1
|
Gupta P, Singh S, Rai N, Verma A, Tiwari H, Kamble SC, Gautam HK, Gautam V. Unveiling the cytotoxic and anti-proliferative potential of green-synthesized silver nanoparticles mediated by Colletotrichum gloeosporioides. RSC Adv 2024; 14:4074-4088. [PMID: 38292267 PMCID: PMC10825743 DOI: 10.1039/d3ra06145k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Fungal endophytes are a putative source of bioactive metabolites that have found significant applications in nanomedicine due to their metabolic versatility. In the present study, an aqueous extract of the fungal endophyte, Colletotrichum gloeosporioides associated with a medicinal plant Oroxylum indicum, has been used for the fabrication of green silver nanoparticles (CgAgNPs) and further evaluated their cytotoxic and anti-proliferative activity. Bioanalytical techniques including UV-Vis spectral analysis revealed a sharp band at 435 nm and functional molecules from the aqueous extract involved in the synthesis of CgAgNPs were evidenced through FTIR. Further, the crystalline nature of CgAgNPs was determined through XRD analysis and microscopy techniques including AFM, TEM and FESEM demonstrated the spherical shape of CgAgNPs exhibiting a crystalline hexagonal lattice and the size was found to be in the range of 9-29 nm. The significant cytotoxic potential of CgAgNPs was observed against breast cancer cells, MDA-MB-231 and MCF-7 with IC50 values of 18.398 ± 0.376 and 38.587 ± 1.828 μg mL-1, respectively. The biochemical study revealed that the treatment of MDA-MB-231 and MCF-7 cells with CgAgNPs reduces glucose uptake, suppresses cell proliferation, and enhances LDH release, indicating reduced cell viability and progression. Moreover, our research revealed differential expression of genes associated with apoptosis, cell cycle inhibition and metastasis suppression, evidencing anti-proliferative activity of CgAgNPs. The main objective of the present study is to harness anti-breast cancer activity of novel biogenic nanoparticles synthesized using the aqueous extract of O. indicum associated C. gloeosporioides and study the underlying mechanistic pathway exerted by these mycogenic nanoparticles.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 India +918860182113
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 India +918860182113
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 India +918860182113
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 India +918860182113
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 India +918860182113
| | - Swapnil C Kamble
- Department of Technology, Savitribai Phule Pune University Ganeshkhind Pune 411007 India
| | - Hemant Kumar Gautam
- Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology Sukhdev Vihar New Delhi 110025 India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 India +918860182113
| |
Collapse
|
2
|
Rakhshaninejad M, Fathian M, Shirkoohi R, Barzinpour F, Gandomi AH. Refining breast cancer biomarker discovery and drug targeting through an advanced data-driven approach. BMC Bioinformatics 2024; 25:33. [PMID: 38253993 PMCID: PMC10810249 DOI: 10.1186/s12859-024-05657-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer remains a major public health challenge worldwide. The identification of accurate biomarkers is critical for the early detection and effective treatment of breast cancer. This study utilizes an integrative machine learning approach to analyze breast cancer gene expression data for superior biomarker and drug target discovery. Gene expression datasets, obtained from the GEO database, were merged post-preprocessing. From the merged dataset, differential expression analysis between breast cancer and normal samples revealed 164 differentially expressed genes. Meanwhile, a separate gene expression dataset revealed 350 differentially expressed genes. Additionally, the BGWO_SA_Ens algorithm, integrating binary grey wolf optimization and simulated annealing with an ensemble classifier, was employed on gene expression datasets to identify predictive genes including TOP2A, AKR1C3, EZH2, MMP1, EDNRB, S100B, and SPP1. From over 10,000 genes, BGWO_SA_Ens identified 1404 in the merged dataset (F1 score: 0.981, PR-AUC: 0.998, ROC-AUC: 0.995) and 1710 in the GSE45827 dataset (F1 score: 0.965, PR-AUC: 0.986, ROC-AUC: 0.972). The intersection of DEGs and BGWO_SA_Ens selected genes revealed 35 superior genes that were consistently significant across methods. Enrichment analyses uncovered the involvement of these superior genes in key pathways such as AMPK, Adipocytokine, and PPAR signaling. Protein-protein interaction network analysis highlighted subnetworks and central nodes. Finally, a drug-gene interaction investigation revealed connections between superior genes and anticancer drugs. Collectively, the machine learning workflow identified a robust gene signature for breast cancer, illuminated their biological roles, interactions and therapeutic associations, and underscored the potential of computational approaches in biomarker discovery and precision oncology.
