1
|
Liu G, Xie C, Li J, Jiang X, Tang H, Li C, Zhang K. Enriched environment treatment promotes neurofunctional recovery by regulating the ALK5/Smad2/3/Gadd45β signaling pathway in rats with cerebral ischemia /reperfusion injury. Neurochem Int 2024; 178:105806. [PMID: 39025366 DOI: 10.1016/j.neuint.2024.105806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
It has been demonstrated that an enriched environment (EE) treatment can alter neuroplasticity in neurodegenerative diseases. However, the role of EE treatment in ischemic stroke remains unclear. Previous findings have revealed that EE treatment can promote cerebral activin-receptor-like-kinase-5 (ALK5) expression after cerebral ischemia/reperfusion (I/R) injury. ALK5 has been identified as a potential mediator of neuroplasticity through its modulation of Smad2/3 and Gadd45β. Therefore, the aim of this study was to investigate whether EE treatment could promote neurofunctional recovery by regulating the ALK5/Smad2/3/Gadd45β pathway. The study utilized the rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). The ALK5/Smad2/3/Gadd45β signaling pathway changes were evaluated using western blotting (WB). Brain injury was assessed by infarct volume and neurobehavioral scores. The effect of EE treatment on neurogenesis was evaluated using Doublecortin (DCX) and Nestin, axonal plasticity with biotinylated dextran amine (BDA) nerve tracing, and dendritic plasticity was assessed using Golgi-Cox staining. EE treatment has been demonstrated to modulate the Smad2/3/Gadd45β pathway by regulating the expression of ALK5. The protective effects of EE treatment on brain infarct volume, neurological function, newborn neurons, dendritic and axonal plasticity following cerebral I/R injury were counteracted by ALK5 silencing. EE treatment can enhance neurofunctional recovery after cerebral I/R injury, which is achieved by regulating the ALK5/Smad2/3/Gadd45β signaling pathway to promote neuroplasticity.
Collapse
Affiliation(s)
- Gang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Chenchen Xie
- Department of Neurology, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, Sichuan Province, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jiani Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xia Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hao Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Changqing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Keming Zhang
- School of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China.
| |
Collapse
|
2
|
Eshaghi-Gorji R, Talebpour Amiri F, Mirzae M, Shafia S, Akhoundzadeh K. Effects of the combination of bone marrow stromal cells and exercise on corticosterone, BDNF, IGF-1, and anxiety-like behaviour in a rat model of post-traumatic stress disorder: Comparable effects of exercise. World J Biol Psychiatry 2024; 25:370-383. [PMID: 39049204 DOI: 10.1080/15622975.2024.2382693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
AIM Post-traumatic stress disorder (PTSD) requires more effective treatment options with fewer side effects. Stem cell therapy, as a novel approach, has been investigated in the treatment of various diseases, including brain disorders. This study investigated the effects of bone marrow stromal cells (BMSCs) and the combination of BMSCs with exercise on corticosterone, BDNF and IGF-1, and anxiety-like behaviours in a male rat model of PTSD. METHODS Male adult Wistar rats were subjected to PTSD induced by the single prolonged stress (SPS) model. 7 days after SPS, BMSCs were injected intravenously. The exercise started on day 11 and continued for 4 weeks. On day 40th, anxiety behaviour, corticosterone, BDNF, and IGF-1 were tested. p < 0.05 was considered as a significant level. RESULTS The study showed that a combination of BMSCs and exercise significantly reduced anxiety-related behaviours, and alterations in BDNF, IGF-1, and corticosterone levels. Also, BMSCs alone significantly reduced some of the PTSD-induced impairments. However, exercise alone showed greater efficiency in comparison with BMSCs alone. CONCLUSION According to the results, although combination therapy effectively improved PTSD-related complications, exercise had relatively comparable effects on PTSD. Exercise has the potential to enhance the efficacy of BMSC therapy. Further research is required to determine whether BMSC therapy is sufficiently efficacious and safe in clinical settings.
