1
|
Wang K, Lu J, Song C, Qiao M, Li Y, Chang M, Bao H, Qiu Y, Qian B. Extracellular Vesicles Derived from Ligament Tissue Transport Interleukin-17A to Mediate Ligament-To-Bone Crosstalk in Ankylosing Spondylitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406876. [PMID: 39308181 PMCID: PMC11633500 DOI: 10.1002/advs.202406876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Pathological new bone formation is a critical feature of the progression of ankylosing spondylitis (AS), and spine ankylosis is a distinctive feature of this condition. Ligaments are the primary regions of pathological new bone formation in AS. Here, it is demonstrated that ligament tissue-derived extracellular vesicles (EVs) and their interleukin-17A (IL-17A) cargo mediate the communication between the tissue and other cells. The investigation revealed that IL-17A in EVs can activate the JAK-STAT3 pathway, thereby stimulating the expression of MMP14 in AS ligament. Overexpression of MMP14 can lead to changes in the cytoskeleton and mechanical signaling of mesenchymal stem cells and other cells. These alterations in cellular cytoskeleton and mechanical signaling at ligament sites in patients with AS or in stem cells treated with EVs can result in pathological new bone formation. Finally, inhibiting IL-17A activity and EV endocytosis effectively controlled inflammation and pathological new bone formation. Overall, these data suggest that ligament-derived EVs and the enclosed IL-17A have a potential role in driving pathological new bone formation in AS, and targeting EVs may therefore emerge as a novel approach to delaying ectopic ossification in AS.
Collapse
Affiliation(s)
- Kaiyang Wang
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Jingshun Lu
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Chenyu Song
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Mu Qiao
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Yao Li
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Menghan Chang
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Hongda Bao
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Yong Qiu
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Bang‐Ping Qian
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| |
Collapse
|
2
|
Shi V, Morgan EF. Estrogen and estrogen receptors mediate the mechanobiology of bone disease and repair. Bone 2024; 188:117220. [PMID: 39106937 PMCID: PMC11392539 DOI: 10.1016/j.bone.2024.117220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
It is well understood that the balance of bone formation and resorption is dependent on both mechanical and biochemical factors. In addition to cell-secreted cytokines and growth factors, sex hormones like estrogen are critical to maintaining bone health. Although the direct osteoprotective function of estrogen and estrogen receptors (ERs) has been reported extensively, evidence that estrogen signaling also has a role in mediating the effects of mechanical loading on maintenance of bone mass and healing of bone injuries has more recently emerged. Recent studies have underscored the role of estrogen and ERs in many pathways of bone mechanosensation and mechanotransduction. Estrogen and ERs have been shown to augment integrin-based mechanotransduction as well as canonical Wnt/b-catenin, RhoA/ROCK, and YAP/TAZ pathways. Estrogen and ERs also influence the mechanosensitivity of not only osteocytes but also osteoblasts, osteoclasts, and marrow stromal cells. The current review will highlight these roles of estrogen and ERs in cellular mechanisms underlying bone mechanobiology and discuss their implications for management of osteoporosis and bone fractures. A greater understanding of the mechanisms behind interactions between estrogen and mechanical loading may be crucial to addressing the shortcomings of current hormonal and pharmaceutical therapies. A combined therapy approach including high-impact exercise therapy may mitigate adverse side effects and allow an effective long-term solution for the prevention, treatment, and management of bone fragility in at-risk populations. Furthermore, future implications to novel local delivery mechanisms of hormonal therapy for osteoporosis treatment, as well as the effects on bone health of applications of sex hormone therapy outside of bone disease, will be discussed.
Collapse
Affiliation(s)
- Vivian Shi
- Boston University, Department of Biomedical Engineering, 44 Cummington St, Boston 02215, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 44 Cummington St, Boston 02215, MA, USA
| | - Elise F Morgan
- Boston University, Department of Biomedical Engineering, 44 Cummington St, Boston 02215, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 44 Cummington St, Boston 02215, MA, USA.
| |
Collapse
|
3
|
Lin CY, Sassi A, Wu Y, Seaman K, Tang W, Song X, Bienenstock R, Yokota H, Sun Y, Geng F, Wang L, You L. Mechanotransduction pathways regulating YAP nuclear translocation under Yoda1 and vibration in osteocytes. Bone 2024; 190:117283. [PMID: 39413946 DOI: 10.1016/j.bone.2024.117283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/22/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Yes-associated protein (YAP) is a mechanosensitive protein crucial for bone remodeling. Although research has identified pathways and components involved in YAP regulation, the precise mechanisms of its localization during Piezo1 activation or vibration remain unclear. Piezo1, a mechanosensitive ion channel, allows calcium ions to flow into cells upon activation. Recent studies suggest that combining Yoda1, a Piezo1 activator, with low-magnitude high-frequency (LMHF) vibration (>30 Hz, <1 g acceleration) enhances YAP nuclear translocation. This combination potentially improves the mechanoresponse and therapeutic efficacy of LMHF vibration in bone cells. This study aims to elucidate how Yoda1 and LMHF vibration regulate mechanosensitive structures and pathways, leading to YAP nuclear translocation in MLO-Y4 osteocyte like cells. We investigated the roles of the cytoskeleton and nuclear envelope (NE) in YAP activation under combined LMHF vibration and Yoda1 treatments. Additionally, we analyzed differentially expressed genes (DEGs) in MLO-Y4 cells subjected to these treatments and in Piezo1 knockdown MLO-Y4 cells exposed to vibration. Our findings indicated that increased YAP nuclear translocation with combined treatment may result from the distinct effects of Yoda1 and vibration. Specifically, Yoda1 influenced YAP through mechanisms involving actin and NE dynamics, while LMHF vibration may modulate YAP via the interleukin 6 (IL6)/signal transducer and activator of transcription 3 (STAT3) axis. This study provides new insights and potential therapeutic targets for osteocyte-related pathologies.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| | - Amel Sassi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| | - Yuning Wu
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON L8S 4L7, Canada.
