1
|
Ono S. Overexpression of Lifeact in the C. elegans body wall muscle causes sarcomere disorganization and embryonic or larval lethality. Front Cell Dev Biol 2024; 12:1504980. [PMID: 39605982 PMCID: PMC11599240 DOI: 10.3389/fcell.2024.1504980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Lifeact is a short peptide that is widely utilized as a probe for actin filaments in live imaging. However, high concentrations of Lifeact can alter actin filament dynamics and cause artificial modifications to the actin cytoskeleton. Here, I evaluated Caenorhabditis elegans strains expressing Lifeact fused to fluorescent proteins in the body wall muscle. I found that, while low-level expression of Lifeact from a single-copy transgene was appropriate for labeling sarcomeric actin filaments, overexpression of Lifeact from an extrachromosomal array causes severe disorganization of muscle sarcomeres and lethality at an embryonic or larval stage. Therefore, for imaging studies in C. elegans, Lifeact needs to be kept at a low level by proper management of the expression system.
Collapse
Affiliation(s)
- Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
2
|
Gillespie W, Zhang Y, Ruiz OE, Cerda J, Ortiz-Guzman J, Turner WD, Largoza G, Sherman M, Mosser LE, Fujimoto E, Chien CB, Kwan KM, Arenkiel BR, Devine WP, Wythe JD. Multisite Assembly of Gateway Induced Clones (MAGIC): a flexible cloning toolbox with diverse applications in vertebrate model systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603267. [PMID: 39026881 PMCID: PMC11257631 DOI: 10.1101/2024.07.13.603267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here we present the Multisite Assembly of Gateway Induced Clones (MAGIC) system, which harnesses site-specific recombination-based cloning via Gateway technology for rapid, modular assembly of between 1 and 3 "Entry" vector components, all into a fourth, standard high copy "Destination" plasmid backbone. The MAGIC toolkit spans a range of in vitro and in vivo uses, from directing tunable gene expression, to driving simultaneous expression of microRNAs and fluorescent reporters, to enabling site-specific recombinase-dependent gene expression. All MAGIC system components are directly compatible with existing multisite gateway Tol2 systems currently used in zebrafish, as well as existing eukaryotic cell culture expression Destination plasmids, and available mammalian lentiviral and adenoviral Destination vectors, allowing rapid cross-species experimentation. Moreover, herein we describe novel vectors with flanking piggyBac transposon elements for stable genomic integration in vitro or in vivo when used with piggyBac transposase. Collectively, the MAGIC system facilitates transgenesis in cultured mammalian cells, electroporated mouse and chick embryos, as well as in injected zebrafish embryos, enabling the rapid generation of innovative DNA constructs for biological research due to a shared, common plasmid platform.
Collapse
|
3
|
Phillips TA, Marcotti S, Cox S, Parsons M. Imaging actin organisation and dynamics in 3D. J Cell Sci 2024; 137:jcs261389. [PMID: 38236161 PMCID: PMC10906668 DOI: 10.1242/jcs.261389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
The actin cytoskeleton plays a critical role in cell architecture and the control of fundamental processes including cell division, migration and survival. The dynamics and organisation of F-actin have been widely studied in a breadth of cell types on classical two-dimensional (2D) surfaces. Recent advances in optical microscopy have enabled interrogation of these cytoskeletal networks in cells within three-dimensional (3D) scaffolds, tissues and in vivo. Emerging studies indicate that the dimensionality experienced by cells has a profound impact on the structure and function of the cytoskeleton, with cells in 3D environments exhibiting cytoskeletal arrangements that differ to cells in 2D environments. However, the addition of a third (and fourth, with time) dimension leads to challenges in sample preparation, imaging and analysis, necessitating additional considerations to achieve the required signal-to-noise ratio and spatial and temporal resolution. Here, we summarise the current tools for imaging actin in a 3D context and highlight examples of the importance of this in understanding cytoskeletal biology and the challenges and opportunities in this domain.