Collapse
Affiliation(s)
- Reza Eshaghi-Gorji
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mansoureh Mirzae
- PhD in Comparative Histology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sakineh Shafia
- Department of Physiology, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|
3
|
Atewologun FA, Okesanya OJ, Okon II, Kayode HH, Ukoaka BM, Olaleke NO, Ogaya JB, Okikiola LA, Manirambona E, Lucero-Prisno Iii DE. Examining the potentials of stem cell therapy in reducing the burden of selected non-communicable diseases in Africa. Stem Cell Res Ther 2024; 15:253. [PMID: 39135088 PMCID: PMC11321202 DOI: 10.1186/s13287-024-03864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024] Open
Abstract
Stem cell therapy (SCT) is a promising solution for addressing health challenges in Africa, particularly non-communicable diseases (NCDs). With their regenerative potential, stem cells have the inherent capacity to differentiate into numerous cell types for tissue repair. Despite infrastructural, ethical, and legal challenges, SCT holds immense promise for managing chronic illnesses and deep-seated tissue injuries. The rising prevalence of NCDs in Africa highlights the need for innovative strategies and treatment options. SCT offers hope in combating conditions like burns, osteoarthritis, diabetes, Alzheimer's disease, stroke, heart failure and cancer, potentially reducing the burden of NCDs on the continent. Despite SCT's opportunities in Africa, there are significant obstacles. However, published research on SCT in Africa is scarce, but recent initiatives such as the Basic School on Neural Stem Cells (NSC) express interest in developing NSC research in Africa. SCT research in African regions, notably on neurogenesis, demonstrates a concentration on studying neurological processes in indigenous settings. While progress has been made in South Africa and Nigeria, issues such as brain drain and impediments to innovation remain. Clinical trials have investigated the efficacy of stem cell treatments, emphasising both potential benefits and limitations in implementing these therapies efficiently. Financing research, developing regulatory frameworks, and resolving affordability concerns are critical steps toward realizing the potential of stem cell treatment in Africa.
Collapse
Affiliation(s)
| | | | - Inibehe Ime Okon
- Department of Research, Medical Research Circle (MedReC), Democratic Republic of the Congo, Postal Code 50 Goma, Bukavu, Democratic Republic of Congo.
| | - Hassan Hakeem Kayode
- Department of Medical Laboratory Science, Federal Medical Centre, Bida, Niger State, Nigeria
| | | | - Noah Olabode Olaleke
- Obafemi Awolowo University Teaching Hospital Complex, Ile-Ife, Osun State, Nigeria
| | - Jerico Bautista Ogaya
- Department of Medical Technology, Far Eastern University, Manila, Philippines
- Center for University Research, University of Makati, Makati City, Philippines
| | - Lawal Azeez Okikiola
- Department of Biology, University of Texas at Tyler, Tyler, USA
- Department of Medical Laboratory Science, Kwara State University, Malete, Nigeria
| | - Emery Manirambona
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Don Eliseo Lucero-Prisno Iii
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
- Research and Innovation Office, Southern Leyte State University, Sogod, Southern Leyte, Philippines
| |
Collapse
|
4
|
Dell’Angelica D, Singh K, Colwell CS, Ghiani CA. Circadian Interventions in Preclinical Models of Huntington's Disease: A Narrative Review. Biomedicines 2024; 12:1777. [PMID: 39200241 PMCID: PMC11351982 DOI: 10.3390/biomedicines12081777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder caused by an autosomal-dominant mutation in the huntingtin gene, which manifests with a triad of motor, cognitive and psychiatric declines. Individuals with HD often present with disturbed sleep/wake cycles, but it is still debated whether altered circadian rhythms are intrinsic to its aetiopathology or a consequence. Conversely, it is well established that sleep/wake disturbances, perhaps acting in concert with other pathophysiological mechanisms, worsen the impact of the disease on cognitive and motor functions and are a burden to the patients and their caretakers. Currently, there is no cure to stop the progression of HD, however, preclinical research is providing cementing evidence that restoring the fluctuation of the circadian rhythms can assist in delaying the onset and slowing progression of HD. Here we highlight the application of circadian-based interventions in preclinical models and provide insights into their potential translation in clinical practice. Interventions aimed at improving sleep/wake cycles' synchronization have shown to improve motor and cognitive deficits in HD models. Therefore, a strong support for their suitability to ameliorate HD symptoms in humans emerges from the literature, albeit with gaps in our knowledge on the underlying mechanisms and possible risks associated with their implementation.