| | - Kimberly Seaman
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| | - Wentian Tang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| | - Xin Song
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| | - Raphael Bienenstock
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| | - Fei Geng
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON L8S 4L7, Canada.
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Lidan You
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada; Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON K7L3N6, Canada.
| |
Collapse
|
4
|
Zhao Z, Geng Y, Ni Q, Chen Y, Cao Y, Lu Y, Wang H, Wang R, Sun W. IFT80 promotes early bone healing of tooth sockets through the activation of TAZ/RUNX2 pathway. Oral Dis 2024; 30:4558-4572. [PMID: 38287672 DOI: 10.1111/odi.14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
Intraflagellar transport (IFT) proteins have been reported to regulate cell growth and differentiation as the essential functional component of primary cilia. The effects of IFT80 on early bone healing of extraction sockets have not been well studied. To investigate whether deletion of Ift80 in alveolar bone-derived mesenchymal stem cells (aBMSCs) affected socket bone healing, we generated a mouse model of specific knockout of Ift80 in Prx1 mesenchymal lineage cells (Prx1Cre;IFT80f/f). Our results demonstrated that deletion of IFT80 in Prx1 lineage cells decreased the trabecular bone volume, ALP-positive osteoblastic activity, TRAP-positive osteoclastic activity, and OSX-/COL I-/OCN-positive areas in tooth extraction sockets of Prx1Cre; IFT80f/f mice compared with IFT80f/f littermates. Furthermore, aBMSCs from Prx1Cre; IFT80f/f mice showed significantly decreased osteogenic markers and downregulated migration and proliferation capacity. Importantly, the overexpression of TAZ recovered significantly the expressions of osteogenic markers and migration capacity of aBMSCs. Lastly, the local administration of lentivirus for TAZ enhanced the expression of RUNX2 and OSX and promoted early bone healing of extraction sockets from Prx1Cre; IFT80f/f mice. Thus, IFT80 promotes osteogenesis and early bone healing of tooth sockets through the activation of TAZ/RUNX2 pathway.
Collapse
Affiliation(s)
- Ziwei Zhao
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ying Geng
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Qiaoqi Ni
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yue Chen
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yanan Cao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yahui Lu
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Hua Wang
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ruixia Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Wen Sun
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
5
|
Jahn J, Ehlen QT, Kaplan L, Best TM, Meng Z, Huang CY. Interplay of Glucose Metabolism and Hippo Pathway in Chondrocytes: Pathophysiology and Therapeutic Targets. Bioengineering (Basel) 2024; 11:972. [PMID: 39451348 PMCID: PMC11505586 DOI: 10.3390/bioengineering11100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
In this review, we explore the intricate relationship between glucose metabolism and mechanotransduction pathways, with a specific focus on the role of the Hippo signaling pathway in chondrocyte pathophysiology. Glucose metabolism is a vital element in maintaining proper chondrocyte function, but it has also been implicated in the pathogenesis of osteoarthritis (OA) via the induction of pro-inflammatory signaling pathways and the establishment of an intracellular environment conducive to OA. Alternatively, mechanotransduction pathways such as the Hippo pathway possess the capacity to respond to mechanical stimuli and have an integral role in maintaining chondrocyte homeostasis. However, these mechanotransduction pathways can be dysregulated and potentially contribute to the progression of OA. We discussed how alterations in glucose levels may modulate the Hippo pathway components via a variety of mechanisms. Characterizing the interaction between glucose metabolism and the Hippo pathway highlights the necessity of balancing both metabolic and mechanical signaling to maintain chondrocyte health and optimal functionality. Furthermore, this review demonstrates the scarcity of the literature on the relationship between glucose metabolism and mechanotransduction and provides a summary of current research dedicated to this specific area of study. Ultimately, increased research into this topic may elucidate novel mechanisms and relationships integrating mechanotransduction and glucose metabolism. Through this review we hope to inspire future research into this topic to develop innovative treatments for addressing the clinical challenges of OA.
