1
|
Qiu S, Jia J, Xu B, Wu N, Cao H, Xie S, Cui J, Ma J, Pan YH, Yuan XB. Development and evaluation of an autism pig model. Lab Anim (NY) 2024; 53:376-386. [PMID: 39533118 PMCID: PMC11599057 DOI: 10.1038/s41684-024-01475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Developing cost-effective and disease-relevant animal models is essential for advancing biomedical research into human disorders. Here we investigate the feasibility of a pig model for autism spectrum disorder (ASD) using embryonic exposure to valproic acid (VPA), an antiepileptic drug known to increase ASD risk. We established experimental paradigms to assess the behavioral characteristics of these pig models. Administration of VPA to Bama miniature pigs (Sus scrofa domestica) during critical embryonic stages resulted in abnormal gait, increased anxiety levels, reduced learning capabilities and altered social patterns, while largely preserving social preference of treated piglets. Notably, we detected significant neuroanatomical changes in cortical regions associated with ASD in the VPA-treated pigs, including cortical malformation, increased neuronal soma size, decreased dendritic complexity and reduced dendritic spine maturation. Transcriptome analysis of the prefrontal cortex of VPA-treated pigs further revealed substantial alterations in the expression of genes linked to ASD, especially genes of the dopamine signaling pathway, highlighting the model's relevance and potential for shedding light on ASD's underlying neuropathological and molecular mechanisms. These findings suggest that pig models could serve as a promising alternative to traditional rodent models and provide a more ethical substitute for the use of primates in translational research on neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shuai Qiu
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Jingyan Jia
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Benlei Xu
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Nan Wu
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Huaqiang Cao
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Shuangyi Xie
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Jialong Cui
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Ji Ma
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China.
| | - Xiao-Bing Yuan
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China.
| |
Collapse
|
2
|
Meyerholz DK, Burrough ER, Kirchhof N, Anderson DJ, Helke KL. Swine models in translational research and medicine. Vet Pathol 2024; 61:512-523. [PMID: 38197394 DOI: 10.1177/03009858231222235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Swine are increasingly studied as animal models of human disease. The anatomy, size, longevity, physiology, immune system, and metabolism of swine are more like humans than traditional rodent models. In addition, the size of swine is preferred for surgical placement and testing of medical devices destined for humans. These features make swine useful for biomedical, pharmacological, and toxicological research. With recent advances in gene-editing technologies, genetic modifications can readily and efficiently be made in swine to study genetic disorders. In addition, gene-edited swine tissues are necessary for studies testing and validating xenotransplantation into humans to meet the critical shortfall of viable organs versus need. Underlying all of these biomedical applications, the knowledge of husbandry, background diseases and lesions, and biosecurity needs are important for productive, efficient, and reproducible research when using swine as a human disease model for basic research, preclinical testing, and translational studies.
Collapse
|
3
|
Cau MF, Ferraresso F, Seadler M, Badior K, Zhang Y, Ketelboeter LM, Rodriguez GG, Chen T, Ferraresso M, Wietrzny A, Robertson M, Haugen A, Cullis PR, de Moya M, Dyer M, Kastrup CJ. siRNA-mediated reduction of a circulating protein in swine using lipid nanoparticles. Mol Ther Methods Clin Dev 2024; 32:101258. [PMID: 38779336 PMCID: PMC11109470 DOI: 10.1016/j.omtm.2024.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Genetic manipulation of animal models is a fundamental research tool in biology and medicine but is challenging in large animals. In rodents, models can be readily developed by knocking out genes in embryonic stem cells or by knocking down genes through in vivo delivery of nucleic acids. Swine are a preferred animal model for studying the cardiovascular and immune systems, but there are limited strategies for genetic manipulation. Lipid nanoparticles (LNPs) efficiently deliver small interfering RNA (siRNA) to knock down circulating proteins, but swine are sensitive to LNP-induced complement activation-related pseudoallergy (CARPA). We hypothesized that appropriately administering optimized siRNA-LNPs could knock down circulating levels of plasminogen, a blood protein synthesized in the liver. siRNA-LNPs against plasminogen (siPLG) reduced plasma plasminogen protein and hepatic plasminogen mRNA levels to below 5% of baseline values. Functional assays showed that reducing plasminogen levels modulated systemic blood coagulation. Clinical signs of CARPA were not observed, and occasional mild and transient hepatotoxicity was present in siPLG-treated animals at 5 h post-infusion, which returned to baseline by 7 days. These findings advance siRNA-LNPs in swine models, enabling genetic engineering of blood and hepatic proteins, which can likely expand to proteins in other tissues in the future.