Collapse
Affiliation(s)
- Derek Dell’Angelica
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Karan Singh
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Cristina A. Ghiani
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| |
Collapse
|
5
|
Halfhide C, Cammarano TL, Anderson KA, Galik SM, Rossignol J, Dunbar GL, Sandstrom MI. Using microdialysis to monitor dopaminergic support of limb-use control following mesencephalic neurosphere transplantation in a rodent model of Parkinson's Disease. Behav Brain Res 2024; 471:115121. [PMID: 38945302 DOI: 10.1016/j.bbr.2024.115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Controlled nigrostriatal dopamine release supports effective limb use during locomotion coordination that becomes compromised after this pathway deteriorates in Parkinson's Disease (PD). How dopamine release relates to active ongoing behavior control remains unknown. Restoring proper release strategy appears important to successful PD treatment with transplanted dopamine-producing stem cells. This is suggested by apparently distinct behavioral support from tonic or phasic release and corresponding requirements of requisite afferent control exhibited by intact nigrostriatal neurons. Our laboratory previously demonstrated that transplanted dopaminergic cells can elicit skilled movement recovery known to depend on phasic dopamine release. However, efforts to measure this movement-related dopamine release yielded seemingly paradoxical, incongruent results. In response, here we explored whether those previous observations derived from rapid reuptake transport into either transplanted cells or residual, lesion-surviving terminals. We confirmed this using minimal reuptake blockade during intrastriatal microdialysis. After unilateral dopamine depletion, rats received transplants and were subjected to our swimming protocol. Among dopamine-depleted and transplanted rats, treatment supported restoration of limb movement symmetry. Interestingly, subsequent reuptake-restricted microdialysis confirmed distinct swimming-induced dopamine increases clearly occurred among these lesioned/transplanted subjects. Thus, phasic firing control appears to contribute to transplant-derived recovery in Parkinsonian animals.
Collapse
Affiliation(s)
- Chloé Halfhide
- Central Michigan University, Program in Neuroscience, Mt. Pleasant, MI, United States
| | - Tommie L Cammarano
- Central Michigan University, Program in Neuroscience, Mt. Pleasant, MI, United States
| | - Kevin A Anderson
- Central Michigan University, Experimental Psychology Program, Mt. Pleasant, MI, United States
| | - Stefani M Galik
- Central Michigan University, Experimental Psychology Program, Mt. Pleasant, MI, United States
| | - Julien Rossignol
- Central Michigan University, Program in Neuroscience, Mt. Pleasant, MI, United States; Central Michigan University, College of Medicine, Mt. Pleasant, MI, United States
| | - Gary L Dunbar
- Central Michigan University, Program in Neuroscience, Mt. Pleasant, MI, United States; Central Michigan University, Experimental Psychology Program, Mt. Pleasant, MI, United States
| | - Michael I Sandstrom
- Central Michigan University, Program in Neuroscience, Mt. Pleasant, MI, United States; Central Michigan University, Experimental Psychology Program, Mt. Pleasant, MI, United States.
