1
|
Hamilton GE, Wadkovsky KN, Gladfelter AS. A single septin from a polyextremotolerant yeast recapitulates many canonical functions of septin hetero-oligomers. Mol Biol Cell 2024; 35:ar132. [PMID: 39196657 PMCID: PMC11481698 DOI: 10.1091/mbc.e24-05-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 08/30/2024] Open
Abstract
Morphological complexity and plasticity are hallmarks of polyextremotolerant fungi. Septins are conserved cytoskeletal proteins and key contributors to cell polarity and morphogenesis. They sense membrane curvature, coordinate cell division, and influence diffusion at the plasma membrane. Four septin homologues are conserved from yeasts to humans, the systems in which septins have been most studied. But there is also a fifth family of opisthokont septins that remain biochemically mysterious. Members of this family, Group 5 septins, appear in the genomes of filamentous fungi, but are understudied due to their absence from ascomycete yeasts. Knufia petricola is an emerging model polyextremotolerant black fungus that can also serve as a model system for Group 5 septins. We have recombinantly expressed and biochemically characterized KpAspE, a Group 5 septin from K. petricola. This septin--by itself in vitro--recapitulates many functions of canonical septin hetero-octamers. KpAspE is an active GTPase that forms diverse homo-oligomers, binds shallow membrane curvatures, and interacts with the terminal subunit of canonical septin hetero-octamers. These findings raise the possibility that Group 5 septins govern the higher-order structures formed by canonical septins, which in K. petricola cells form extended filaments, and provide insight into how septin hetero-oligomers evolved from ancient homomers.
Collapse
Affiliation(s)
- Grace E. Hamilton
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | | | - Amy S. Gladfelter
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27708
| |
Collapse
|
2
|
Cavini IA, Fontes MG, Zeraik AE, Lopes JLS, Araujo APU. Novel lipid-interaction motifs within the C-terminal domain of Septin10 from Schistosoma mansoni. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184371. [PMID: 39025256 DOI: 10.1016/j.bbamem.2024.184371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Septins are cytoskeletal proteins and their interaction with membranes is crucial for their role in various cellular processes. Septins have polybasic regions (PB1 and PB2) which are important for lipid interaction. Earlier, we and others have highlighted the role of the septin C-terminal domain (CTD) to membrane interaction. However, detailed information on residues/group of residues important for such feature is lacking. In this study, we investigate the lipid-binding profile of Schistosoma mansoni Septin10 (SmSEPT10) using PIP strip and Langmuir monolayer adsorption assays. Our findings highlight the CTD as the primary domain responsible for lipid interaction in SmSEPT10, showing binding to phosphatidylinositol phosphates. SmSEPT10 CTD contains a conserved polybasic region (PB3) present in both animals and fungi septins, and a Lys (K367) within its putative amphipathic helix (AH) that we demonstrate as important for lipid binding. PB3 deletion or mutation of this Lys (K367A) strongly impairs lipid interaction. Remarkably, we observe that the AH within a construct lacking the final 43 amino acid residues is insufficient for lipid binding. Furthermore, we investigate the homocomplex formed by SmSEPT10 CTD in solution by cross-linking experiments, CD spectroscopy, SEC-MALS and SEC-SAXS. Taken together, our studies define the lipid-binding region in SmSEPT10 and offer insights into the molecular basis of septin-membrane binding. This information is particularly relevant for less-studied non-human septins, such as SmSEPT10.
Collapse
Affiliation(s)
- Italo A Cavini
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13560-970, Brazil; School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Marina G Fontes
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13560-970, Brazil; Department of Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Ana Eliza Zeraik
- Laboratory of Chemistry and Function of Proteins and Peptides, Center for Biosciences and Biotechnology, North Fluminense State University Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Jose L S Lopes
- Laboratory of Molecular Biophysics, Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Ana Paula U Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| |
Collapse
|
3
|
Das A, Kunwar A. Septins: Structural Insights, Functional Dynamics, and Implications in Health and Disease. J Cell Biochem 2024:e30660. [PMID: 39324363 DOI: 10.1002/jcb.30660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/03/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Septins are a class of proteins with diverse and vital roles in cell biology. Structurally, they form hetero-oligomeric complexes and assemble into filaments, contributing to the organization of cells. These filaments act as scaffolds, aiding in processes like membrane remodeling, cytokinesis, and cell motility. Functionally, septins are essential to cell division, playing essential roles in cytokinetic furrow formation and maintaining the structural integrity of the contractile ring. They also regulate membrane trafficking and help organize intracellular organelles. In terms of physiology, septins facilitate cell migration, phagocytosis, and immune responses by maintaining membrane integrity and influencing cytoskeletal dynamics. Septin dysfunction is associated with pathophysiological conditions. Mutations in septin genes have been linked to neurodegenerative diseases, such as hereditary spastic paraplegias, underscoring their significance in neuronal function. Septins also play a role in cancer and infectious diseases, making them potential targets for therapeutic interventions. Septins serve as pivotal components of intracellular signaling networks, engaging with diverse proteins like kinases and phosphatases. By modulating the activity of these molecules, septins regulate vital cellular pathways. This integral role in signaling makes septins central to orchestrating cellular responses to environmental stimuli. This review mainly focuses on the human septins, their structural composition, regulatory functions, and implication in pathophysiological conditions underscores their importance in fundamental cellular biology. Moreover, their potential as therapeutic targets across various diseases further emphasizes their significance.
Collapse
Affiliation(s)
- Aurosikha Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Jędrzejczak P, Saramowicz K, Kuś J, Barczuk J, Rozpędek-Kamińska W, Siwecka N, Galita G, Wiese W, Majsterek I. SEPT9_i1 and Septin Dynamics in Oncogenesis and Cancer Treatment. Biomolecules 2024; 14:1194. [PMID: 39334960 PMCID: PMC11430720 DOI: 10.3390/biom14091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Despite significant advancements in the field of oncology, cancers still pose one of the greatest challenges of modern healthcare. Given the cytoskeleton's pivotal role in regulating mechanisms critical to cancer development, further studies of the cytoskeletal elements could yield new practical applications. Septins represent a group of relatively well-conserved GTP-binding proteins that constitute the fourth component of the cytoskeleton. Septin 9 (SEPT9) has been linked to a diverse spectrum of malignancies and appears to be the most notable septin member in that category. SEPT9 constitutes a biomarker of colorectal cancer (CRC) and has been positively correlated with a high clinical stage in breast cancer, cervical cancer, and head and neck squamous cell carcinoma. SEPT9_i1 represents the most extensively studied isoform of SEPT9, which substantially contributes to carcinogenesis, metastasis, and treatment resistance. Nevertheless, the mechanistic basis of SEPT9_i1 oncogenicity remains to be fully elucidated. In this review, we highlight SEPT9's and SEPT9_i1's structures and interactions with Hypoxia Inducible Factor α (HIF-1 α) and C-Jun N-Terminal Kinase (JNK), as well as discuss SEPT9_i1's contribution to aneuploidy, cell invasiveness, and taxane resistance-key phenomena in the progression of malignancies. Finally, we emphasize forchlorfenuron and other septin inhibitors as potential chemotherapeutics and migrastatics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (P.J.); (K.S.); (J.K.); (J.B.); (W.R.-K.); (N.S.); (G.G.); (W.W.)