Collapse
Affiliation(s)
- Jacob Jahn
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Lee Kaplan
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Thomas M. Best
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Zhipeng Meng
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chun-Yuh Huang
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
6
|
Zhang TM, Jiao MN, Yang K, Wang HL, Zhang CS, Wang SH, Zhang GM, Miao HJ, Shen J, Yan YB. YAP promotes the early development of temporomandibular joint bony ankylosis by regulating mesenchymal stem cell function. Sci Rep 2024; 14:12704. [PMID: 38830996 PMCID: PMC11148065 DOI: 10.1038/s41598-024-63613-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
To explore the role of YAP, a key effector of the Hippo pathway, in temporomandibular joint (TMJ) ankylosis. The temporal and spatial expression of YAP was detected via immunohistochemistry and multiplex immunohistochemistry on postoperative Days 1, 4, 7, 9, 11, 14 and 28 in a sheep model. Isolated mesenchymal stem cells (MSCs) from samples of the Day 14. The relative mRNA expression of YAP was examined before and after the osteogenic induction of MSCs. A YAP-silenced MSC model was constructed, and the effect of YAP knockdown on MSC function was examined. YAP is expressed in the nucleus of the key sites that determine the ankylosis formation, indicating that YAP is activated in a physiological state. The expression of YAP increased gradually over time. Moreover, the number of cells coexpressing of RUNX2 and YAP-with the osteogenic active zone labelled by RUNX2-tended to increase after Day 9. After the osteogenic induction of MSCs, the expression of YAP increased. After silencing YAP, the osteogenic, proliferative and migratory abilities of the MSCs were inhibited. YAP is involved in the early development of TMJ bony ankylosis. Inhibition of YAP using shRNA might be a promising way to prevent or treat TMJ ankylosis.
Collapse
Affiliation(s)
- Tong-Mei Zhang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, China
- Tianjin's Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, China
- Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, China
- Tianjin Medical University, 22 Qi-Xiang-Tai Road, Heping District, Tianjin, 300070, China
| | - Mai-Ning Jiao
- Department of Oral and Maxillofacial Surgery, Weifang People's Hospital, 151 GuangWen Street, KuiWen District, Weifang, 261100, ShanDong Province, China
| | - Kun Yang
- Department of Oromaxillofacial-Head and Neck Surgery, China Three Gorges University Affiliated Renhe Hospital, 410 Yiling Ave, Hubei, 261100, China
| | - Hua-Lun Wang
- Department of Oral and Maxillofacial Surgery, Jining Stomatological Hospital, 22 Communist Youth League Road, Rencheng District, Jining, 261100, ShanDong Province, China
| | - Chang-Song Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China
| | - Shi-Hua Wang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, China
| | - Guan-Meng Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China
| | - He-Jing Miao
- Department of Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), 1 Jiazi Road, Shunde District, Foshan, 528300, GuangDong Province, China
| | - Jun Shen
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, China.
- Tianjin's Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, China.
- Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, China.
| | - Ying-Bin Yan
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China.
| |
Collapse
|
7
|
Wang F, Wang H, Zhang H, Sun B, Wang Z. A Novel Mechanism of MSCs Responding to Occlusal Force for Bone Homeostasis. J Dent Res 2024; 103:642-651. [PMID: 38665065 DOI: 10.1177/00220345241236120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
Alveolar bone, as tooth-supporting bone for mastication, is sensitive to occlusal force. However, the mechanism of alveolar bone loss after losing occlusal force remains unclear. Here, we performed single-cell RNA sequencing of nonhematopoietic (CD45-) cells in mouse alveolar bone after removing the occlusal force. Mesenchymal stromal cells (MSCs) and endothelial cell (EC) subsets were significantly decreased in frequency, as confirmed by immunofluorescence and flow cytometry. The osteogenic and proangiogenic abilities of MSCs were impaired, and the expression of mechanotransducers yes associated protein 1 (Yap) and WW domain containing transcription regulator 1 (Taz) in MSCs decreased. Conditional deletion of Yap and Taz from LepR+ cells, which are enriched in MSCs that are important for adult bone homeostasis, significantly decreased alveolar bone mass and resisted any further changes in bone mass induced by occlusal force changes. Interestingly, LepR-Cre; Yapf/f; Tazf/f mice showed a decrease in CD31hi endomucin (Emcn)hi endothelium, and the expression of some EC-derived signals acting on osteoblastic cells was inhibited in alveolar bone. Mechanistically, conditional deletion of Yap and Taz in LepR+ cells inhibited the secretion of pleiotrophin (Ptn), which impaired the proangiogenic capacity of LepR+ cells. Knockdown in MSC-derived Ptn repressed human umbilical vein EC tube formation in vitro. More important, administration of recombinant PTN locally recovered the frequency of CD31hiEmcnhi endothelium and rescued the low bone mass phenotype of LepR-Cre; Yapf/f; Tazf/f mice. Taken together, these findings suggest that occlusal force governs MSC-regulated endothelium to maintain alveolar bone homeostasis through the Yap/Taz/Ptn axis, providing a reference for further understanding of the relationship between dysfunction and bone homeostasis.