| |
Collapse
|
6
|
Martini APR, Schlemmer LM, Lucio Padilha JA, Fabres RB, Couto Pereira NDS, Pereira LO, Dalmaz C, Netto CA. Acrobatic training prevents learning impairments and astrocyte remodeling in the hippocampus of rats undergoing chronic cerebral hypoperfusion: sex-specific benefits. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1375561. [PMID: 38939055 PMCID: PMC11208732 DOI: 10.3389/fresc.2024.1375561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Abstract
Background Chronic cerebral hypoperfusion (CCH) leads to memory and learning impairments associated with degeneration and gliosis in the hippocampus. Treatment with physical exercise carries different therapeutic benefits for each sex. We investigated the effects of acrobatic training on astrocyte remodeling in the CA1 and CA3 subfields of the hippocampus and spatial memory impairment in male and female rats at different stages of the two-vessel occlusion (2VO) model. Methods Wistar rats were randomly allocated into four groups of males and females: 2VO acrobatic, 2VO sedentary, sham acrobatic, and sham sedentary. The acrobatic training was performed for 4 weeks prior to the 2VO procedure. Brain samples were collected for morphological and biochemical analysis at 3 and 7 days after 2VO. The dorsal hippocampi were removed and prepared for Western blot quantification of Akt, p-Akt, COX IV, cleaved caspase-3, PARP, and GFAP. GFAP immunofluorescence was performed on slices of the hippocampus to count astrocytes and apply the Sholl's circle technique. The Morris water maze was run after 45 days of 2VO. Results Acutely, the trained female rats showed increased PARP expression, and the 2VO-trained rats of both sexes presented increased GFAP levels in Western blot. Training, mainly in males, induced an increase in the number of astrocytes in the CA1 subfield. The 2VO rats presented branched astrocytes, while acrobatic training prevented branching. However, the 2VO-induced spatial memory impairment was partially prevented by the acrobatic training. Conclusion Acrobatic training restricted the astrocytic remodeling caused by 2VO in the CA1 and CA3 subfields of the hippocampus. The improvement in spatial memory was associated with more organized glial scarring in the trained rats and better cell viability observed in females.
Collapse
Affiliation(s)
- Ana Paula Rodrigues Martini
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Livia Machado Schlemmer
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Joelma Alves Lucio Padilha
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Bandeira Fabres
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, United States
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Natividade de Sá Couto Pereira
- Psychological Neuroscience Laboratory, Psychology Research Center, School of Psychology, University of Minho, Braga, Portugal
| | - Lenir Orlandi Pereira
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Dalmaz
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
7
|
Yang L, Liu SC, Liu YY, Zhu FQ, Xiong MJ, Hu DX, Zhang WJ. Therapeutic role of neural stem cells in neurological diseases. Front Bioeng Biotechnol 2024; 12:1329712. [PMID: 38515621 PMCID: PMC10955145 DOI: 10.3389/fbioe.2024.1329712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
The failure of endogenous repair is the main feature of neurological diseases that cannot recover the damaged tissue and the resulting dysfunction. Currently, the range of treatment options for neurological diseases is limited, and the approved drugs are used to treat neurological diseases, but the therapeutic effect is still not ideal. In recent years, different studies have revealed that neural stem cells (NSCs) have made exciting achievements in the treatment of neurological diseases. NSCs have the potential of self-renewal and differentiation, which shows great foreground as the replacement therapy of endogenous cells in neurological diseases, which broadens a new way of cell therapy. The biological functions of NSCs in the repair of nerve injury include neuroprotection, promoting axonal regeneration and remyelination, secretion of neurotrophic factors, immune regulation, and improve the inflammatory microenvironment of nerve injury. All these reveal that NSCs play an important role in improving the progression of neurological diseases. Therefore, it is of great significance to better understand the functional role of NSCs in the treatment of neurological diseases. In view of this, we comprehensively discussed the application and value of NSCs in neurological diseases as well as the existing problems and challenges.