| |
Collapse
|
5
|
Foltman M, Sanchez-Diaz A. Central Role of the Actomyosin Ring in Coordinating Cytokinesis Steps in Budding Yeast. J Fungi (Basel) 2024; 10:662. [PMID: 39330421 PMCID: PMC11433125 DOI: 10.3390/jof10090662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Eukaryotic cells must accurately transfer their genetic material and cellular components to their daughter cells. Initially, cells duplicate their chromosomes and subsequently segregate them toward the poles. The actomyosin ring, a crucial molecular machinery normally located in the middle of the cells and underneath the plasma membrane, then physically divides the cytoplasm and all components into two daughter cells, each ready to start a new cell cycle. This process, known as cytokinesis, is conserved throughout evolution. Defects in cytokinesis can lead to the generation of genetically unstable tetraploid cells, potentially initiating uncontrolled proliferation and cancer. This review focuses on the molecular mechanisms by which budding yeast cells build the actomyosin ring and the preceding steps involved in forming a scaffolding structure that supports the challenging structural changes throughout cytokinesis. Additionally, we describe how cells coordinate actomyosin ring contraction, plasma membrane ingression, and extracellular matrix deposition to successfully complete cytokinesis. Furthermore, the review discusses the regulatory roles of Cyclin-Dependent Kinase (Cdk1) and the Mitotic Exit Network (MEN) in ensuring the precise timing and execution of cytokinesis. Understanding these processes in yeast provides insights into the fundamental aspects of cell division and its implications for human health.
Collapse
Affiliation(s)
- Magdalena Foltman
- Mechanisms and Regulation of Cell Division Research Unit, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain;
- Molecular Biology Department, Faculty of Medicine, University of Cantabria, 39005 Santander, Spain
| | - Alberto Sanchez-Diaz
- Mechanisms and Regulation of Cell Division Research Unit, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain;
- Molecular Biology Department, Faculty of Medicine, University of Cantabria, 39005 Santander, Spain
| |
Collapse
|
6
|
Varela Salgado M, Piatti S. Septin Organization and Dynamics for Budding Yeast Cytokinesis. J Fungi (Basel) 2024; 10:642. [PMID: 39330402 PMCID: PMC11433133 DOI: 10.3390/jof10090642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Cytokinesis, the process by which the cytoplasm divides to generate two daughter cells after mitosis, is a crucial stage of the cell cycle. Successful cytokinesis must be coordinated with chromosome segregation and requires the fine orchestration of several processes, such as constriction of the actomyosin ring, membrane reorganization, and, in fungi, cell wall deposition. In Saccharomyces cerevisiae, commonly known as budding yeast, septins play a pivotal role in the control of cytokinesis by assisting the assembly of the cytokinetic machinery at the division site and controlling its activity. Yeast septins form a collar at the division site that undergoes major dynamic transitions during the cell cycle. This review discusses the functions of septins in yeast cytokinesis, their regulation and the implications of their dynamic remodelling for cell division.
Collapse
Affiliation(s)
- Maritzaida Varela Salgado
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS UMR 5237, 34293 Montpellier, France
| | - Simonetta Piatti
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS UMR 5237, 34293 Montpellier, France
| |
Collapse
|
7
|
Prislusky MI, Lam JGT, Contreras VR, Ng M, Chamberlain M, Pathak-Sharma S, Fields M, Zhang X, Amer AO, Seveau S. The septin cytoskeleton is required for plasma membrane repair. EMBO Rep 2024; 25:3870-3895. [PMID: 38969946 PMCID: PMC11387490 DOI: 10.1038/s44319-024-00195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024] Open
Abstract
Plasma membrane repair is a fundamental homeostatic process of eukaryotic cells. Here, we report a new function for the conserved cytoskeletal proteins known as septins in the repair of cells perforated by pore-forming toxins or mechanical disruption. Using a silencing RNA screen, we identified known repair factors (e.g. annexin A2, ANXA2) and novel factors such as septin 7 (SEPT7) that is essential for septin assembly. Upon plasma membrane injury, the septin cytoskeleton is extensively redistributed to form submembranous domains arranged as knob and loop structures containing F-actin, myosin IIA, S100A11, and ANXA2. Formation of these domains is Ca2+-dependent and correlates with plasma membrane repair efficiency. Super-resolution microscopy revealed that septins and F-actin form intertwined filaments associated with ANXA2. Depletion of SEPT7 prevented ANXA2 recruitment and formation of submembranous actomyosin domains. However, ANXA2 depletion had no effect on domain formation. Collectively, our data support a novel septin-based mechanism for resealing damaged cells, in which the septin cytoskeleton plays a key structural role in remodeling the plasma membrane by promoting the formation of SEPT/F-actin/myosin IIA/ANXA2/S100A11 repair domains.
Collapse
Affiliation(s)
- M Isabella Prislusky
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Jonathan G T Lam
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Viviana Ruiz Contreras
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- Grupo Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Sucre, Colombia
| | - Marilynn Ng
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Madeline Chamberlain
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Sarika Pathak-Sharma
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Madalyn Fields
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Amal O Amer
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Stephanie Seveau
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Perry JA, Werner ME, Omi S, Heck BW, Maddox PS, Mavrakis M, Maddox AS. Animal septins contain functional transmembrane domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567915. [PMID: 38045322 PMCID: PMC10690161 DOI: 10.1101/2023.11.20.567915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Septins, a conserved family of filament-forming proteins, contribute to eukaryotic cell division, polarity, and membrane trafficking. Septins scaffold other proteins to cellular membranes, but it is unknown how septins associate with membranes. We identified and characterized an isoform of Caenorhabditis elegans septin UNC-61 that was predicted to contain a transmembrane domain (TMD). The TMD isoform is expressed in a subset of tissues where the known septins were known to act, and TMD function was required for tissue integrity of the egg-laying apparatus. We found TMD-containing septins across opisthokont phylogeny and demonstrated that the TMD-containing sequence of a primate TMD-septin is sufficient for localization to cellular membranes. Together, our findings reveal a novel mechanism of septin-membrane association with profound implications for septin dynamics and regulation.
