1
|
Campos J, Sampaio-Marques B, Santos D, Barata-Antunes S, Ribeiro M, Serra SC, Pinho TS, Canto-Gomes J, Marote A, Cortez M, Silva NA, Michael-Titus AT, Salgado AJ. Lipid Priming of Adipose Mesenchymal Stromal Cells with Docosahexaenoic Acid: Impact on Cell Differentiation, Senescence and the Secretome Neuroregulatory Profile. Tissue Eng Regen Med 2024:10.1007/s13770-024-00679-5. [PMID: 39495459 DOI: 10.1007/s13770-024-00679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Priming strategies that improve the functionality of MSCs may be required to address issues limiting successful clinical translation of MSC therapies. For conditions requiring high trophic support such as brain and spinal cord injuries, priming MSCs to produce higher levels of trophic factors may be instrumental to facilitate translation of current MSC therapies. We developed and tested a novel molecular priming paradigm using docosahexaenoic acid (DHA) to prime adipose tissue-derived mesenchymal stromal cells (ASCs) to enhance the secretome neuroregulatory potential. METHODS Comprehensive dose-response and time-course assays were carried to determine an optimal priming protocol. Secretome total protein measurements were taken in association with cell viability, density and morphometric assessments. Cell identity and differentiation capacity were studied by flow cytometry and lineage-specific markers. Cell growth was assessed by trypan-blue exclusion and senescence was probed over time using SA-β-gal, morphometry and gene expression. Secretomes were tested for their ability to support differentiation and neurite outgrowth of human neural progenitor cells (hNPCs). Neuroregulatory proteins in the secretome were identified using multiplex membrane arrays. RESULTS Priming with 40 µM DHA for 72 h significantly enhanced the biosynthetic capacity of ASCs, producing a secretome with higher protein levels and increased metabolic viability. DHA priming enhanced ASCs adipogenic differentiation and adapted their responses to replicative senescence induction. Furthermore, priming increased concentrations of neurotrophic factors in the secretome promoting neurite outgrowth and modulating the differentiation of hNPCs. CONCLUSIONS These results provide proof-of-concept evidence that DHA priming is a viable strategy to improve the neuroregulatory profile of ASCs.
Collapse
Affiliation(s)
- Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Diogo Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sandra Barata-Antunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Miguel Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sofia C Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiffany S Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Canto-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Cortez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Adina T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Walker MF, Zhang J, Steiner W, Ku PI, Zhu JF, Michaelson Z, Yen YC, Lee A, Long AB, Casey MJ, Poddar A, Nelson IB, Arveseth CD, Nagel F, Clough R, LaPotin S, Kwan KM, Schulz S, Stewart RA, Tesmer JJG, Caspary T, Subramanian R, Ge X, Myers BR. GRK2 kinases in the primary cilium initiate SMOOTHENED-PKA signaling in the Hedgehog cascade. PLoS Biol 2024; 22:e3002685. [PMID: 39138140 PMCID: PMC11322411 DOI: 10.1371/journal.pbio.3002685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 05/21/2024] [Indexed: 08/15/2024] Open
Abstract
During Hedgehog (Hh) signal transduction in development and disease, the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO) communicates with GLI transcription factors by binding the protein kinase A catalytic subunit (PKA-C) and physically blocking its enzymatic activity. Here, we show that GPCR kinase 2 (GRK2) orchestrates this process during endogenous mouse and zebrafish Hh pathway activation in the primary cilium. Upon SMO activation, GRK2 rapidly relocalizes from the ciliary base to the shaft, triggering SMO phosphorylation and PKA-C interaction. Reconstitution studies reveal that GRK2 phosphorylation enables active SMO to bind PKA-C directly. Lastly, the SMO-GRK2-PKA pathway underlies Hh signal transduction in a range of cellular and in vivo models. Thus, GRK2 phosphorylation of ciliary SMO and the ensuing PKA-C binding and inactivation are critical initiating events for the intracellular steps in Hh signaling. More broadly, our study suggests an expanded role for GRKs in enabling direct GPCR interactions with diverse intracellular effectors.