Collapse
Affiliation(s)
- Ling Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Physical Examination, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Si-Cheng Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yi-Yi Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fu-Qi Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Mei-Juan Xiong
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Schäfer-Korting M. Looking to the Future: Drug Delivery and Targeting in the Prophylaxis and Therapy of Severe and Chronic Diseases. Handb Exp Pharmacol 2024; 284:389-411. [PMID: 37861719 DOI: 10.1007/164_2023_696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
High molecular weight actives and cell-based therapy have the potential to revolutionize the prophylaxis and therapy of severe diseases. Yet, the size and nature of the agents - proteins, nucleic acids, cells - challenge drug delivery and thus formulation development. Moreover, off-target effects may result in severe adverse drug reactions. This makes delivery and targeting an essential component of high-end drug development. Loading to nanoparticles facilitates delivery and enables targeted mRNA vaccines and tumor therapeutics. Stem cell therapy opens up a new horizon in diabetes type 1 among other domains which may enhance the quality of life and life expectancy. Cell encapsulation protects transplants against the recipient's immune system, may ensure long-term efficacy, avoid severe adverse reactions, and simplify the management of rare and fatal diseases.The knowledge gained so far encourages to widen the spectrum of potential indications. Co-development of the active agent and the vehicle has the potential to accelerate drug research. One recommended starting point is the use of computational approaches. Transferability of preclinical data to humans will benefit from performing studies first on validated human 3D disease models reflecting the target tissue, followed by studies on validated animal models. This makes approaching a new level in drug development a multidisciplinary but ultimately worthwhile and attainable challenge. Intense monitoring of the patients after drug approval and periodic reporting to physicians and scientists remain essential for the safe use of drugs especially in rare diseases and pave future research.
Collapse
|
9
|
Li Z, Chen L, Xu C, Chen Z, Wang Y. Non-invasive sensory neuromodulation in epilepsy: Updates and future perspectives. Neurobiol Dis 2023; 179:106049. [PMID: 36813206 DOI: 10.1016/j.nbd.2023.106049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Epilepsy, one of the most common neurological disorders, often is not well controlled by current pharmacological and surgical treatments. Sensory neuromodulation, including multi-sensory stimulation, auditory stimulation, olfactory stimulation, is a kind of novel noninvasive mind-body intervention and receives continued attention as complementary safe treatment of epilepsy. In this review, we summarize the recent advances of sensory neuromodulation, including enriched environment therapy, music therapy, olfactory therapy, other mind-body interventions, for the treatment of epilepsy based on the evidence from both clinical and preclinical studies. We also discuss their possible anti-epileptic mechanisms on neural circuit level and propose perspectives on possible research directions for future studies.
Collapse
Affiliation(s)
- Zhongxia Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liying Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
10
|
Isaković J, Šerer K, Barišić B, Mitrečić D. Mesenchymal stem cell therapy for neurological disorders: The light or the dark side of the force? Front Bioeng Biotechnol 2023; 11:1139359. [PMID: 36926687 PMCID: PMC10011535 DOI: 10.3389/fbioe.2023.1139359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Neurological disorders are recognized as major causes of death and disability worldwide. Because of this, they represent one of the largest public health challenges. With awareness of the massive burden associated with these disorders, came the recognition that treatment options were disproportionately scarce and, oftentimes, ineffective. To address these problems, modern research is increasingly looking into novel, more effective methods to treat neurological patients; one of which is cell-based therapies. In this review, we present a critical analysis of the features, challenges, and prospects of one of the stem cell types that can be employed to treat numerous neurological disorders-mesenchymal stem cells (MSCs). Despite the fact that several studies have already established the safety of MSC-based treatment approaches, there are still some reservations within the field regarding their immunocompatibility, heterogeneity, stemness stability, and a range of adverse effects-one of which is their tumor-promoting ability. We additionally examine MSCs' mechanisms of action with respect to in vitro and in vivo research as well as detail the findings of past and ongoing clinical trials for Parkinson's and Alzheimer's disease, ischemic stroke, glioblastoma multiforme, and multiple sclerosis. Finally, this review discusses prospects for MSC-based therapeutics in the form of biomaterials, as well as the use of electromagnetic fields to enhance MSCs' proliferation and differentiation into neuronal cells.
