1
|
Kofuji S, Wolfe K, Sumita K, Kageyama S, Yoshino H, Hirota Y, Ogawa-Iio A, Kanoh H, Sasaki M, Kofuji K, Davis MI, Pragani R, Shen M, Boxer MB, Nakatsu F, Nigorikawa K, Sasaki T, Takeuchi K, Senda T, Kim SM, Edinger AL, Simeonov A, Sasaki AT. A high dose KRP203 induces cytoplasmic vacuoles associated with altered phosphoinositide segregation and endosome expansion. Biochem Biophys Res Commun 2024; 718:149981. [PMID: 38735134 PMCID: PMC11416131 DOI: 10.1016/j.bbrc.2024.149981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
In animal cells, vacuoles are absent, but can be induced by diseases and drugs. While phosphoinositides are critical for membrane trafficking, their role in the formation of these vacuoles remains unclear. The immunosuppressive KRP203/Mocravimod, which antagonizes sphingosine-1-phosphate receptors, has been identified as having novel multimodal activity against phosphoinositide kinases. However, the impact of this novel KRP203 activity is unknown. Here, we show that KRP203 disrupts the spatial organization of phosphoinositides and induces extensive vacuolization in tumor cells and immortalized fibroblasts. The KRP203-induced vacuoles are primarily from endosomes, and augmented by inhibition of PIKFYVE and VPS34. Conversely, overexpression of PTEN decreased KRP203-induced vacuole formation. Furthermore, V-ATPase inhibition completely blunted KRP203-induced vacuolization, pointing to a critical requirement of the endosomal maturation process. Importantly, nearly a half of KRP203-induced vacuoles are significantly decorated with PI4P, a phosphoinositide typically enriched at the plasma membrane and Golgi. These results suggest a model that noncanonical spatial reorganization of phosphoinositides by KRP203 alters the endosomal maturation process, leading to vacuolization. Taken together, this study reveals a previously unrecognized bioactivity of KRP203 as a vacuole-inducing agent and its unique mechanism of phosphoinositide modulation, providing a new insight of phosphoinositide regulation into vacuolization-associated diseases and their molecular pathologies.
Collapse
Affiliation(s)
- Satoshi Kofuji
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Kara Wolfe
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Kazutaka Sumita
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Department of Endovascular Surgery, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Shun Kageyama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Hirofumi Yoshino
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Yoshihisa Hirota
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma-ku, Saitama, 337-8570, Japan
| | - Aki Ogawa-Iio
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma-ku, Saitama, 337-8570, Japan
| | - Hirotaka Kanoh
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Mika Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Kaori Kofuji
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Mindy I Davis
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Rajan Pragani
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Matthew B Boxer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Fubito Nakatsu
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Kiyomi Nigorikawa
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Toshiya Senda
- Structural Biology Research Center, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan; Department of Accelerator Science, SOKENDAI, Japan; Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Seong M Kim
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, California, 92697, USA
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, California, 92697, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Atsuo T Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, 45267, USA; Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Hiroshima, 734-8551, Japan.
| |
Collapse
|
2
|
Nguyen DPQ, Jallow AW, Lin YF, Lin YF. Exploring the Potential Role of Oligodendrocyte-Associated PIP4K2A in Alzheimer's Disease Complicated with Type 2 Diabetes Mellitus via Multi-Omic Analysis. Int J Mol Sci 2024; 25:6640. [PMID: 38928345 PMCID: PMC11204139 DOI: 10.3390/ijms25126640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are two common diseases that affect the elderly population worldwide. The identification of common genes associated with AD and T2DM holds promise for potential biomarkers and intriguing pathogenesis of these two complicated diseases. This study utilized a comprehensive approach by integrating transcriptome data from multiple cohorts, encompassing both AD and T2DM. The analysis incorporated various data types, including blood and tissue samples as well as single-cell datasets, allowing for a detailed assessment of gene expression patterns. From the brain region-specific single-cell analysis, PIP4K2A, which encodes phosphatidylinositol-5-phosphate 4-kinase type 2 alpha, was found to be expressed mainly in oligodendrocytes compared to other cell types. Elevated levels of PIP4K2A in AD and T2DM patients' blood were found to be associated with key cellular processes such as vesicle-mediated transport, negative regulation of autophagosome assembly, and cytosolic transport. The identification of PIP4K2A's potential roles in the cellular processes of AD and T2DM offers valuable insights into the development of biomarkers for diagnosis and therapy, especially in the complication of these two diseases.
Collapse
Affiliation(s)
- Doan Phuong Quy Nguyen
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan; (D.P.Q.N.); (A.W.J.)
- Institute of Biomedicine, Hue University of Medicine and Pharmacy, Hue University, Hue City 49120, Vietnam
- Department of Medical Genetics, Hue University of Medicine and Pharmacy, Hue University, Hue City 49120, Vietnam
| | - Amadou Wurry Jallow
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan; (D.P.Q.N.); (A.W.J.)
| | - Yi-Fang Lin
- Department of Laboratory Medicine, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan;
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan; (D.P.Q.N.); (A.W.J.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei City 110, Taiwan
| |
Collapse
|
4
|
The PIP4K2 inhibitor THZ-P1-2 exhibits antileukemia activity by disruption of mitochondrial homeostasis and autophagy. Blood Cancer J 2022; 12:151. [PMID: 36347832 PMCID: PMC9643393 DOI: 10.1038/s41408-022-00747-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
The treatment of acute leukemia is challenging because of the genetic heterogeneity between and within patients. Leukemic stem cells (LSCs) are relatively drug-resistant and frequently relapse. Their plasticity and capacity to adapt to extracellular stress, in which mitochondrial metabolism and autophagy play important roles, further complicates treatment. Genetic models of phosphatidylinositol-5-phosphate 4-kinase type 2 protein (PIP4K2s) inhibition have demonstrated the relevance of these enzymes in mitochondrial homeostasis and autophagic flux. Here, we uncovered the cellular and molecular effects of THZ-P1-2, a pan-inhibitor of PIP4K2s, in acute leukemia cells. THZ-P1-2 reduced cell viability and induced DNA damage, apoptosis, loss of mitochondrial membrane potential, and the accumulation of acidic vesicular organelles. Protein expression analysis revealed that THZ-P1-2 impaired autophagic flux. In addition, THZ-P1-2 induced cell differentiation and showed synergistic effects with venetoclax. In primary leukemia cells, LC-MS/MS-based proteome analysis revealed that sensitivity to THZ-P1-2 is associated with mitochondrial metabolism, cell cycle, cell-of-origin (hematopoietic stem cell and myeloid progenitor), and the TP53 pathway. The minimal effects of THZ-P1-2 observed in healthy CD34+ cells suggest a favorable therapeutic window. Our study provides insights into the pharmacological inhibition of PIP4K2s targeting mitochondrial homeostasis and autophagy, shedding light on a new class of drugs for acute leukemia.
Collapse
|