Collapse
Affiliation(s)
- Thomas A. Phillips
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
- Microscopy Innovation Centre, King's College London, Guys Campus, London SE1 1UL, UK
| | - Susan Cox
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| |
Collapse
|
4
|
Sáenz-de-Santa-María I, Henderson JM, Pepe A, Zurzolo C. Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking. Curr Protoc 2023; 3:e939. [PMID: 37994667 DOI: 10.1002/cpz1.939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Tunneling nanotubes (TNTs) are thin membranous channels providing a direct cytoplasmic connection between remote cells. They are commonly observed in different cell cultures and increasing evidence supports their role in intercellular communication, and pathogen and amyloid protein transfer. However, the study of TNTs presents several pitfalls (e.g., difficulty in preserving such delicate structures, possible confusion with other protrusions, structural and functional heterogeneity, etc.) and therefore requires thoroughly designed approaches. The methods described in this protocol represent a guideline for the characterization of TNTs (or TNT-like structures) in cell culture. Specifically, optimized protocols to (1) identify TNTs and the cytoskeletal elements present inside them; (2) evaluate TNT frequency in cell culture; (3) unambiguously distinguish them from other cellular connections or protrusions; (4) monitor their formation in living cells; (5) characterize TNTs by a micropatterning approach; and (6) investigate TNT ultrastructure by cryo-EM are provided. Finally, this article describes how to assess TNT-mediated cell-to-cell transfer of cellular components, which is a fundamental criterion for identifying functional TNTs. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Identification of tunneling nanotubes Alternate Protocol 1: Identifying the cytoskeletal elements present in tunneling nanotubes Alternate Protocol 2: Distinguishing tunneling nanotubes from intercellular bridges formed during cell division Basic Protocol 2: Deciphering tunneling nanotube formation and lifetime by live fluorescent microscopy Alternate Protocol 3: Deciphering tunneling nanotube formation using a live-compatible dye Basic Protocol 3: Assessing tunneling nanotubes functionality in intercellular transfer Alternate Protocol 4: Flow cytometry approach to quantify the rate of vesicle or mitochondria transfer Support Protocol: Controls to support TNT-mediated transfer Basic Protocol 4: Studies of tunneling nanotubes by cell micropatterning Basic Protocol 5: Characterization of the ultrastructure of tunneling nanotubes by cryo-EM.
Collapse
Affiliation(s)
- Inés Sáenz-de-Santa-María
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, CNRS UMR3691, Paris, France
| | - J Michael Henderson
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, CNRS UMR3691, Paris, France
| | - Anna Pepe
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, CNRS UMR3691, Paris, France
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, CNRS UMR3691, Paris, France
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Kawanishi T, Heilig AK, Shimada A, Takeda H. Visualization of Actin Cytoskeleton in Cellular Protrusions in Medaka Embryos. Bio Protoc 2023; 13:e4710. [PMID: 37449037 PMCID: PMC10336567 DOI: 10.21769/bioprotoc.4710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 04/23/2023] [Indexed: 07/18/2023] Open
Abstract
Cellular protrusions are fundamental structures for a wide variety of cellular behaviors, such as cell migration, cell-cell interaction, and signal reception. Visualization of cellular protrusions in living cells can be achieved by labeling of cytoskeletal actin with genetically encoded fluorescent probes. Here, we describe a detailed experimental procedure to visualize cellular protrusions in medaka embryos, which consists of the following steps: preparation of Actin-Chromobody-GFP and α-bungarotoxin mRNAs for actin labeling and immobilization of the embryo, respectively; microinjection of the mRNAs into embryos in a mosaic fashion to sparsely label individual cells; removal of the hard chorion, which hampers observation; and visualization of cellular protrusions in the embryo with a confocal microscope. Overall, our protocol provides a simple method to reveal cellular protrusions in vivo by confocal microscopy.
Collapse
Affiliation(s)
- Toru Kawanishi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Ann Kathrin Heilig
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Ignácz A, Nagy-Herczeg D, Hausser A, Schlett K. Dendritic effects of genetically encoded actin-labeling probes in cultured hippocampal neurons. Mol Biol Cell 2023; 34:br8. [PMID: 36989034 PMCID: PMC10295473 DOI: 10.1091/mbc.e22-08-0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Actin cytoskeleton predominantly regulates the formation and maintenance of synapses by controlling dendritic spine morphology and motility. To visualize actin dynamics, actin molecules can be labeled by genetically fusing fluorescent proteins to actin monomers, actin-binding proteins, or single-chain anti-actin antibodies. In the present study, we compared the dendritic effect of EGFP-actin, LifeAct-TagGFP2 (LifeAct-GFP), and Actin-Chromobody-TagGFP2 (AC-GFP) in mouse cultured hippocampal neurons using unbiased quantitative methods. The actin-binding probes LifeAct-GFP and AC-GFP showed similar affinity to F-actin, but in contrast to EGFP-actin, they did not reveal subtle changes in actin remodeling between mushroom-shaped spines and filopodia. All tested actin probes colocalized with phalloidin similarly; however, the enrichment of LifeAct-GFP in dendritic spines was remarkably lower compared with the other constructs. LifeAct-GFP expression was tolerated at a higher expression level compared with EGFP-actin and AC-GFP with only subtle differences identified in dendritic spine morphology and protrusion density. While EGFP-actin and LifeAct-GFP expression did not alter dendritic arborization, AC-GFP-expressing neurons displayed a reduced dendritic tree. Thus, although all tested actin probes may be suitable for actin imaging studies, certain limitations should be considered before performing experiments with a particular actin-labeling probe in primary neurons.
Collapse
Affiliation(s)
- Attila Ignácz
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Domonkos Nagy-Herczeg
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Katalin Schlett
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
7
|
Nitta RT, Luo EJ, Lim M, Li G. Can tumor treating fields induce DNA damage and reduce cell motility in medulloblastoma cell lines? J Neurosurg Pediatr 2022; 30:555-566. [PMID: 36208441 DOI: 10.3171/2022.8.peds22300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/25/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Medulloblastoma (MB) is the most common malignant pediatric brain tumor and accounts for approximately 20% of all pediatric CNS tumors. Current multimodal treatment is associated with a 70%-90% 5-year survival rate; however, the prognosis for patients with tumor dissemination and recurrent MB remains poor. The majority of survivors exhibit long-term neurocognitive complications; thus, more effective and less toxic treatments are critically needed. Tumor treating fields (TTFields) are low-intensity, alternating electric fields that disrupt cell division through physical interactions with key molecules during mitosis. Side effects from TTField therapy are minimal, making it an ideal candidate for MB treatment. METHODS To determine if TTFields can be an effective treatment for MB, the authors conducted an in vitro study treating multiple MB cell lines. Three MB molecular subgroups (SHH [sonic hedgehog], group 3, and group 4) were treated for 24, 48, and 72 hours at 100, 200, 300, and 400 kHz. Combinatorial studies were conducted with the small-molecule casein kinase 2 inhibitor CX-4945. RESULTS TTFields reduced MB cell growth with an optimal frequency of 300 kHz, and the most efficacious treatment time was 72 hours. Treatment with TTFields dysregulated actin polymerization and corresponded with a reduction in cell motility and invasion. TTFields also induced DNA damage (γH2AX, 53BP1) that correlated with an increase in apoptotic cells. The authors discovered that CX-4945 works synergistically with TTFields to reduce MB growth. In addition, combining CX-4945 and TTFields increased the cellular actin dysregulation, which correlated with a decrease in MB migration. CONCLUSIONS The findings of this study demonstrate that TTFields may be a novel and less toxic method to treat patients with MB.
Collapse
|
8
|
Wu P, Yong P, Zhang Z, Xu R, Shang R, Shi J, Zhang J, Bi P, Chen E, Du S. Loss of Myomixer Results in Defective Myoblast Fusion, Impaired Muscle Growth, and Severe Myopathy in Zebrafish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1023-1038. [PMID: 36083384 PMCID: PMC10112271 DOI: 10.1007/s10126-022-10159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The development and growth of fish skeletal muscles require myoblast fusion to generate multinucleated myofibers. While zebrafish fast-twitch muscle can fuse to generate multinucleated fibers, the slow-twitch muscle fibers remain mononucleated in zebrafish embryos and larvae. The mechanism underlying the fiber-type-specific control of fusion remains elusive. Recent genetic studies using mice identified a long-sought fusion factor named Myomixer. To understand whether Myomixer is involved in the fiber-type specific fusion, we analyzed the transcriptional regulation of myomixer expression and characterized the muscle growth phenotype upon genetic deletion of myomixer in zebrafish. The data revealed that overexpression of Sonic Hedgehog (Shh) drastically inhibited myomixer expression and blocked myoblast fusion, recapitulating the phenotype upon direct genetic deletion of myomixer from zebrafish. The fusion defect in myomixer mutant embryos could be faithfully rescued upon re-expression of zebrafish myomixer gene or its orthologs from shark or human. Interestingly, myomixer mutant fish survived to adult stage though were notably smaller than wildtype siblings. Severe myopathy accompanied by the uncontrolled adipose infiltration was observed in both fast and slow muscle tissues of adult myomixer mutants. Collectively, our data highlight an indispensable role of myomixer gene for cell fusion during both embryonic muscle development and post-larval muscle growth.
Collapse
Affiliation(s)
- Ping Wu
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, USA
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, China
| | - Pengzheng Yong
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, USA
| | - Zhanxiong Zhang
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, USA
| | - Rui Xu
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, USA
| | - Renjie Shang
- Center for Molecular Medicine & Department of Genetics, University of Georgia, Athens, USA
| | - Jun Shi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, USA
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jianshe Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, China
| | - Pengpeng Bi
- Center for Molecular Medicine & Department of Genetics, University of Georgia, Athens, USA
| | - Elizabeth Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, USA.
| |
Collapse
|