Collapse
Affiliation(s)
- Morteza Rakhshaninejad
- Industrial Engineering Department, Iran University of Science and Technology, Hengam Street, Tehran, 1684613114, Tehran, Iran
| | - Mohammad Fathian
- Industrial Engineering Department, Iran University of Science and Technology, Hengam Street, Tehran, 1684613114, Tehran, Iran.
| | - Reza Shirkoohi
- Cancer Biology Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Keshavarz Boulevard, Tehran, 1419733141, Tehran, Iran
| | - Farnaz Barzinpour
- Industrial Engineering Department, Iran University of Science and Technology, Hengam Street, Tehran, 1684613114, Tehran, Iran
| | - Amir H Gandomi
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, 2007, NSW, Australia
- University Research and Innovation Center (EKIK), Óbuda University, Budapest, 1034, Hungary
| |
Collapse
|
3
|
Zhu W, Yuan SS, Li J, Huang CB, Lin H, Liao B. A First Computational Frame for Recognizing Heparin-Binding Protein. Diagnostics (Basel) 2023; 13:2465. [PMID: 37510209 PMCID: PMC10377868 DOI: 10.3390/diagnostics13142465] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Heparin-binding protein (HBP) is a cationic antibacterial protein derived from multinuclear neutrophils and an important biomarker of infectious diseases. The correct identification of HBP is of great significance to the study of infectious diseases. This work provides the first HBP recognition framework based on machine learning to accurately identify HBP. By using four sequence descriptors, HBP and non-HBP samples were represented by discrete numbers. By inputting these features into a support vector machine (SVM) and random forest (RF) algorithm and comparing the prediction performances of these methods on training data and independent test data, it is found that the SVM-based classifier has the greatest potential to identify HBP. The model could produce an auROC of 0.981 ± 0.028 on training data using 10-fold cross-validation and an overall accuracy of 95.0% on independent test data. As the first model for HBP recognition, it will provide some help for infectious diseases and stimulate further research in related fields.
Collapse
Affiliation(s)
- Wen Zhu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou 571158, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou 571158, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
| | - Shi-Shi Yuan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Cheng-Bing Huang
- School of Computer Science and Technology, ABa Teachers University, Chengdu 623002, China
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bo Liao
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou 571158, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou 571158, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
4
|
Wekesa JS, Kimwele M. A review of multi-omics data integration through deep learning approaches for disease diagnosis, prognosis, and treatment. Front Genet 2023; 14:1199087. [PMID: 37547471 PMCID: PMC10398577 DOI: 10.3389/fgene.2023.1199087] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023] Open
Abstract
Accurate diagnosis is the key to providing prompt and explicit treatment and disease management. The recognized biological method for the molecular diagnosis of infectious pathogens is polymerase chain reaction (PCR). Recently, deep learning approaches are playing a vital role in accurately identifying disease-related genes for diagnosis, prognosis, and treatment. The models reduce the time and cost used by wet-lab experimental procedures. Consequently, sophisticated computational approaches have been developed to facilitate the detection of cancer, a leading cause of death globally, and other complex diseases. In this review, we systematically evaluate the recent trends in multi-omics data analysis based on deep learning techniques and their application in disease prediction. We highlight the current challenges in the field and discuss how advances in deep learning methods and their optimization for application is vital in overcoming them. Ultimately, this review promotes the development of novel deep-learning methodologies for data integration, which is essential for disease detection and treatment.
Collapse
|
5
|
Mirza Z, Ansari MS, Iqbal MS, Ahmad N, Alganmi N, Banjar H, Al-Qahtani MH, Karim S. Identification of Novel Diagnostic and Prognostic Gene Signature Biomarkers for Breast Cancer Using Artificial Intelligence and Machine Learning Assisted Transcriptomics Analysis. Cancers (Basel) 2023; 15:3237. [PMID: 37370847 DOI: 10.3390/cancers15123237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is one of the most common female cancers. Clinical and histopathological information is collectively used for diagnosis, but is often not precise. We applied machine learning (ML) methods to identify the valuable gene signature model based on differentially expressed genes (DEGs) for BC diagnosis and prognosis. METHODS A cohort of 701 samples from 11 GEO BC microarray datasets was used for the identification of significant DEGs. Seven ML methods, including RFECV-LR, RFECV-SVM, LR-L1, SVC-L1, RF, and Extra-Trees were applied for gene reduction and the construction of a diagnostic model for cancer classification. Kaplan-Meier survival analysis was performed for prognostic signature construction. The potential biomarkers were confirmed via qRT-PCR and validated by another set of ML methods including GBDT, XGBoost, AdaBoost, KNN, and MLP. RESULTS We identified 355 DEGs and predicted BC-associated pathways, including kinetochore metaphase signaling, PTEN, senescence, and phagosome-formation pathways. A hub of 28 DEGs and a novel diagnostic nine-gene signature (COL10A, S100P, ADAMTS5, WISP1, COMP, CXCL10, LYVE1, COL11A1, and INHBA) were identified using stringent filter conditions. Similarly, a novel prognostic model consisting of eight-gene signatures (CCNE2, NUSAP1, TPX2, S100P, ITM2A, LIFR, TNXA, and ZBTB16) was also identified using disease-free survival and overall survival analysis. Gene signatures were validated by another set of ML methods. Finally, qRT-PCR results confirmed the expression of the identified gene signatures in BC. CONCLUSION The ML approach helped construct novel diagnostic and prognostic models based on the expression profiling of BC. The identified nine-gene signature and eight-gene signatures showed excellent potential in BC diagnosis and prognosis, respectively.