Collapse
Affiliation(s)
- Jasmina Isaković
- Omnion Research International, Zagreb, Croatia.,Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Klara Šerer
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Barbara Barišić
- University of Zagreb School of Dental Medicine, Zagreb, Croatia
| | - Dinko Mitrečić
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia.,Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
11
|
Al-Azab M, Safi M, Idiiatullina E, Al-Shaebi F, Zaky MY. Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting. Cell Mol Biol Lett 2022; 27:69. [PMID: 35986247 PMCID: PMC9388978 DOI: 10.1186/s11658-022-00366-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023] Open
Abstract
Human mesenchymal stem cells (MSCs) are primary multipotent cells capable of differentiating into osteocytes, chondrocytes, and adipocytes when stimulated under appropriate conditions. The role of MSCs in tissue homeostasis, aging-related diseases, and cellular therapy is clinically suggested. As aging is a universal problem that has large socioeconomic effects, an improved understanding of the concepts of aging can direct public policies that reduce its adverse impacts on the healthcare system and humanity. Several studies of aging have been carried out over several years to understand the phenomenon and different factors affecting human aging. A reduced ability of adult stem cell populations to reproduce and regenerate is one of the main contributors to the human aging process. In this context, MSCs senescence is a major challenge in front of cellular therapy advancement. Many factors, ranging from genetic and metabolic pathways to extrinsic factors through various cellular signaling pathways, are involved in regulating the mechanism of MSC senescence. To better understand and reverse cellular senescence, this review highlights the underlying mechanisms and signs of MSC cellular senescence, and discusses the strategies to combat aging and cellular senescence.
Collapse
|
12
|
iPSCs in Neurodegenerative Disorders: A Unique Platform for Clinical Research and Personalized Medicine. J Pers Med 2022; 12:jpm12091485. [PMID: 36143270 PMCID: PMC9500601 DOI: 10.3390/jpm12091485] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
In the past, several animal disease models were developed to study the molecular mechanism of neurological diseases and discover new therapies, but the lack of equivalent animal models has minimized the success rate. A number of critical issues remain unresolved, such as high costs for developing animal models, ethical issues, and lack of resemblance with human disease. Due to poor initial screening and assessment of the molecules, more than 90% of drugs fail during the final step of the human clinical trial. To overcome these limitations, a new approach has been developed based on induced pluripotent stem cells (iPSCs). The discovery of iPSCs has provided a new roadmap for clinical translation research and regeneration therapy. In this article, we discuss the potential role of patient-derived iPSCs in neurological diseases and their contribution to scientific and clinical research for developing disease models and for developing a roadmap for future medicine. The contribution of humaniPSCs in the most common neurodegenerative diseases (e.g., Parkinson’s disease and Alzheimer’s disease, diabetic neuropathy, stroke, and spinal cord injury) were examined and ranked as per their published literature on PUBMED. We have observed that Parkinson’s disease scored highest, followed by Alzheimer’s disease. Furthermore, we also explored recent advancements in the field of personalized medicine, such as the patient-on-a-chip concept, where iPSCs can be grown on 3D matrices inside microfluidic devices to create an in vitro disease model for personalized medicine.
Collapse
|
13
|
Gordon J, Lockard G, Monsour M, Alayli A, Choudhary H, Borlongan CV. Sequestration of Inflammation in Parkinson's Disease via Stem Cell Therapy. Int J Mol Sci 2022; 23:ijms231710138. [PMID: 36077534 PMCID: PMC9456021 DOI: 10.3390/ijms231710138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disease. Insidious and progressive, this disorder is secondary to the gradual loss of dopaminergic signaling and worsening neuroinflammation, affecting patients’ motor capabilities. Gold standard treatment includes exogenous dopamine therapy in the form of levodopa–carbidopa, or surgical intervention with a deep brain stimulator to the subcortical basal ganglia. Unfortunately, these therapies may ironically exacerbate the already pro-inflammatory environment. An alternative approach may involve cell-based therapies. Cell-based therapies, whether endogenous or exogenous, often have anti-inflammatory properties. Alternative strategies, such as exercise and diet modifications, also appear to play a significant role in facilitating endogenous and exogenous stem cells to induce an anti-inflammatory response, and thus are of unique interest to neuroinflammatory conditions including Parkinson’s disease. Treating patients with current gold standard therapeutics and adding adjuvant stem cell therapy, alongside the aforementioned lifestyle modifications, may ideally sequester inflammation and thus halt neurodegeneration.