Collapse
Affiliation(s)
- Jenna A. Perry
- Department of Biology, The University of North Carolina at Chapel Hill; Chapel Hill, North Carolina, 27599 USA
| | - Michael E. Werner
- Department of Biology, The University of North Carolina at Chapel Hill; Chapel Hill, North Carolina, 27599 USA
| | - Shizue Omi
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Bryan W. Heck
- Department of Biology, The University of North Carolina at Chapel Hill; Chapel Hill, North Carolina, 27599 USA
| | - Paul S. Maddox
- Department of Biology, The University of North Carolina at Chapel Hill; Chapel Hill, North Carolina, 27599 USA
| | - Manos Mavrakis
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Amy S. Maddox
- Department of Biology, The University of North Carolina at Chapel Hill; Chapel Hill, North Carolina, 27599 USA
| |
Collapse
|
9
|
Mendonça DC, Morais STB, Ciol H, Pinto APA, Leonardo DA, Pereira HD, Valadares NF, Portugal RV, Klaholz BP, Garratt RC, Araujo APU. Structural Insights into Ciona intestinalis Septins: Complexes Suggest a Mechanism for Nucleotide-dependent Interfacial Cross-talk. J Mol Biol 2024; 436:168693. [PMID: 38960133 DOI: 10.1016/j.jmb.2024.168693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Septins are filamentous nucleotide-binding proteins which can associate with membranes in a curvature-dependent manner leading to structural remodelling and barrier formation. Ciona intestinalis, a model for exploring the development and evolution of the chordate lineage, has only four septin-coding genes within its genome. These represent orthologues of the four classical mammalian subgroups, making it a minimalist non-redundant model for studying the modular assembly of septins into linear oligomers and thereby filamentous polymers. Here, we show that C. intestinalis septins present a similar biochemistry to their human orthologues and also provide the cryo-EM structures of an octamer, a hexamer and a tetrameric sub-complex. The octamer, which has the canonical arrangement (2-6-7-9-9-7-6-2) clearly shows an exposed NC-interface at its termini enabling copolymerization with hexamers into mixed filaments. Indeed, only combinations of septins which had CiSEPT2 occupying the terminal position were able to assemble into filaments via NC-interface association. The CiSEPT7-CiSEPT9 tetramer is the smallest septin particle to be solved by Cryo-EM to date and its good resolution (2.7 Å) provides a well-defined view of the central NC-interface. On the other hand, the CiSEPT7-CiSEPT9 G-interface shows signs of fragility permitting toggling between hexamers and octamers, similar to that seen in human septins but not in yeast. The new structures provide insights concerning the molecular mechanism for cross-talk between adjacent interfaces. This indicates that C. intestinalis may represent a valuable tool for future studies, fulfilling the requirements of a complete but simpler system to understand the mechanisms behind the assembly and dynamics of septin filaments.
Collapse
Affiliation(s)
| | | | - Heloísa Ciol
- São Carlos Institute of Physics, USP, São Carlos, SP, Brazil
| | | | | | | | | | - Rodrigo V Portugal
- Brazilian Nanotechnology National Laboratory, CNPEM, Campinas, SP, Brazil; Biotechnosciency Program, Federal University of ABC, Santo André, SP, Brazil
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 67404 Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, 67404 Illkirch, France; Université de Strasbourg, 67081 Strasbourg, France
| | | | - Ana P U Araujo
- São Carlos Institute of Physics, USP, São Carlos, SP, Brazil.
| |
Collapse
|
10
|
Hecht M, Alber N, Marhoffer P, Johnsson N, Gronemeyer T. The concerted action of SEPT9 and EPLIN modulates the adhesion and migration of human fibroblasts. Life Sci Alliance 2024; 7:e202201686. [PMID: 38719752 PMCID: PMC11077590 DOI: 10.26508/lsa.202201686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Septins are cytoskeletal proteins that participate in cell adhesion, migration, and polarity establishment. The septin subunit SEPT9 directly interacts with the single LIM domain of epithelial protein lost in neoplasm (EPLIN), an actin-bundling protein. Using a human SEPT9 KO fibroblast cell line, we show that cell adhesion and migration are regulated by the interplay between both proteins. The low motility of SEPT9-depleted cells could be partly rescued by increased levels of EPLIN. The normal organization of actin-related filopodia and stress fibers was directly dependent on the expression level of SEPT9 and EPLIN. Increased levels of SEPT9 and EPLIN enhanced the size of focal adhesions in cell protrusions, correlating with stabilization of actin bundles. Conversely, decreased levels had the opposite effect. Our work thus establishes the interaction between SEPT9 and EPLIN as an important link between the septin and the actin cytoskeleton, influencing cell adhesion, motility, and migration.