Collapse
Affiliation(s)
- F Wang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - H Wang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - H Zhang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - B Sun
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Z Wang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
8
|
Lu M, Zhu M, Wu Z, Liu W, Cao C, Shi J. The role of YAP/TAZ on joint and arthritis. FASEB J 2024; 38:e23636. [PMID: 38752683 DOI: 10.1096/fj.202302273rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common forms of arthritis with undefined etiology and pathogenesis. Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ), which act as sensors for cellular mechanical and inflammatory cues, have been identified as crucial players in the regulation of joint homeostasis. Current studies also reveal a significant association between YAP/TAZ and the pathogenesis of OA and RA. The objective of this review is to elucidate the impact of YAP/TAZ on different joint tissues and to provide inspiration for further studying the potential therapeutic implications of YAP/TAZ on arthritis. Databases, such as PubMed, Cochran Library, and Embase, were searched for all available studies during the past two decades, with keywords "YAP," "TAZ," "OA," and "RA."
Collapse
Affiliation(s)
- Mingcheng Lu
- Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Mengqi Zhu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Zuping Wu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Wei Liu
- Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Chuwen Cao
- Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Jiejun Shi
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang, Hangzhou, China
| |
Collapse
|
9
|
Jia S, Liang R, Chen J, Liao S, Lin J, Li W. Emerging technology has a brilliant future: the CRISPR-Cas system for senescence, inflammation, and cartilage repair in osteoarthritis. Cell Mol Biol Lett 2024; 29:64. [PMID: 38698311 PMCID: PMC11067114 DOI: 10.1186/s11658-024-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.
Collapse
Affiliation(s)
- Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Rongji Liang
- Shantou University Medical College, Shantou, 515041, China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Shuai Liao
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Wei Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
10
|
Schamberger B, Ehrig S, Dechat T, Spitzer S, Bidan CM, Fratzl P, Dunlop JWC, Roschger A. Twisted-plywood-like tissue formation in vitro. Does curvature do the twist? PNAS NEXUS 2024; 3:pgae121. [PMID: 38590971 PMCID: PMC10999733 DOI: 10.1093/pnasnexus/pgae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024]
Abstract
Little is known about the contribution of 3D surface geometry to the development of multilayered tissues containing fibrous extracellular matrix components, such as those found in bone. In this study, we elucidate the role of curvature in the formation of chiral, twisted-plywood-like structures. Tissues consisting of murine preosteoblast cells (MC3T3-E1) were grown on 3D scaffolds with constant-mean curvature and negative Gaussian curvature for up to 32 days. Using 3D fluorescence microscopy, the influence of surface curvature on actin stress-fiber alignment and chirality was investigated. To gain mechanistic insights, we did experiments with MC3T3-E1 cells deficient in nuclear A-type lamins or treated with drugs targeting cytoskeleton proteins. We find that wild-type cells form a thick tissue with fibers predominantly aligned along directions of negative curvature, but exhibiting a twist in orientation with respect to older tissues. Fiber orientation is conserved below the tissue surface, thus creating a twisted-plywood-like material. We further show that this alignment pattern strongly depends on the structural components of the cells (A-type lamins, actin, and myosin), showing a role of mechanosensing on tissue organization. Our data indicate the importance of substrate curvature in the formation of 3D tissues and provide insights into the emergence of chirality.
Collapse
Affiliation(s)
- Barbara Schamberger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Sebastian Ehrig
- Laboratory of Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Thomas Dechat
- Ludwig Boltzmann Institute of Osteology of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Silvia Spitzer
- Ludwig Boltzmann Institute of Osteology of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Cécile M Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - John W C Dunlop
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Andreas Roschger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
11
|
Kornsuthisopon C, Nowwarote N, Chansaenroj A, Photichailert S, Rochanavibhata S, Klincumhom N, Petit S, Dingli F, Loew D, Fournier BPJ, Osathanon T. Human dental pulp stem cells derived extracellular matrix promotes mineralization via Hippo and Wnt pathways. Sci Rep 2024; 14:6777. [PMID: 38514682 PMCID: PMC10957957 DOI: 10.1038/s41598-024-56845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Extracellular matrix (ECM) is an intricate structure providing the microenvironment niche that influences stem cell differentiation. This study aimed to investigate the efficacy of decellularized ECM derived from human dental pulp stem cells (dECM_DPSCs) and gingival-derived mesenchymal stem cells (dECM_GSCs) as an inductive scaffold for osteogenic differentiation of GSCs. The proteomic analysis demonstrated that common and signature matrisome proteins from dECM_DPSCs and dECM_GSCs were related to osteogenesis/osteogenic differentiation. RNA sequencing data from GSCs reseeded on dECM_DPSCs revealed that dECM_DPSCs upregulated genes related to the Hippo and Wnt signaling pathways in GSCs. In the inhibitor experiments, results revealed that dECM_DPSCs superiorly promoted GSCs osteogenic differentiation, mainly mediated through Hippo and Wnt signaling. The present study emphasizes the promising translational application of dECM_DPSCs as a bio-scaffold rich in favorable regenerative microenvironment for tissue engineering.
Collapse
Affiliation(s)
- Chatvadee Kornsuthisopon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330, Thailand
| | - Nunthawan Nowwarote
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology, 75006, Paris, France
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006, Paris, France
| | - Ajjima Chansaenroj
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330, Thailand
| | - Suphalak Photichailert
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330, Thailand
| | - Sunisa Rochanavibhata
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nuttha Klincumhom
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330, Thailand
| | - Stephane Petit
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006, Paris, France
| | - Florent Dingli
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, 26 Rue d'Ulm, 75248 Cedex 05, Paris, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, 26 Rue d'Ulm, 75248 Cedex 05, Paris, France
| | - Benjamin P J Fournier
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology, 75006, Paris, France.