Collapse
Affiliation(s)
- Zeenat Mirza
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Science, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md Shahid Ansari
- Department of Clinical Data Analytics, Max Super Speciality Hospital, Saket, New Delhi 110017, India
| | - Md Shahid Iqbal
- Department of Statistics and Computer Applications, Tilka Manjhi Bhagalpur University, Bhagalpur 812007, India
| | - Nesar Ahmad
- Department of Statistics and Computer Applications, Tilka Manjhi Bhagalpur University, Bhagalpur 812007, India
| | - Nofe Alganmi
- Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Haneen Banjar
- Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed H Al-Qahtani
- Department of Medical Laboratory Science, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sajjad Karim
- Department of Medical Laboratory Science, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Bellini D, Milan M, Bordin A, Rizzi R, Rengo M, Vicini S, Onori A, Carbone I, De Falco E. A Focus on the Synergy of Radiomics and RNA Sequencing in Breast Cancer. Int J Mol Sci 2023; 24:ijms24087214. [PMID: 37108377 PMCID: PMC10138689 DOI: 10.3390/ijms24087214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Radiological imaging is currently employed as the most effective technique for screening, diagnosis, and follow up of patients with breast cancer (BC), the most common type of tumor in women worldwide. However, the introduction of the omics sciences such as metabolomics, proteomics, and molecular genomics, have optimized the therapeutic path for patients and implementing novel information parallel to the mutational asset targetable by specific clinical treatments. Parallel to the "omics" clusters, radiological imaging has been gradually employed to generate a specific omics cluster termed "radiomics". Radiomics is a novel advanced approach to imaging, extracting quantitative, and ideally, reproducible data from radiological images using sophisticated mathematical analysis, including disease-specific patterns, that could not be detected by the human eye. Along with radiomics, radiogenomics, defined as the integration of "radiology" and "genomics", is an emerging field exploring the relationship between specific features extracted from radiological images and genetic or molecular traits of a particular disease to construct adequate predictive models. Accordingly, radiological characteristics of the tissue are supposed to mimic a defined genotype and phenotype and to better explore the heterogeneity and the dynamic evolution of the tumor over the time. Despite such improvements, we are still far from achieving approved and standardized protocols in clinical practice. Nevertheless, what can we learn by this emerging multidisciplinary clinical approach? This minireview provides a focused overview on the significance of radiomics integrated by RNA sequencing in BC. We will also discuss advances and future challenges of such radiomics-based approach.
Collapse
Affiliation(s)
- Davide Bellini
- Department of Radiological Sciences, Oncology and Pathology, I.C.O.T. Hospital, Sapienza University of Rome, Via Franco Faggiana 1668, 04100 Latina, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Marika Milan
- UOC Neurology, Fondazione Ca'Granda, Ospedale Maggiore Policlinico, Via F. Sforza, 28, 20122 Milan, Italy
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Roberto Rizzi
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Marco Rengo
- Department of Radiological Sciences, Oncology and Pathology, I.C.O.T. Hospital, Sapienza University of Rome, Via Franco Faggiana 1668, 04100 Latina, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Simone Vicini
- Department of Radiological Sciences, Oncology and Pathology, I.C.O.T. Hospital, Sapienza University of Rome, Via Franco Faggiana 1668, 04100 Latina, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Alessandro Onori
- Department of Radiological Sciences, Oncology and Pathology, I.C.O.T. Hospital, Sapienza University of Rome, Via Franco Faggiana 1668, 04100 Latina, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Iacopo Carbone
- Department of Radiological Sciences, Oncology and Pathology, I.C.O.T. Hospital, Sapienza University of Rome, Via Franco Faggiana 1668, 04100 Latina, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| |
Collapse
|