Collapse
Affiliation(s)
- Matthias Hecht
- https://ror.org/032000t02 Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| | - Nane Alber
- https://ror.org/032000t02 Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| | - Pia Marhoffer
- https://ror.org/032000t02 Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| | - Nils Johnsson
- https://ror.org/032000t02 Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| | - Thomas Gronemeyer
- https://ror.org/032000t02 Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| |
Collapse
|
11
|
Delic S, Shuman B, Lee S, Bahmanyar S, Momany M, Onishi M. The evolutionary origins and ancestral features of septins. Front Cell Dev Biol 2024; 12:1406966. [PMID: 38994454 PMCID: PMC11238149 DOI: 10.3389/fcell.2024.1406966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/08/2024] [Indexed: 07/13/2024] Open
Abstract
Septins are a family of membrane-associated cytoskeletal guanine-nucleotide binding proteins that play crucial roles in various cellular processes, such as cell division, phagocytosis, and organelle fission. Despite their importance, the evolutionary origins and ancestral function of septins remain unclear. In opisthokonts, septins form five distinct groups of orthologs, with subunits from multiple groups assembling into heteropolymers, thus supporting their diverse molecular functions. Recent studies have revealed that septins are also conserved in algae and protists, indicating an ancient origin from the last eukaryotic common ancestor. However, the phylogenetic relationships among septins across eukaryotes remained unclear. Here, we expanded the list of non-opisthokont septins, including previously unrecognized septins from glaucophyte algae. Constructing a rooted phylogenetic tree of 254 total septins, we observed a bifurcation between the major non-opisthokont and opisthokont septin clades. Within the non-opisthokont septins, we identified three major subclades: Group 6 representing chlorophyte green algae (6A mostly for species with single septins, 6B for species with multiple septins), Group 7 representing algae in chlorophytes, heterokonts, haptophytes, chrysophytes, and rhodophytes, and Group 8 representing ciliates. Glaucophyte and some ciliate septins formed orphan lineages in-between all other septins and the outgroup. Combining ancestral-sequence reconstruction and AlphaFold predictions, we tracked the structural evolution of septins across eukaryotes. In the GTPase domain, we identified a conserved GAP-like arginine finger within the G-interface of at least one septin in most algal and ciliate species. This residue is required for homodimerization of the single Chlamydomonas septin, and its loss coincided with septin duplication events in various lineages. The loss of the arginine finger is often accompanied by the emergence of the α0 helix, a known NC-interface interaction motif, potentially signifying the diversification of septin-septin interaction mechanisms from homo-dimerization to hetero-oligomerization. Lastly, we found amphipathic helices in all septin groups, suggesting that membrane binding is an ancestral trait. Coiled-coil domains were also broadly distributed, while transmembrane domains were found in some septins in Group 6A and 7. In summary, this study advances our understanding of septin distribution and phylogenetic groupings, shedding light on their ancestral features, potential function, and early evolution.
Collapse
Affiliation(s)
- Samed Delic
- Department of Biology, Duke University, Durham, NC, United States
| | - Brent Shuman
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, GA, United States
| | - Shoken Lee
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Shirin Bahmanyar
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, GA, United States
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, NC, United States
| |
Collapse
|
12
|
Varela Salgado M, Adriaans IE, Touati SA, Ibanes S, Lai-Kee-Him J, Ancelin A, Cipelletti L, Picas L, Piatti S. Phosphorylation of the F-BAR protein Hof1 drives septin ring splitting in budding yeast. Nat Commun 2024; 15:3383. [PMID: 38649354 PMCID: PMC11035697 DOI: 10.1038/s41467-024-47709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
A double septin ring accompanies cytokinesis in yeasts and mammalian cells. In budding yeast, reorganisation of the septin collar at the bud neck into a dynamic double ring is essential for actomyosin ring constriction and cytokinesis. Septin reorganisation requires the Mitotic Exit Network (MEN), a kinase cascade essential for cytokinesis. However, the effectors of MEN in this process are unknown. Here we identify the F-BAR protein Hof1 as a critical target of MEN in septin remodelling. Phospho-mimicking HOF1 mutant alleles overcome the inability of MEN mutants to undergo septin reorganisation by decreasing Hof1 binding to septins and facilitating its translocation to the actomyosin ring. Hof1-mediated septin rearrangement requires its F-BAR domain, suggesting that it may involve a local membrane remodelling that leads to septin reorganisation. In vitro Hof1 can induce the formation of intertwined septin bundles, while a phosphomimetic Hof1 protein has impaired septin-bundling activity. Altogether, our data indicate that Hof1 modulates septin architecture in distinct ways depending on its phosphorylation status.
Collapse
Affiliation(s)
- Maritzaida Varela Salgado
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS UMR 5237, 34293, Montpellier, France
| | - Ingrid E Adriaans
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS UMR 5237, 34293, Montpellier, France
| | - Sandra A Touati
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Sandy Ibanes
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS UMR 5237, 34293, Montpellier, France
| | - Joséphine Lai-Kee-Him
- CBS (Centre de Biologie Structurale), University of Montpellier, CNRS UMR 5048, INSERM U 1054, 34090, Montpellier, France
| | - Aurélie Ancelin
- CBS (Centre de Biologie Structurale), University of Montpellier, CNRS UMR 5048, INSERM U 1054, 34090, Montpellier, France
| | - Luca Cipelletti
- L2C (Laboratoire Charles Coulomb), University of Montpellier, CNRS 34095, Montpellier, France
- IUF (Institut Universitaire de France, 75231, Paris, France
| | - Laura Picas
- IRIM (Institut de Recherche en Infectiologie de Montpellier), University of Montpellier, CNRS UMR 9004, 34293, Montpellier, France
| | - Simonetta Piatti
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS UMR 5237, 34293, Montpellier, France.
| |
Collapse
|
13
|
Delic S, Shuman B, Lee S, Bahmanyar S, Momany M, Onishi M. The Evolutionary Origins and Ancestral Features of Septins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586683. [PMID: 38585751 PMCID: PMC10996617 DOI: 10.1101/2024.03.25.586683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Septins are a family of membrane-associated cytoskeletal GTPases that play crucial roles in various cellular processes, such as cell division, phagocytosis, and organelle fission. Despite their importance, the evolutionary origins and ancestral function of septins remain unclear. In opisthokonts, septins form five distinct groups of orthologs, with subunits from multiple groups assembling into heteropolymers, thus supporting their diverse molecular functions. Recent studies have revealed that septins are also conserved in algae and protists, indicating an ancient origin from the last eukaryotic common ancestor. However, the phylogenetic relationships among septins across eukaryotes remained unclear. Here, we expanded the list of non-opisthokont septins, including previously unrecognized septins from rhodophyte red algae and glaucophyte algae. Constructing a rooted phylogenetic tree of 254 total septins, we observed a bifurcation between the major non-opisthokont and opisthokont septin clades. Within the non-opisthokont septins, we identified three major subclades: Group 6 representing chlorophyte green algae (6A mostly for species with single septins, 6B for species with multiple septins), Group 7 representing algae in chlorophytes, heterokonts, haptophytes, chrysophytes, and rhodophytes, and Group 8 representing ciliates. Glaucophyte and some ciliate septins formed orphan lineages in-between all other septins and the outgroup. Combining ancestral-sequence reconstruction and AlphaFold predictions, we tracked the structural evolution of septins across eukaryotes. In the GTPase domain, we identified a conserved GAP-like arginine finger within the G-interface of at least one septin in most algal and ciliate species. This residue is required for homodimerization of the single Chlamydomonas septin, and its loss coincided with septin duplication events in various lineages. The loss of the arginine finger is often accompanied by the emergence of the α0 helix, a known NC-interface interaction motif, potentially signifying the diversification of septin-septin interaction mechanisms from homo-dimerization to hetero-oligomerization. Lastly, we found amphipathic helices in all septin groups, suggesting that curvature-sensing is an ancestral trait of septin proteins. Coiled-coil domains were also broadly distributed, while transmembrane domains were found in some septins in Group 6A and 7. In summary, this study advances our understanding of septin distribution and phylogenetic groupings, shedding light on their ancestral features, potential function, and early evolution.
Collapse
Affiliation(s)
- Samed Delic
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Brent Shuman
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, Georgia, USA
| | - Shoken Lee
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Shirin Bahmanyar
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, Georgia, USA
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
14
|
Eisermann I, Talbot NJ. Septin-dependent invasive growth by the rice blast fungus Magnaporthe oryzae. JOURNAL OF PLANT DISEASES AND PROTECTION : SCIENTIFIC JOURNAL OF THE GERMAN PHYTOMEDICAL SOCIETY (DPG) 2024; 131:1145-1151. [PMID: 38947556 PMCID: PMC11213810 DOI: 10.1007/s41348-024-00883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 07/02/2024]
Abstract
Septin GTPases are morphogenetic proteins that are widely conserved in eukaryotic organisms fulfilling diverse roles in cell division, differentiation and development. In the filamentous fungal pathogen Magnaporthe oryzae, the causal agent of the devastating blast diseases of rice and wheat, septins have been shown to be essential for plant infection. The blast fungus elaborates a specialised infection structure called an appressorium with which it mechanically ruptures the plant cuticle. Septin aggregation and generation of a hetero-oligomeric ring structure at the base of the infection cell is indispensable for plant infection. Furthermore, once the fungus enters host tissue it develops another infection structure, the transpressorium, enabling it to move between living host plant cells, which also requires septins for its function. Specific inhibition of septin aggregation-either genetically or with chemical inhibitors-prevents plant infection. Significantly, by screening for inhibitors of septin aggregation, broad spectrum anti-fungal compounds have been identified that prevent rice blast and a number of other cereal diseases in field trials. We review the recent advances in our understanding of septin biology and their potential as targets for crop disease control.
Collapse
Affiliation(s)
- Iris Eisermann
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR47UH UK
| | - Nicholas J. Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR47UH UK
| |
Collapse
|
15
|
Blua F, Monge C, Gastaldi S, Clemente N, Pizzimenti S, Lazzarato L, Senetta R, Vittorio S, Gigliotti CL, Boggio E, Dianzani U, Vistoli G, Altomare AA, Aldini G, Dianzani C, Marini E, Bertinaria M. Discovery of a septin-4 covalent binder with antimetastatic activity in a mouse model of melanoma. Bioorg Chem 2024; 144:107164. [PMID: 38306824 DOI: 10.1016/j.bioorg.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/04/2024]
Abstract
Cancer spreading through metastatic processes is one of the major causes of tumour-related mortality. Metastasis is a complex phenomenon which involves multiple pathways ranging from cell metabolic alterations to changes in the biophysical phenotype of cells and tissues. In the search for new effective anti-metastatic agents, we modulated the chemical structure of the lead compound AA6, in order to find the structural determinants of activity, and to identify the cellular target responsible of the downstream anti-metastatic effects observed. New compounds synthesized were able to inhibit in vitro B16-F10 melanoma cell invasiveness, and one selected compound, CM365, showed in vivo anti-metastatic effects in a lung metastasis mouse model of melanoma. Septin-4 was identified as the most likely molecular target responsible for these effects. This study showed that CM365 is a promising molecule for metastasis prevention, remarkably effective alone or co-administered with drugs normally used in cancer therapy, such as paclitaxel.
Collapse
Affiliation(s)
- Federica Blua
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Chiara Monge
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Simone Gastaldi
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Nausicaa Clemente
- Settore Centri di Ricerca e Infrastrutture di Ateneo e Laboratori - Polo di NO, University of Piemonte Orientale, Novara, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Science, University of Turin, Torino, Italy
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Rebecca Senetta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Serena Vittorio
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Elena Boggio
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, Turin, Italy.
| | - Massimo Bertinaria
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
16
|
Grupp B, Denkhaus L, Gerhardt S, Vögele M, Johnsson N, Gronemeyer T. The structure of a tetrameric septin complex reveals a hydrophobic element essential for NC-interface integrity. Commun Biol 2024; 7:48. [PMID: 38184752 PMCID: PMC10771490 DOI: 10.1038/s42003-023-05734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024] Open
Abstract
The septins of the yeast Saccharomyces cerevisiae assemble into hetero-octameric rods by alternating interactions between neighboring G-domains or N- and C-termini, respectively. These rods polymerize end to end into apolar filaments, forming a ring beneath the prospective new bud that expands during the cell cycle into an hourglass structure. The hourglass finally splits during cytokinesis into a double ring. Understanding these transitions as well as the plasticity of the higher order assemblies requires a detailed knowledge of the underlying structures. Here we present the first X-ray crystal structure of a tetrameric Shs1-Cdc12-Cdc3-Cdc10 complex at a resolution of 3.2 Å. Close inspection of the NC-interfaces of this and other septin structures reveals a conserved contact motif that is essential for NC-interface integrity of yeast and human septins in vivo and in vitro. Using the tetrameric structure in combination with AlphaFold-Multimer allowed us to propose a model of the octameric septin rod.