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006, Paris, France.
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
12
|
Cong Q, Yang Y. Hedgehog Signaling Controls Chondrogenesis and Ectopic Bone Formation via the Yap-Ihh Axis. Biomolecules 2024; 14:347. [PMID: 38540766 PMCID: PMC10968511 DOI: 10.3390/biom14030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 07/16/2024] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare congenital disorder characterized by abnormal bone formation due to ACVR1 gene mutations. The identification of the molecular mechanisms underlying the ectopic bone formation and expansion in FOP is critical for the effective treatment or prevention of HO. Here we find that Hh signaling activation is required for the aberrant ectopic bone formation in FOP. We show that the expression of Indian hedgehog (Ihh), a Hh ligand, as well as downstream Hh signaling, was increased in ectopic bone lesions in Acvr1R206H; ScxCre mice. Pharmacological treatment with an Ihh-neutralizing monoclonal antibody dramatically reduced chondrogenesis and ectopic bone formation. Moreover, we find that the activation of Yap in the FOP mouse model and the genetic deletion of Yap halted ectopic bone formation and decreased Ihh expression. Our mechanistic studies showed that Yap and Smad1 directly bind to the Ihh promoter and coordinate to induce chondrogenesis by promoting Ihh expression. Therefore, the Yap activation in FOP lesions promoted ectopic bone formation and expansion in both cell-autonomous and non-cell-autonomous manners. These results uncovered the crucial role of the Yap-Ihh axis in FOP pathogenesis, suggesting the inhibition of Ihh or Yap as a potential therapeutic strategy to prevent and reduce HO.
Collapse
Affiliation(s)
- Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, MA 02115, USA
| |
Collapse
|
13
|
Melrose J. Hippo cell signaling and HS-proteoglycans regulate tissue form and function, age-dependent maturation, extracellular matrix remodeling, and repair. Am J Physiol Cell Physiol 2024; 326:C810-C828. [PMID: 38223931 DOI: 10.1152/ajpcell.00683.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This review examined how Hippo cell signaling and heparan sulfate (HS)-proteoglycans (HSPGs) regulate tissue form and function. Despite being a nonweight-bearing tissue, the brain is regulated by Hippo mechanoresponsive cell signaling pathways during embryonic development. HS-proteoglycans interact with growth factors, morphogens, and extracellular matrix components to regulate development and pathology. Pikachurin and Eyes shut (Eys) interact with dystroglycan to stabilize the photoreceptor axoneme primary cilium and ribbon synapse facilitating phototransduction and neurotransduction with bipolar retinal neuronal networks in ocular vision, the primary human sense. Another HSPG, Neurexin interacts with structural and adaptor proteins to stabilize synapses and ensure specificity of neural interactions, and aids in synaptic potentiation and plasticity in neurotransduction. HSPGs also stabilize the blood-brain barrier and motor neuron basal structures in the neuromuscular junction. Agrin and perlecan localize acetylcholinesterase and its receptors in the neuromuscular junction essential for neuromuscular control. The primary cilium is a mechanosensory hub on neurons, utilized by YES associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) Hippo, Hh, Wnt, transforming growth factor (TGF)-β/bone matrix protein (BMP) receptor tyrosine kinase cell signaling. Members of the glypican HSPG proteoglycan family interact with Smoothened and Patched G-protein coupled receptors on the cilium to regulate Hh and Wnt signaling during neuronal development. Control of glycosyl sulfotransferases and endogenous protease expression by Hippo TAZ YAP represents a mechanism whereby the fine structure of HS-proteoglycans can be potentially modulated spatiotemporally to regulate tissue morphogenesis in a similar manner to how Hippo signaling controls sialyltransferase expression and mediation of cell-cell recognition, dysfunctional sialic acid expression is a feature of many tumors.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Sydney Medical School-Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Horváth E, Sólyom Á, Székely J, Nagy EE, Popoviciu H. Inflammatory and Metabolic Signaling Interfaces of the Hypertrophic and Senescent Chondrocyte Phenotypes Associated with Osteoarthritis. Int J Mol Sci 2023; 24:16468. [PMID: 38003658 PMCID: PMC10671750 DOI: 10.3390/ijms242216468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Osteoarthritis (OA) is a complex disease of whole joints with progressive cartilage matrix degradation and chondrocyte transformation. The inflammatory features of OA are reflected in increased synovial levels of IL-1β, IL-6 and VEGF, higher levels of TLR-4 binding plasma proteins and increased expression of IL-15, IL-18, IL-10 and Cox2, in cartilage. Chondrocytes in OA undergo hypertrophic and senescent transition; in these states, the expression of Sox-9, Acan and Col2a1 is suppressed, whereas the expression of RunX2, HIF-2α and MMP-13 is significantly increased. NF-kB, which triggers many pro-inflammatory cytokines, works with BMP, Wnt and HIF-2α to link hypertrophy and inflammation. Altered carbohydrate metabolism and the upregulation of GLUT-1 contribute to the formation of end-glycation products that trigger inflammation via the RAGE pathway. In addition, a glycolytic shift, increased rates of oxidative phosphorylation and mitochondrial dysfunction generate reactive oxygen species with deleterious effects. An important surveyor mechanism, the YAP/TAZ signaling system, controls chondrocyte differentiation, inhibits ageing by protecting the nuclear envelope and suppressing NF-kB, MMP-13 and aggrecanases. The inflammatory microenvironment and synthesis of key matrix components are also controlled by SIRT1 and mTORc. Senescent chondrocytes represent the functional end stage of hypertrophic differentiation and characteristically upregulate p16 and p21, but also a variety of inflammatory cytokines, chemokines and metalloproteinases, developing the senescence-associated secretory phenotype. Senolysis with dendrobin, miR29b-5p and other agents has been shown to be efficient under experimental conditions, and appears to be a promising tool for the treatment of OA, as it restores COL2A1 and aggrecan synthesis, suppressing NF-kB and destructive metalloproteinases.