Collapse
Affiliation(s)
- Madison F. Walker
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jingyi Zhang
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, United States of America
| | - William Steiner
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Pei-I Ku
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ju-Fen Zhu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Zachary Michaelson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Yu-Chen Yen
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Annabel Lee
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Alyssa B. Long
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mattie J. Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Abhishek Poddar
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Isaac B. Nelson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Corvin D. Arveseth
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | | | - Ryan Clough
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sarah LaPotin
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kristen M. Kwan
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Stefan Schulz
- 7TM Antibodies GmbH, Jena, Germany
- Institute of Pharmacology and Toxicology, University Hospital Jena, Jena, Germany
| | - Rodney A. Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - John J. G. Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xuecai Ge
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, United States of America
| | - Benjamin R. Myers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
3
|
Hilgendorf KI, Myers BR, Reiter JF. Emerging mechanistic understanding of cilia function in cellular signalling. Nat Rev Mol Cell Biol 2024; 25:555-573. [PMID: 38366037 PMCID: PMC11199107 DOI: 10.1038/s41580-023-00698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/18/2024]
Abstract
Primary cilia are solitary, immotile sensory organelles present on most cells in the body that participate broadly in human health, physiology and disease. Cilia generate a unique environment for signal transduction with tight control of protein, lipid and second messenger concentrations within a relatively small compartment, enabling reception, transmission and integration of biological information. In this Review, we discuss how cilia function as signalling hubs in cell-cell communication using three signalling pathways as examples: ciliary G-protein-coupled receptors (GPCRs), the Hedgehog (Hh) pathway and polycystin ion channels. We review how defects in these ciliary signalling pathways lead to a heterogeneous group of conditions known as 'ciliopathies', including metabolic syndromes, birth defects and polycystic kidney disease. Emerging understanding of these pathways' transduction mechanisms reveals common themes between these cilia-based signalling pathways that may apply to other pathways as well. These mechanistic insights reveal how cilia orchestrate normal and pathophysiological signalling outputs broadly throughout human biology.
Collapse
Affiliation(s)
- Keren I Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Benjamin R Myers
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
4
|
Nishimura Y. [Regulation of adipose progenitors and fibro-adipogenic progenitors through primary cilia]. Nihon Yakurigaku Zasshi 2024; 159:188-191. [PMID: 38684399 DOI: 10.1254/fpj.23108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The primary cilium, an antenna-like structure of cell membrane, detects various signals and regulates cellular functions such as proliferation and differentiation. The impairment of primary cilium is associated with the etiologies of diseases including cancer, obesity, and congenital anomalies. In this review, novel functions of trichoplein, a suppressor of ciliogenesis, on the regulation of adipose progenitors and fibro-adipogenic progenitors are focused. Trichoplein-knockout mice show resistance to high-fat diet-induced obesity and accelerated regeneration after skeletal muscle injury. The primary cilia of adipose progenitors from trichoplein-knockout mice are elongated, leading to the inhibitions of the accumulation of lipid raft to the base of primary cilia and the phosphorylation of AKT. The primary cilia of fibro-adipogenic progenitors from trichoplein-knockout mice are also elongated, causing the increased expression of IL-13 through IL-33 receptor signaling. These mechanisms are involved in the resistance to diet-induced obesity and improved regeneration. These findings suggest that targeting the primary cilia of specific cells may be a novel therapeutic approach through modulating cellular functions.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine
- Research Center for Cilia and Diseases, Mie University Graduate School of Medicine
| |
Collapse
|
5
|
Niehrs C, Da Silva F, Seidl C. Cilia as Wnt signaling organelles. Trends Cell Biol 2024:S0962-8924(24)00071-0. [PMID: 38697898 DOI: 10.1016/j.tcb.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
Cilia and Wnt signaling have a complex relationship, wherein Wnt regulates cilia and, conversely, cilia may affect Wnt signaling. Recently, it was shown that Wnt receptors are present in flagella, primary cilia, and multicilia, where they transmit an intraciliary signal that is independent of β-catenin. Intraciliary Wnt signaling promotes ciliogenesis, affecting male fertility, adipogenesis, and mucociliary clearance. Wnt also stimulates the beating of motile cilia, highlighting that these nanomotors, too, are chemosensory. Intraciliary Wnt signaling employs a Wnt-protein phosphatase 1 (PP1) signaling axis, involving the canonical Wnt pathway's inhibition of glycogen synthase kinase 3 (GSK3) to repress PP1 activity. Collectively, these findings support that cilia are Wnt signaling organelles, with implications for ciliopathies and cancer.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| | - Fabio Da Silva
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Carina Seidl
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Walker MF, Zhang J, Steiner W, Ku PI, Zhu JF, Michaelson Z, Yen YC, Lee A, Long AB, Casey MJ, Poddar A, Nelson IB, Arveseth CD, Nagel F, Clough R, LaPotin S, Kwan KM, Schulz S, Stewart RA, Tesmer JJG, Caspary T, Subramanian R, Ge X, Myers BR. GRK2 Kinases in the Primary Cilium Initiate SMOOTHENED-PKA Signaling in the Hedgehog Cascade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.10.540226. [PMID: 37214942 PMCID: PMC10197709 DOI: 10.1101/2023.05.10.540226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
During Hedgehog (Hh) signal transduction in development and disease, the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO) communicates with GLI transcription factors by binding the protein kinase A catalytic subunit (PKA-C) and physically blocking its enzymatic activity. Here we show that GPCR kinase 2 (GRK2) orchestrates this process during endogenous Hh pathway activation in the vertebrate primary cilium. Upon SMO activation, GRK2 rapidly relocalizes from the ciliary base to the shaft, triggering SMO phosphorylation and PKA-C interaction. Reconstitution studies reveal that GRK2 phosphorylation enables active SMO to bind PKA-C directly. Lastly, the SMO-GRK2-PKA pathway underlies Hh signal transduction in a range of cellular and in vivo models. Thus, GRK2 phosphorylation of ciliary SMO, and the ensuing PKA-C binding and inactivation, are critical initiating events for the intracellular steps in Hh signaling. More broadly, our study suggests an expanded role for GRKs in enabling direct GPCR interactions with diverse intracellular effectors.
Collapse
|
7
|
Gopalakrishnan J, Feistel K, Friedrich BM, Grapin‐Botton A, Jurisch‐Yaksi N, Mass E, Mick DU, Müller R, May‐Simera H, Schermer B, Schmidts M, Walentek P, Wachten D. Emerging principles of primary cilia dynamics in controlling tissue organization and function. EMBO J 2023; 42:e113891. [PMID: 37743763 PMCID: PMC10620770 DOI: 10.15252/embj.2023113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.
Collapse
Affiliation(s)
- Jay Gopalakrishnan
- Institute for Human Genetics, Heinrich‐Heine‐UniversitätUniversitätsklinikum DüsseldorfDüsseldorfGermany
| | - Kerstin Feistel
- Department of Zoology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | | | - Anne Grapin‐Botton
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at The University Hospital Carl Gustav Carus and Faculty of Medicine of the TU DresdenDresdenGermany
| | - Nathalie Jurisch‐Yaksi
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune SystemUniversity of BonnBonnGermany
| | - David U Mick
- Center for Molecular Signaling (PZMS), Center of Human and Molecular Biology (ZHMB)Saarland School of MedicineHomburgGermany
| | - Roman‐Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Helen May‐Simera
- Institute of Molecular PhysiologyJohannes Gutenberg‐UniversityMainzGermany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Miriam Schmidts
- Pediatric Genetics Division, Center for Pediatrics and Adolescent MedicineUniversity Hospital FreiburgFreiburgGermany
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Peter Walentek
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Renal Division, Internal Medicine IV, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical FacultyUniversity of BonnBonnGermany
| |
Collapse
|