Collapse
Affiliation(s)
- Benjamin Grupp
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Lukas Denkhaus
- Institute of Biochemistry, Albert-Ludwigs University, Freiburg, Germany
| | - Stefan Gerhardt
- Institute of Biochemistry, Albert-Ludwigs University, Freiburg, Germany
| | - Matthis Vögele
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany.
| |
Collapse
|
17
|
Hussain A, Nguyen VT, Reigan P, McMurray M. Evolutionary degeneration of septins into pseudoGTPases: impacts on a hetero-oligomeric assembly interface. Front Cell Dev Biol 2023; 11:1296657. [PMID: 38125875 PMCID: PMC10731463 DOI: 10.3389/fcell.2023.1296657] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
The septin family of eukaryotic proteins comprises distinct classes of sequence-related monomers that associate in a defined order into linear hetero-oligomers, which are capable of polymerizing into cytoskeletal filaments. Like actin and ⍺ and β tubulin, most septin monomers require binding of a nucleotide at a monomer-monomer interface (the septin "G" interface) for assembly into higher-order structures. Like ⍺ and β tubulin, where GTP is bound by both subunits but only the GTP at the ⍺-β interface is subject to hydrolysis, the capacity of certain septin monomers to hydrolyze their bound GTP has been lost during evolution. Thus, within septin hetero-oligomers and filaments, certain monomers remain permanently GTP-bound. Unlike tubulins, loss of septin GTPase activity-creating septin "pseudoGTPases"-occurred multiple times in independent evolutionary trajectories, accompanied in some cases by non-conservative substitutions in highly conserved residues in the nucleotide-binding pocket. Here, we used recent septin crystal structures, AlphaFold-generated models, phylogenetics and in silico nucleotide docking to investigate how in some organisms the septin G interface evolved to accommodate changes in nucleotide occupancy. Our analysis suggests that yeast septin monomers expressed only during meiosis and sporulation, when GTP is scarce, are evolving rapidly and might not bind GTP or GDP. Moreover, the G dimerization partners of these sporulation-specific septins appear to carry compensatory changes in residues that form contacts at the G interface to help retain stability despite the absence of bound GDP or GTP in the facing subunit. During septin evolution in nematodes, apparent loss of GTPase activity was also accompanied by changes in predicted G interface contacts. Overall, our observations support the conclusion that the primary function of nucleotide binding and hydrolysis by septins is to ensure formation of G interfaces that impose the proper subunit-subunit order within the hetero-oligomer.
Collapse
Affiliation(s)
- Alya Hussain
- Program in Structural Biology and Biochemistry, Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Vu T. Nguyen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael McMurray
- Program in Structural Biology and Biochemistry, Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
18
|
Nakazawa K, Chauvin B, Mangenot S, Bertin A. Reconstituted in vitro systems to reveal the roles and functions of septins. J Cell Sci 2023; 136:jcs259448. [PMID: 37815088 DOI: 10.1242/jcs.259448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Septins are essential cytoskeletal proteins involved in key cellular processes and have also been implicated in diseases from cancers to neurodegenerative pathologies. However, they have not been as thoroughly studied as other cytoskeletal proteins. In vivo, septins interact with other cytoskeletal proteins and with the inner plasma membrane. Hence, bottom-up in vitro cell-free assays are well suited to dissect the roles and behavior of septins in a controlled environment. Specifically, in vitro studies have been invaluable in describing the self-assembly of septins into a large diversity of ultrastructures. Given that septins interact specifically with membrane, the details of these septin-membrane interactions have been analyzed using reconstituted lipid systems. In particular, at a membrane, septins are often localized at curvatures of micrometer scale. In that context, in vitro assays have been performed with substrates of varying curvatures (spheres, cylinders or undulated substrates) to probe the sensitivity of septins to membrane curvature. This Review will first present the structural properties of septins in solution and describe the interplay of septins with cytoskeletal partners. We will then discuss how septins interact with biomimetic membranes and induce their reshaping. Finally, we will highlight the curvature sensitivity of septins and how they alter the mechanical properties of membranes.
Collapse
Affiliation(s)
- Koyomi Nakazawa
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| | - Brieuc Chauvin
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| | - Stéphanie Mangenot
- Laboratoire Matière et Systèmes Complexes , Université de Paris Cité, CNRS UMR 7057, 45 Rue des Saint Pères, 75006 Paris, France
| | - Aurélie Bertin
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| |
Collapse
|
19
|
Marques da Silva R, Christe Dos Reis Saladino G, Antonio Leonardo D, D'Muniz Pereira H, Andréa Sculaccio S, Paula Ulian Araujo A, Charles Garratt R. A key piece of the puzzle: The central tetramer of the Saccharomyces cerevisiae septin protofilament and its implications for self-assembly. J Struct Biol 2023; 215:107983. [PMID: 37315820 DOI: 10.1016/j.jsb.2023.107983] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/02/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Septins, often described as the fourth component of the cytoskeleton, are structural proteins found in a vast variety of living beings. They are related to small GTPases and thus, generally, present GTPase activity which may play an important (although incompletely understood) role in their organization and function. Septins polymerize into long non-polar filaments, in which each subunit interacts with two others by alternating interfaces, NC and G. In Saccharomyces cerevisiae four septins are organized in the following manner, [Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11]n in order to form filaments. Although septins were originally discovered in yeast and much is known regarding their biochemistry and function, only limited structural information about them is currently available. Here we present crystal structures of Cdc3/Cdc10 which provide the first view of the physiological interfaces formed by yeast septins. The G-interface has properties which place it in between that formed by SEPT2/SEPT6 and SEPT7/SEPT3 in human filaments. Switch I from Cdc10 contributes significantly to the interface, whereas in Cdc3 it is largely disorded. However, the significant negative charge density of the latter suggests it may have a unique role. At the NC-interface, we describe an elegant means by which the sidechain of a glutamine from helix α0 imitates a peptide group in order to retain hydrogen-bond continuity at the kink between helices α5 and α6 in the neighbouring subunit, thereby justifying the conservation of the helical distortion. Its absence from Cdc11, along with this structure's other unusual features are critically discussed by comparison with Cdc3 and Cdc10.
Collapse
Affiliation(s)
- Rafael Marques da Silva
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | | | - Diego Antonio Leonardo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Humberto D'Muniz Pereira
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Susana Andréa Sculaccio
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Ana Paula Ulian Araujo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Richard Charles Garratt
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil.
| |
Collapse
|
20
|
Martens AK, Erwig M, Patzig J, Fledrich R, Füchtbauer EM, Werner HB. Targeted inactivation of the Septin2 and Septin9 genes in myelinating Schwann cells of mice. Cytoskeleton (Hoboken) 2023; 80:290-302. [PMID: 36378242 DOI: 10.1002/cm.21736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
The formation of axon-enwrapping myelin sheaths by oligodendrocytes in the central nervous system involves the assembly of a scaffolding septin filament comprised of the subunits SEPTIN2, SEPTIN4, SEPTIN7 and SEPTIN8. Conversely, in the peripheral nervous system (PNS), myelin is synthesized by a different cell type termed Schwann cells, and it remained unknown if septins also assemble as a multimer in PNS myelin. According to prior proteome analysis, PNS myelin comprises the subunits SEPTIN2, SEPTIN7, SEPTIN8, SEPTIN9, and SEPTIN11, which localize to the paranodal and abaxonal myelin subcompartments. Here, we use the Cre/loxP-system to delete the Septin9-gene specifically in Schwann cells, causing a markedly reduced abundance of SEPTIN9 in sciatic nerves, implying that Schwann cells are the main cell type expressing SEPTIN9 in the nerve. However, Septin9-deficiency in Schwann cells did not affect the abundance or localization of other septin subunits. In contrast, when deleting the Septin2-gene in Schwann cells the abundance of all relevant septin subunits was markedly reduced, including SEPTIN9. Notably, we did not find evidence that deleting Septin2 or Septin9 in Schwann cells impairs myelin biogenesis, nerve conduction velocity or motor/sensory capabilities, at least at the assessed timepoints. Our data thus show that SEPTIN2 but not SEPTIN9 is required for the formation or stabilization of a septin multimer in PNS myelin in vivo; however, its functional relevance remains to be established.
Collapse
Affiliation(s)
- Ann-Kristin Martens
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michelle Erwig
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Julia Patzig
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Robert Fledrich
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
21
|
Eisermann I, Garduño‐Rosales M, Talbot NJ. The emerging role of septins in fungal pathogenesis. Cytoskeleton (Hoboken) 2023; 80:242-253. [PMID: 37265147 PMCID: PMC10952683 DOI: 10.1002/cm.21765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Fungal pathogens undergo specific morphogenetic transitions in order to breach the outer surfaces of plants and invade the underlying host tissue. The ability to change cell shape and switch between non-polarised and polarised growth habits is therefore critical to the lifestyle of plant pathogens. Infection-related development involves remodelling of the cytoskeleton, plasma membrane and cell wall at specific points during fungal pathogenesis. Septin GTPases are components of the cytoskeleton that play pivotal roles in actin remodelling, micron-scale plasma membrane curvature sensing and cell polarity. Septin assemblages, such as rings, collars and gauzes, are known to have important roles in cell shape changes and are implicated in formation of specialised infection structures to enter plant cells. Here, we review and compare the reported functions of septins of plant pathogenic fungi, with a special focus on invasive growth. Finally, we discuss septins as potential targets for broad-spectrum antifungal plant protection strategies.
Collapse
Affiliation(s)
- Iris Eisermann
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | | |
Collapse
|
22
|
Grupp B, Lemkul JA, Gronemeyer T. An in silico approach to determine inter-subunit affinities in human septin complexes. Cytoskeleton (Hoboken) 2023; 80:141-152. [PMID: 36843207 DOI: 10.1002/cm.21749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/28/2023]
Abstract
The septins are a conserved family of filament-forming guanine nucleotide binding proteins, often named the fourth component of the cytoskeleton. Correctly assembled septin structures are required for essential intracellular processes such as cytokinesis, vesicular transport, polarity establishment, and cellular adhesion. Structurally, septins belong to the P-Loop NTPases but they do not mediate signals to effectors through GTP binding and hydrolysis. GTP binding and hydrolysis are believed to contribute to septin complex integrity, but biochemical approaches addressing this topic are hampered by the stability of septin complexes after recombinant expression and the lack of nucleotide-depleted complexes. To overcome this limitation, we used a molecular dynamics-based approach to determine inter-subunit binding free energies in available human septin dimer structures and in their apo forms, which we generated in silico. The nucleotide in the GTPase active subunits SEPT2 and SEPT7, but not in SEPT6, was identified as a stabilizing element in the G interface. Removal of GDP from SEPT2 and SEPT7 results in flipping of a conserved Arg residue and disruption of an extensive hydrogen bond network in the septin unique element, concomitant with a decreased inter-subunit affinity. Based on these findings we propose a singular "lock-hydrolysis" mechanism stabilizing human septin filaments.
Collapse
Affiliation(s)
- Benjamin Grupp
- Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| |
Collapse
|
23
|
Cannon KS, Vargas-Muniz JM, Billington N, Seim I, Ekena J, Sellers JR, Gladfelter AS. A gene duplication of a septin reveals a developmentally regulated filament length control mechanism. J Cell Biol 2023; 222:e202204063. [PMID: 36786832 PMCID: PMC9960279 DOI: 10.1083/jcb.202204063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/20/2022] [Accepted: 01/19/2023] [Indexed: 02/15/2023] Open
Abstract
Septins are a family of conserved filament-forming proteins that function in multiple cellular processes. The number of septin genes within an organism varies, and higher eukaryotes express many septin isoforms due to alternative splicing. It is unclear if different combinations of septin proteins in complex alter the polymers' biophysical properties. We report that a duplication event within the CDC11 locus in Ashbya gossypii gave rise to two similar but distinct Cdc11 proteins: Cdc11a and Cdc1b. CDC11b transcription is developmentally regulated, producing different amounts of Cdc11a- and Cdc11b-complexes in the lifecycle of Ashbya gossypii. Deletion of either gene results in distinct cell polarity defects, suggesting non-overlapping functions. Cdc11a and Cdc11b complexes have differences in filament length and membrane-binding ability. Thus, septin subunit composition has functional consequences on filament properties and cell morphogenesis. Small sequence differences elicit distinct biophysical properties and cell functions of septins, illuminating how gene duplication could be a driving force for septin gene expansions seen throughout the tree of life.
Collapse
Affiliation(s)
- Kevin S. Cannon
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Jose M. Vargas-Muniz
- Microbiology Program, School of Biological Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Neil Billington
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ian Seim
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Joanne Ekena
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - James R. Sellers
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy. S. Gladfelter
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
24
|
Güler GÖ, Mostowy S. The septin cytoskeleton: Heteromer composition defines filament function. J Cell Biol 2023; 222:e202302010. [PMID: 36821087 PMCID: PMC9998967 DOI: 10.1083/jcb.202302010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Septins are an evolutionarily conserved protein family whose members form hetero-oligomeric complexes that assemble into filaments and higher-order structures. In this issue, Martins et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202203016) and Cannon et al. (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202204063) report that heteromer composition impacts the physiological role of septin filaments in yeast and human cells.