Collapse
Affiliation(s)
- Emőke Horváth
- Department of Pathology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540142 Targu Mures, Romania;
- Pathology Service, County Emergency Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu Street, 540136 Targu Mures, Romania
| | - Árpád Sólyom
- Department of Orthopedics-Traumatology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gh. Marinescu Street, 540142 Targu Mures, Romania;
- Clinic of Orthopaedics and Traumatology, County Emergency Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu Street, 540136 Targu Mures, Romania;
| | - János Székely
- Clinic of Orthopaedics and Traumatology, County Emergency Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu Street, 540136 Targu Mures, Romania;
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540142 Targu Mures, Romania
- Laboratory of Medical Analysis, Clinical County Hospital Mures, 6 Bernády György Square, 540394 Targu Mures, Romania
| | - Horațiu Popoviciu
- Department of Rheumatology, Physical and Medical Rehabilitation, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania;
| |
Collapse
|
15
|
Khotib J, Marhaeny HD, Miatmoko A, Budiatin AS, Ardianto C, Rahmadi M, Pratama YA, Tahir M. Differentiation of osteoblasts: the links between essential transcription factors. J Biomol Struct Dyn 2023; 41:10257-10276. [PMID: 36420663 DOI: 10.1080/07391102.2022.2148749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022]
Abstract
Osteoblasts, cells derived from mesenchymal stem cells (MSCs) in the bone marrow, are cells responsible for bone formation and remodeling. The differentiation of osteoblasts from MSCs is triggered by the expression of specific genes, which are subsequently controlled by pro-osteogenic pathways. Mature osteoblasts then differentiate into osteocytes and are embedded in the bone matrix. Dysregulation of osteoblast function can cause inadequate bone formation, which leads to the development of bone disease. Various key molecules are involved in the regulation of osteoblastogenesis, which are transcription factors. Previous studies have heavily examined the role of factors that control gene expression during osteoblastogenesis, both in vitro and in vivo. However, the systematic relationship of these transcription factors remains unknown. The involvement of ncRNAs in this mechanism, particularly miRNAs, lncRNAs, and circRNAs, has been shown to influence transcriptional factor activity in the regulation of osteoblast differentiation. Here, we discuss nine essential transcription factors involved in osteoblast differentiation, including Runx2, Osx, Dlx5, β-catenin, ATF4, Ihh, Satb2, and Shn3. In addition, we summarize the role of ncRNAs and their relationship to these essential transcription factors in order to improve our understanding of the transcriptional regulation of osteoblast differentiation. Adequate exploration and understanding of the molecular mechanisms of osteoblastogenesis can be a critical strategy in the development of therapies for bone-related diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Honey Dzikri Marhaeny
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Andang Miatmoko
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Aniek Setiya Budiatin
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Mahardian Rahmadi
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Yusuf Alif Pratama
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Tahir
- Department of Pharmaceutical Science, Kulliyah of Pharmacy, International Islamic University Malaysia, Pahang, Malaysia
| |
Collapse
|
16
|
Zhu J, Lun W, Feng Q, Cao X, Li Q. Mesenchymal stromal cells modulate YAP by verteporfin to mimic cartilage development and construct cartilage organoids based on decellularized matrix scaffolds. J Mater Chem B 2023; 11:7442-7453. [PMID: 37439116 DOI: 10.1039/d3tb01114c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The mechanical elasticity or stiffness of the ECM modulates YAP activity to regulate the differentiation of stem cells during the development and defect regeneration of cartilage tissue. However, the understanding of the scaffold-associated mechanobiology during the initiation of chondrogenesis and hyaline cartilaginous phenotype maintenance remains unclear. In order to elucidate such mechanisms to promote articular cartilage repair by producing more hyaline cartilage, we identify the relationship between YAP subcellular localization and variation of the cartilage structure and organization during the early postnatal explosive growth in incipient articular cartilage. Next, we prepared a decellularized cartilage scaffold with different stiffness (2-33 kPa) to investigate the effect of scaffold stiffness on the formation of hyaline cartilage by mesenchymal stem cells and the change of YAP activity. Furthermore, we simulated the decrease of cellular YAP activity during postnatal cartilage development by inhibiting YAP activity with verteporfin, and realized that the timing of drug incorporation was critical to regulate the differentiation of MSCs to hyaline chondrocytes and inhibit their hypertrophy and fibrosis. On this basis, we constructed hyaline cartilage organoids by decellularized matrix scaffolds. Collectively, the results herein demonstrate that YAP plays a critical role during in vitro chondrogenic differentiation which is tightly regulated by biochemical and mechanical regulation.