Collapse
Affiliation(s)
- Jonah Gordon
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Gavin Lockard
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Molly Monsour
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Adam Alayli
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Hassan Choudhary
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
14
|
Kovalchuk A, Mychasiuk R, Muhammad A, Hossain S, Ghose A, Kirkby C, Ghasroddashti E, Kovalchuk O, Kolb B. Complex housing partially mitigates low dose radiation-induced changes in brain and behavior in rats. Restor Neurol Neurosci 2022; 40:109-124. [DOI: 10.3233/rnn-211216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Purpose: In recent years, much effort has been focused on developing new strategies for the prevention and mitigation of adverse radiation effects on healthy tissues and organs, including the brain. The brain is very sensitive to radiation effects, albeit as it is highly plastic. Hence, deleterious radiation effects may be potentially reversible. Because radiation exposure affects dendritic space, reduces the brain’s ability to produce new neurons, and alters behavior, mitigation efforts should focus on restoring these parameters. To that effect, environmental enrichment through complex housing (CH) and exercise may provide a plausible avenue for exploration of protection from brain irradiation. CH is a much broader concept than exercise alone, and constitutes exposure of animals to positive physical and social stimulation that is superior to their routine housing and care conditions. We hypothesized that CHs may lessen harmful neuroanatomical and behavioural effects of low dose radiation exposure. Methods: We analyzed and compared cerebral morphology in animals exposed to low dose head, bystander (liver), and scatter irradiation on rats housed in either the environmental enrichment condos or standard housing. Results: Enriched condo conditions ameliorated radiation-induced neuroanatomical changes. Moreover, irradiated animals that were kept in enriched CH condos displayed fewer radiation-induced behavioural deficits than those housed in standard conditions. Conclusions: Animal model-based environmental enrichment strategies, such as CH, are excellent surrogate models for occupational and exercise therapy in humans, and consequently have significant translational possibility. Our study may thus serve as a roadmap for the development of new, easy, safe and cost-effective methods to prevent and mitigate low-dose radiation effects on the brain.
Collapse
Affiliation(s)
- Anna. Kovalchuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | | | - Arif. Muhammad
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Shakhawat. Hossain
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Abhijit. Ghose
- Jack Ady Cancer Center, Alberta Health Services, Lethbridge, AB, Canada
| | - Charles. Kirkby
- Jack Ady Cancer Center, Alberta Health Services, Lethbridge, AB, Canada
- Department of Physics and Astronomy and Department of Oncology, University of Calgary, AB, Canada
| | - Esmaeel. Ghasroddashti
- Jack Ady Cancer Center, Alberta Health Services, Lethbridge, AB, Canada
- Department of Physics and Astronomy and Department of Oncology, University of Calgary, AB, Canada
| | - Olga. Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Bryan. Kolb
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
15
|
Drew CJG, Busse M. Considerations for clinical trial design and conduct in the evaluation of novel advanced therapeutics in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:235-279. [PMID: 36424094 DOI: 10.1016/bs.irn.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recent advances in the development of potentially disease modifying cell and gene therapies for neurodegenerative disease has resulted in the production of a number of promising novel therapies which are now moving forward to clinical evaluation. The robust evaluation of these therapies pose a significant number of challenges when compared to more traditional evaluations of pharmacotherapy, which is the current mainstay of neurodegenerative disease symptom management. