, AKT, p-AKT and IGF1 protein expression were detected by western blot. RESULTS Compared with THP-1 cells, NR2F1-AS1 and IGF1 were highly expressed in THP1-Aza cells, and the miR-483-3p expression was significantly decreased in THP1-Aza cells. Knockdown of NR2F1-AS1 increased apoptosis and G1 phase, and reduced cells growth, invasion and migration ability of THP1-Aza cells. Dual-luciferase demonstrated that NR2F1-AS1 could bind to miR-483-3p, and miR-483-3p could bind to IGF1. RIP assay verified the interaction between NR2F1-AS1 and miR-483-3p. Compared with the si-NR2F1-AS1 group, miR-483-3p inhibitor or oe-IGF1 treatment reduced the apoptosis and cell cycle, and increased the cell growth, invasion and migration ability of THP-1-Aza cells. CONCLUSION LncRNA NR2F1-AS1 affects the sensitivity of THP-1 cells to azacitidine resistance by regulating the miR-483-3p/IGF1 axis, which may be a potential target for the treatment of acute monocytic leukemia.
Collapse
Affiliation(s)
- Changmei Hu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shujun Li
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Xiao Fu
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Xielan Zhao
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Jie Peng
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
5
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Baniahmad A, Taheri M, Samsami M. A review on the role of NR2F1-AS1 in the development of cancer. Pathol Res Pract 2022; 240:154210. [PMID: 36410172 DOI: 10.1016/j.prp.2022.154210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
NR2F1-AS1 is a natural antisense transcript with prominent roles in the carcinogenesis. It acts as an oncogene in almost all types of cancers except for cervical and colorectal cancers. It can act as a molecular sponge for miR-17, miR-371a-3p, miR-363, miR-29a-3p, miR-493-5p, miR-190a, miR-140, miR-642a, miR-363, miR-493-5p, miR-483-3p, miR-485-5p, miR-146a-5p, miR-877-5p, miR-338-3 P and miR-423-5p to influence expression of several cancer-related genes. Thus, the sponging role of NR2F1-AS1 is the most appreciated route of its contribution in the carcinogenesis. In addition, NR2F1-AS1 affects activity of IGF-1/IGF-1R/ERK, PI3K/AKT/GSK-3β and Hedgehog pathways. The current narrative review aims at summarization of the results of studies that highlighted the role of NR2F1-AS1 in the carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Wang J, Liang Y, Qin Y, Jiang G, Peng Y, Feng W. circCRKL, a circRNA derived from CRKL, regulates BCR-ABL via sponging miR-877-5p to promote chronic myeloid leukemia cell proliferation. J Transl Med 2022; 20:395. [PMID: 36058922 PMCID: PMC9440867 DOI: 10.1186/s12967-022-03586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background The BCR-ABL fusion protein is the key factor that results in the occurrence of chronic myeloid leukemia (CML). Imatinib (IM) is a targeted inhibitor of BCR-ABL to achieve complete remission. However, remission failure occurs due to acquired resistance caused by secondary BCR-ABL mutations, underlining the need for novel BCR-ABL-targeting strategies. Circular RNAs (circRNAs) derived from tumor-related genes have been revealed as possible therapeutic targets for relevant cancers in recent investigations. In CML, the roles of this kind of circRNA are yet obscure. Methods Firstly, RT-qPCR was used for determining circCRKL expression level in cell lines and clinical samples, RNase R and Actinomycin D were employed to verify the stability of circCRKL. Then shRNAs were designed to specifically knockdown circCRKL. The function of circCRKL in vitro was investigated using CCK-8, colony formation assay, and flow cytometry, while a CML mouse model was constructed to explore the function in vivo. Finally, a dual-luciferase reporter assay, RNA pull-down, RNA immunoprecipitation, and rescue experiments were conducted to investigate the mechanism of circCRKL functioning. Results Here, we determined circCRKL, which derives from CML-relevant gene CRKL, is over-expressed in BCR-ABL+ cells. Then we noticed knocking down circCRKL using shRNA lentivirus dampens the proliferation of BCR-ABL+ cells both in vitro and in vivo, and augments susceptibility of resistant cells to IM. Intriguingly, we observed that circCRKL has a considerable impact on the expression level of BCR-ABL. Mechanistically, circCRKL could behave like a decoy for miR-877-5p to enhance the BCR-ABL level, allowing BCR-ABL+ cells to maintain viability. Conclusions Overall, the current study uncovers that circCRKL is specifically expressed and regulates BCR-ABL expression level via decoying miR-877-5p in BCR-ABL+ cells, highlighting that targeting circCRKL along with imatinib treatment could be utilized as a potential therapeutic strategy for CML patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03586-2.
Collapse
Affiliation(s)
- Jianming Wang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yang Liang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuefeng Qin
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Guoyun Jiang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuhang Peng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wenli Feng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
7
|
Zhong ME, Huang ZP, Wang X, Cai D, Li CH, Gao F, Wu XJ, Wang W. A Transcription Factor Signature Can Identify the CMS4 Subtype and Stratify the Prognostic Risk of Colorectal Cancer. Front Oncol 2022; 12:902974. [PMID: 35847938 PMCID: PMC9280271 DOI: 10.3389/fonc.2022.902974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundColorectal cancer (CRC) is a heterogeneous disease, and current classification systems are insufficient for stratifying patients with different risks. This study aims to develop a generalized, individualized prognostic consensus molecular subtype (CMS)-transcription factors (TFs)-based signature that can predict the prognosis of CRC.MethodsWe obtained differentially expressed TF signature and target genes between the CMS4 and other CMS subtypes of CRC from The Cancer Genome Atlas (TCGA) database. A multi-dimensional network inference integrative analysis was conducted to identify the master genes and establish a CMS4-TFs-based signature. For validation, an in-house clinical cohort (n = 351) and another independent public CRC cohort (n = 565) were applied. Gene set enrichment analysis (GSEA) and prediction of immune cell infiltration were performed to interpret the biological significance of the model.ResultsA CMS4-TFs-based signature termed TF-9 that includes nine TF master genes was developed. Patients in the TF-9 high-risk group have significantly worse survival, regardless of clinical characteristics. The TF-9 achieved the highest mean C-index (0.65) compared to all other signatures reported (0.51 to 0.57). Immune infiltration revealed that the microenvironment in the high-risk group was highly immune suppressed, as evidenced by the overexpression of TIM3, CD39, and CD40, suggesting that high-risk patients may not directly benefit from the immune checkpoint inhibitors.ConclusionsThe TF-9 signature allows a more precise categorization of patients with relevant clinical and biological implications, which may be a valuable tool for improving the tailoring of therapeutic interventions in CRC patients.
Collapse
Affiliation(s)
- Min-Er Zhong
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ze-Ping Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xun Wang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Du Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cheng-Hang Li
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng Gao
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wei Wang, ; Xiao-Jian Wu, ; Feng Gao,
| | - Xiao-Jian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wei Wang, ; Xiao-Jian Wu, ; Feng Gao,
| | - Wei Wang
- Biomedical Big Data Centre, Department of Gynaecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
- *Correspondence: Wei Wang, ; Xiao-Jian Wu, ; Feng Gao,
| |
Collapse
|
8
|
Luo D, Liu Y, Yuan S, Bi X, Yang Y, Zhu H, Li Z, Ji L, Yu X. The emerging role of NR2F1-AS1 in the tumorigenesis and progression of human cancer. Pathol Res Pract 2022; 235:153938. [DOI: 10.1016/j.prp.2022.153938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
|