Collapse
Affiliation(s)
- Jiayi Zhu
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China.
| | - Wanqing Lun
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China.
| | - Qi Feng
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China.
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Xiaodong Cao
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China.
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Qingtao Li
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China.
| |
Collapse
|
17
|
Woodbury SM, Swanson WB, Mishina Y. Mechanobiology-informed biomaterial and tissue engineering strategies for influencing skeletal stem and progenitor cell fate. Front Physiol 2023; 14:1220555. [PMID: 37520820 PMCID: PMC10373313 DOI: 10.3389/fphys.2023.1220555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Skeletal stem and progenitor cells (SSPCs) are the multi-potent, self-renewing cell lineages that form the hematopoietic environment and adventitial structures of the skeletal tissues. Skeletal tissues are responsible for a diverse range of physiological functions because of the extensive differentiation potential of SSPCs. The differentiation fates of SSPCs are shaped by the physical properties of their surrounding microenvironment and the mechanical loading forces exerted on them within the skeletal system. In this context, the present review first highlights important biomolecules involved with the mechanobiology of how SSPCs sense and transduce these physical signals. The review then shifts focus towards how the static and dynamic physical properties of microenvironments direct the biological fates of SSPCs, specifically within biomaterial and tissue engineering systems. Biomaterial constructs possess designable, quantifiable physical properties that enable the growth of cells in controlled physical environments both in-vitro and in-vivo. The utilization of biomaterials in tissue engineering systems provides a valuable platform for controllably directing the fates of SSPCs with physical signals as a tool for mechanobiology investigations and as a template for guiding skeletal tissue regeneration. It is paramount to study this mechanobiology and account for these mechanics-mediated behaviors to develop next-generation tissue engineering therapies that synergistically combine physical and chemical signals to direct cell fate. Ultimately, taking advantage of the evolved mechanobiology of SSPCs with customizable biomaterial constructs presents a powerful method to predictably guide bone and skeletal organ regeneration.
Collapse
Affiliation(s)
- Seth M. Woodbury
- Yuji Mishina Laboratory, University of Michigan School of Dentistry, Department of Biologic and Materials Science & Prosthodontics, Ann Arbor, MI, United States
- University of Michigan College of Literature, Science, and Arts, Department of Chemistry, Ann Arbor, MI, United States
- University of Michigan College of Literature, Science, and Arts, Department of Physics, Ann Arbor, MI, United States
| | - W. Benton Swanson
- Yuji Mishina Laboratory, University of Michigan School of Dentistry, Department of Biologic and Materials Science & Prosthodontics, Ann Arbor, MI, United States
| | - Yuji Mishina
- Yuji Mishina Laboratory, University of Michigan School of Dentistry, Department of Biologic and Materials Science & Prosthodontics, Ann Arbor, MI, United States
| |
Collapse
|
18
|
Zhou J, Xiong S, Liu M, Yang H, Wei P, Yi F, Ouyang M, Xi H, Long Z, Liu Y, Li J, Ding L, Xiong L. Study on the influence of scaffold morphology and structure on osteogenic performance. Front Bioeng Biotechnol 2023; 11:1127162. [PMID: 37051275 PMCID: PMC10083331 DOI: 10.3389/fbioe.2023.1127162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/17/2023] [Indexed: 03/28/2023] Open
Abstract
The number of patients with bone defects caused by various bone diseases is increasing yearly in the aging population, and people are paying increasing attention to bone tissue engineering research. Currently, the application of bone tissue engineering mainly focuses on promoting fracture healing by carrying cytokines. However, cytokines implanted into the body easily cause an immune response, and the cost is high; therefore, the clinical treatment effect is not outstanding. In recent years, some scholars have proposed the concept of tissue-induced biomaterials that can induce bone regeneration through a scaffold structure without adding cytokines. By optimizing the scaffold structure, the performance of tissue-engineered bone scaffolds is improved and the osteogenesis effect is promoted, which provides ideas for the design and improvement of tissue-engineered bones in the future. In this study, the current understanding of the bone tissue structure is summarized through the discussion of current bone tissue engineering, and the current research on micro-nano bionic structure scaffolds and their osteogenesis mechanism is analyzed and discussed.
Collapse
Affiliation(s)
- Jingyu Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Shilang Xiong
- Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Min Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Hao Yang
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Wei
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Yi
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Min Ouyang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Hanrui Xi
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Zhisheng Long
- Department of Orthopedics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yayun Liu
- Department of Traumatology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Jingtang Li
- Department of Traumatology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Linghua Ding
- Department of Orthopedics, Jinhua People’s Hospital, Jinhua, Zhejiang, China
| | - Long Xiong
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- *Correspondence: Long Xiong,
| |
Collapse
|
19
|
Puts R, Khaffaf A, Shaka M, Zhang H, Raum K. Focused Low-Intensity Pulsed Ultrasound (FLIPUS) Mitigates Apoptosis of MLO-Y4 Osteocyte-like Cells. Bioengineering (Basel) 2023; 10:bioengineering10030387. [PMID: 36978778 PMCID: PMC10045139 DOI: 10.3390/bioengineering10030387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Long cytoplasmic processes of osteocytes orchestrate bone activity by integration of biochemical and mechanical signals and regulate load-induced bone adaptation. Low-Intensity Pulsed Ultrasound (LIPUS) is a clinically used technique for fracture healing that delivers mechanical impulses to the damaged bone tissue in a non-invasive and non-ionizing manner. The mechanism of action of LIPUS is still controversially discussed in the scientific community. In this study, the effect of focused LIPUS (FLIPUS) on the survival of starved MLO-Y4 osteocytes was investigated in vitro. Osteocytes stimulated for 10 min with FLIPUS exhibited extended dendrites, which formed frequent connections to neighboring cells and spanned longer distances. The sonicated cells displayed thick actin bundles and experienced increase in expression of connexin 43 (Cx43) proteins, especially on their dendrites, and E11 glycoprotein, which is responsible for the elongation of cellular cytoplasmic processes. After stimulation, expression of cell growth and survival genes as well as genes related to cell-cell communication was augmented. In addition, cell viability was improved after the sonication, and a decrease in ATP release in the medium was observed. In summary, FLIPUS mitigated apoptosis of starved osteocytes, which is likely related to the formation of the extensive dendritic network that ensured cell survival.
Collapse
Affiliation(s)
- Regina Puts
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies, Charité-Universitätsmedizin, 13353 Berlin, Germany
| | - Aseel Khaffaf
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Maria Shaka
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Hui Zhang
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Kay Raum
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| |
Collapse
|
20
|
Hao X, Zhao J, Jia L, He T, Wang H, Fan J, Yang Y, Su F, Lu Q, Zheng C, Yang L, Jie Q. XMU-MP-1 attenuates osteoarthritis via inhibiting cartilage degradation and chondrocyte apoptosis. Front Bioeng Biotechnol 2022; 10:998077. [PMID: 36199358 PMCID: PMC9527278 DOI: 10.3389/fbioe.2022.998077] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/14/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent type of degenerative joint disease; it is reported to be associated with inflammatory responses, chondrocyte apoptosis, and cartilage degeneration. XMU-MP-1 is a selective MST1/2 inhibitor which activates the downstream effector YAP and promotes cell growth. It has displayed excellent benefits in mouse intestinal repair, as well as liver repair and regeneration. However, the effects of XMU-MP-1 on OA remain unclear. In this study, we investigated the therapeutic role of XMU-MP-1 on interleukin-1β (IL-1β)-induced inflammation in mice chondrocytes and the destabilization of the medial meniscus surgery (DMM)-induced OA model. In chondrocytes, treatment with XMU-MP-1 elevated the matrix metalloproteinases (Mmp3, Mmp13) and decreased the extracellular matrix (Col2, Acan) induced by IL-1β. Moreover, XMU-MP-1 strongly inhibited IL-1β-induced chondrocyte apoptosis and significantly promoted chondrocyte proliferation. Furthermore, XMU-MP-1 demonstrated a protective and therapeutic influence on the mouse OA model. These findings indicate that XMU-MP-1 may have a protective effect on cartilage degradation and may be a new potential therapeutic option for OA.
Collapse
Affiliation(s)
- Xue Hao
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Research Center for Skeletal Developmental Deformity and Injury Repair, School of Life Science and Medicine, Northwest University, Xi’an, China
- Clinincal Research Center for Pediatric Skeletal Deformity and Injury of Shaanxi Province, Xi’an, China
| | - Jing Zhao
- College of Life Sciences, Northwest University, Xi’an, China
| | - Liyuan Jia
- College of Life Sciences, Northwest University, Xi’an, China
| | - Ting He
- Medical Research Institute, Northwestern Polytechnical University, Xi’an, China
| | - Huanbo Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jing Fan
- Institute of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yating Yang
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Research Center for Skeletal Developmental Deformity and Injury Repair, School of Life Science and Medicine, Northwest University, Xi’an, China
- Clinincal Research Center for Pediatric Skeletal Deformity and Injury of Shaanxi Province, Xi’an, China
| | - Fei Su
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Research Center for Skeletal Developmental Deformity and Injury Repair, School of Life Science and Medicine, Northwest University, Xi’an, China
- Clinincal Research Center for Pediatric Skeletal Deformity and Injury of Shaanxi Province, Xi’an, China
| | - Qingda Lu
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Research Center for Skeletal Developmental Deformity and Injury Repair, School of Life Science and Medicine, Northwest University, Xi’an, China
- Clinincal Research Center for Pediatric Skeletal Deformity and Injury of Shaanxi Province, Xi’an, China
| | - Chao Zheng
- Institute of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Qiang Jie
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Research Center for Skeletal Developmental Deformity and Injury Repair, School of Life Science and Medicine, Northwest University, Xi’an, China
- Clinincal Research Center for Pediatric Skeletal Deformity and Injury of Shaanxi Province, Xi’an, China
- *Correspondence: Qiang Jie,
| |
Collapse
|