Collapse
Affiliation(s)
- Massimo F. Cau
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Francesca Ferraresso
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Monica Seadler
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Youjie Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | | | | | - Taylor Chen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | | | | | - Madelaine Robertson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amber Haugen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Pieter R. Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marc de Moya
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mitchell Dyer
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Division of Vascular and Endovascular Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christian J. Kastrup
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Departments of Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Xin J, Huang S, Wen J, Li Y, Li A, Satyanarayanan SK, Yao X, Su H. Drug Screening and Validation Targeting TDP-43 Proteinopathy for Amyotrophic Lateral Sclerosis. Aging Dis 2024:AD.2024.0440. [PMID: 38739934 DOI: 10.14336/ad.2024.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) stands as a rare, yet severely debilitating disorder marked by the deterioration of motor neurons (MNs) within the brain and spinal cord, which is accompanied by degenerated corticobulbar/corticospinal tracts and denervation in skeletal muscles. Despite ongoing research efforts, ALS remains incurable, attributed to its intricate pathogenic mechanisms. A notable feature in the pathology of ALS is the prevalence of TAR DNA-binding protein 43 (TDP-43) proteinopathy, detected in approximately 97% of ALS cases, underscoring its significance in the disease's progression. As a result, strategies targeting the aberrant TDP-43 protein have garnered attention as a potential avenue for ALS therapy. This review delves into the existing drug screening systems aimed at TDP-43 proteinopathy and the models employed for drug efficacy validation. It also explores the hurdles encountered in the quest to develop potent medications against TDP-43 proteinopathy, offering insights into the intricacies of drug discovery and development for ALS. Through this comprehensive analysis, the review sheds light on the critical aspects of identifying and advancing therapeutic solutions for ALS.
Collapse
Affiliation(s)
- Jiaqi Xin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Sen Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yunhao Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
5
|
Kim JH, Shim J, Ko N, Kim HJ, Lee Y, Choi K. Analysis of production efficiency of cloned transgenic Yucatan miniature pigs according to recipient breeds with embryo transfer conditions. Theriogenology 2024; 218:193-199. [PMID: 38330863 DOI: 10.1016/j.theriogenology.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/05/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
The purpose of this study was to compare the efficiency of the production of cloned transgenic Yucatan miniature pigs (YMPs) using two recipient breeds, i.e., YMPs and domestic pigs (DPs), under various embryo transfer conditions. We initially assessed the in vitro developmental competence of embryos obtained via somatic cell nuclear transfer (SCNT) from three different transgenic donor cells. No difference was observed among the three groups regarding developmental competence. Furthermore, the cloning efficiency remained consistent among the three groups after the transfer of the SCNT embryos to each surrogate mother. Subsequently, to compare the efficiency of the production of cloned transgenic YMPs between the two recipient breeds using varying parameters, including ovulation status (preovulation and postovulation), duration of in vitro culture (IVC) (incubated within 24 h and 24-48 h), and the number of transferred SCNT embryos (less than and more than 300), we assessed the pregnancy rates, delivery rates, mean offspring counts, and cloning efficiency. Regarding the ovulation status, YMPs exhibited higher pregnancy rates, delivery rates, and cloning efficiency compared with DPs in both statuses. Moreover, the pregnancy rates, delivery rates, and cloning efficiency were affected by the ovulation status in DPs, but not in YMPs. The comparison of IVC duration between groups revealed that YMPs had higher pregnancy rates vs. DPs in both conditions. SCNT embryos cultured for 24-48 h in YMPs yielded higher delivery rates and cloning efficiency compared with those cultured for less than 24 h in DPs. Finally, the analysis based on the number of transferred SCNT embryos showed that both the pregnancy and delivery rates were higher in YMPs vs. DPs. However, the highest average number of offspring was obtained when more than 300 SCNT embryos were transferred into DPs, whereas the cloning efficiency was higher in YMPs vs. DPs. Our results suggest that YMPs are more suitable recipients than are DPs under various conditions for the production of cloned transgenic YMPs.