Collapse
Affiliation(s)
- Gizem Özbaykal Güler
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
25
|
Shi W, Cannon KS, Curtis BN, Edelmaier C, Gladfelter AS, Nazockdast E. Curvature sensing as an emergent property of multiscale assembly of septins. Proc Natl Acad Sci U S A 2023; 120:e2208253120. [PMID: 36716363 PMCID: PMC9963131 DOI: 10.1073/pnas.2208253120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/15/2022] [Indexed: 02/01/2023] Open
Abstract
The ability of cells to sense and communicate their shape is central to many of their functions. Much is known about how cells generate complex shapes, yet how they sense and respond to geometric cues remains poorly understood. Septins are GTP-binding proteins that localize to sites of micrometer-scale membrane curvature. Assembly of septins is a multistep and multiscale process, but it is unknown how these discrete steps lead to curvature sensing. Here, we experimentally examine the time-dependent binding of septins at different curvatures and septin bulk concentrations. These experiments unexpectedly indicated that septins' curvature preference is not absolute but rather is sensitive to the combinations of membrane curvatures present in a reaction, suggesting that there is competition between different curvatures for septin binding. To understand the physical underpinning of this result, we developed a kinetic model that connects septins' self-assembly and curvature-sensing properties. Our experimental and modeling results are consistent with curvature-sensitive assembly being driven by cooperative associations of septin oligomers in solution with the bound septins. When combined, the work indicates that septin curvature sensing is an emergent property of the multistep, multiscale assembly of membrane-bound septins. As a result, curvature preference is not absolute and can be modulated by changing the physicochemical and geometric parameters involved in septin assembly, including bulk concentration, and the available membrane curvatures. While much geometry-sensitive assembly in biology is thought to be guided by intrinsic material properties of molecules, this is an important example of how curvature sensing can arise from multiscale assembly of polymers.
Collapse
Affiliation(s)
- Wenzheng Shi
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Kevin S. Cannon
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Brandy N. Curtis
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Christopher Edelmaier
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Amy S. Gladfelter
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Marine Biology Laboratory, Woods Hole, MA02543
| | - Ehssan Nazockdast
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
26
|
Grupp B, Gronemeyer T. A biochemical view on the septins, a less known component of the cytoskeleton. Biol Chem 2023; 404:1-13. [PMID: 36423333 DOI: 10.1515/hsz-2022-0263] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/30/2022] [Indexed: 11/25/2022]
Abstract
The septins are a conserved family of guanine nucleotide binding proteins, often named the fourth component of the cytoskeleton. They self-assemble into non-polar filaments and further into higher ordered structures. Properly assembled septin structures are required for a wide range of indispensable intracellular processes such as cytokinesis, vesicular transport, polarity establishment and cellular adhesion. Septins belong structurally to the P-Loop NTPases. However, unlike the small GTPases like Ras, septins do not mediate signals to effectors through GTP binding and hydrolysis. The role of nucleotide binding and subsequent GTP hydrolysis by the septins is rather controversially debated. We compile here the structural features from the existing septin crystal- and cryo-EM structures regarding protofilament formation, inter-subunit interface architecture and nucleotide binding and hydrolysis. These findings are supplemented with a summary of available biochemical studies providing information regarding nucleotide binding and hydrolysis of fungal and mammalian septins.
Collapse
Affiliation(s)
- Benjamin Grupp
- Institute of Molecular Genetics and Cell Biology, Ulm University, James Franck Ring N27, 89081 Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Ulm University, James Franck Ring N27, 89081 Ulm, Germany
| |
Collapse
|
27
|
Benoit B, Poüs C, Baillet A. Septins as membrane influencers: direct play or in association with other cytoskeleton partners. Front Cell Dev Biol 2023; 11:1112319. [PMID: 36875762 PMCID: PMC9982393 DOI: 10.3389/fcell.2023.1112319] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/23/2023] [Indexed: 02/19/2023] Open
Abstract
The cytoskeleton comprises three polymerizing structures that have been studied for a long time, actin microfilaments, microtubules and intermediate filaments, plus more recently investigated dynamic assemblies like septins or the endocytic-sorting complex required for transport (ESCRT) complex. These filament-forming proteins control several cell functions through crosstalks with each other and with membranes. In this review, we report recent works that address how septins bind to membranes, and influence their shaping, organization, properties and functions, either by binding to them directly or indirectly through other cytoskeleton elements.
Collapse
Affiliation(s)
- Béatrice Benoit
- INSERM UMR-S 1193, UFR de Pharmacie, University Paris-Saclay, Orsay, France
| | - Christian Poüs
- INSERM UMR-S 1193, UFR de Pharmacie, University Paris-Saclay, Orsay, France.,Laboratoire de Biochimie-Hormonologie, Hôpital Antoine Béclère, AP-HP, Hôpitaux Universitaires Paris-Saclay, Clamart, France
| | - Anita Baillet
- INSERM UMR-S 1193, UFR de Pharmacie, University Paris-Saclay, Orsay, France
| |
Collapse
|
28
|
Hassell D, Denney A, Singer E, Benson A, Roth A, Ceglowski J, Steingesser M, McMurray M. Chaperone requirements for de novo folding of Saccharomyces cerevisiae septins. Mol Biol Cell 2022; 33:ar111. [PMID: 35947497 PMCID: PMC9635297 DOI: 10.1091/mbc.e22-07-0262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022] Open
Abstract
Polymers of septin protein complexes play cytoskeletal roles in eukaryotic cells. The specific subunit composition within complexes controls functions and higher-order structural properties. All septins have globular GTPase domains. The other eukaryotic cytoskeletal NTPases strictly require assistance from molecular chaperones of the cytosol, particularly the cage-like chaperonins, to fold into oligomerization-competent conformations. We previously identified cytosolic chaperones that bind septins and influence the oligomerization ability of septins carrying mutations linked to human disease, but it was unknown to what extent wild-type septins require chaperone assistance for their native folding. Here we use a combination of in vivo and in vitro approaches to demonstrate chaperone requirements for de novo folding and complex assembly by budding yeast septins. Individually purified septins adopted nonnative conformations and formed nonnative homodimers. In chaperonin- or Hsp70-deficient cells, septins folded slower and were unable to assemble posttranslationally into native complexes. One septin, Cdc12, was so dependent on cotranslational chaperonin assistance that translation failed without it. Our findings point to distinct translation elongation rates for different septins as a possible mechanism to direct a stepwise, cotranslational assembly pathway in which general cytosolic chaperones act as key intermediaries.
Collapse
Affiliation(s)
- Daniel Hassell
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ashley Denney
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Emily Singer
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Aleyna Benson
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew Roth
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Julia Ceglowski
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Marc Steingesser
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael McMurray
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|