Collapse
Affiliation(s)
- Jun-Hyeong Kim
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Joohyun Shim
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Nayoung Ko
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Hyoung-Joo Kim
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Yongjin Lee
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Kimyung Choi
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea.
| |
Collapse
|
6
|
Baldassarre H, Gutierrez K, Glanzner WG, de Macedo MP, Currin L, Guay V, Herrera MEC, Da Silva Z, Fortin F, Bordignon V. Laparoscopic ovum-pick up and in vitro embryo production in gonadotropin-stimulated gilts: Preliminary results and envisioned applications. Theriogenology 2024; 214:141-147. [PMID: 37871373 DOI: 10.1016/j.theriogenology.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
The present study was conducted to establish if laparoscopic ovum pick-up (LOPU) could be adapted to the swine species, and if the developmental competence of LOPU-sourced oocytes from peripubertal gilts could be improved by gonadotropin stimulation, by comparing with oocytes sourced from slaughtered gilts lacking hormonal stimulation. Estrus was synchronized in 34 gilts of ∼6-8 months of age by daily oral administration of 17.6 mg altrenogest for 13 days and 10 mg dinoprost IM on the last day of altrenogest. Follicular development was stimulated in all gilts with a single injection of 1250 IU eCG given 3 days before LOPU (together with the 12th dose of altrenogest). In about half of the gilts (Group eCG-hCG), 500 IU hCG were injected IM ∼72 h after eCG injection, or ∼16-18 h prior to LOPU, to initiate oocyte maturation in vivo, while the remaining animals only received eCG (Group eCG). Most gilts underwent LOPU twice alternating the gonadotropin protocol, thereby decreasing the impact of individual variation on results. Abattoir-sourced oocytes from prepubertal gilts served as Control. Following LOPU, oocytes were in vitro matured, fertilized, and cultured to the blastocyst stage following standard procedures, while oocytes collected from Group eCG-hCG gilts were considered partly matured in vivo and were matured for ∼24 h instead of ∼44 h. Embryos reaching the blastocyst stage were fixed and stained to assess quality through cell numbers. There were no significant differences in the number of follicles aspirated and cumulus-oocyte complexes (COCs) recovered between Groups eCG-hCG and eCG (22.4 and 16.9 vs. 22.6 and 17.6, P > 0.05), as well as the recovery rate (76.6 vs. 78.1, P > 0.05). Cleavage rate was not different between Group eCG-hCG, Group eCG and Control (61.1 vs. 64.4 vs. 53.4 %, P > 0.05). However, the blastocyst rate over total oocytes (32.2 vs. 36.9 vs. 11.1 %, P < 0.05), blastocyst rate over cleaved oocytes (51.8 vs. 55.1 vs. 21.2 %, P < 0.01) and the average number of cells/blastocyst (89.6 vs. 87.5 vs. 62.2, P < 0.01) were unaffected by hCG treatment in LOPU-sourced oocytes, but both LOPU groups were significantly higher than abattoir-sourced oocytes, respectively. Our results suggest LOPU may become a powerful tool for sourcing swine oocytes with higher developmental competence than abattoir-sourced oocytes and known disease status for creating swine models for human biomedical applications, as well as for accelerated genetic gain in swine breeding programs.
Collapse
Affiliation(s)
- Hernan Baldassarre
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Werner Giehl Glanzner
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | | | - Luke Currin
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Vanessa Guay
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | | | - Zigomar Da Silva
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Frederic Fortin
- Centre de Development du Porc du Quebec, Lévis, Quebec, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
7
|
Ye X, Zhang M, Gu H, Liu M, Zhao Y, Shi Y, Wu S, Jiang C, Ye X, Zhu H, Li Q, Huang X, Cao M. Animal models of acute exacerbation of pulmonary fibrosis. Respir Res 2023; 24:296. [PMID: 38007420 PMCID: PMC10675932 DOI: 10.1186/s12931-023-02595-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive scarring interstitial lung disease with an unknown cause. Some patients may experience acute exacerbations (AE), which result in severe lung damage visible on imaging or through examination of tissue samples, often leading to high mortality rates. However, the etiology and pathogenesis of AE-IPF remain unclear. AE-IPF patients exhibit diffuse lung damage, apoptosis of type II alveolar epithelial cells, and an excessive inflammatory response. Establishing a reliable animal model of AE is critical for investigating the pathogenesis. Recent studies have reported a variety of animal models for AE-IPF, each with its own advantages and disadvantages. These models are usually established in mice with bleomycin-induced pulmonary fibrosis, using viruses, bacteria, small peptides, or specific drugs. In this review, we present an overview of different AE models, hoping to provide a useful resource for exploring the mechanisms and targeted therapies for AE-IPF.
Collapse
Affiliation(s)
- Xu Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Mingrui Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huimin Gu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Mengying Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yichao Zhao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanchen Shi
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shufei Wu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Jiang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoling Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Huihui Zhu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Li
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinmei Huang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
- Nanjing Institute of Respiratory Diseases, Nanjing, China.
| | - Mengshu Cao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China.
- Nanjing Institute of Respiratory Diseases, Nanjing, China.
| |
Collapse
|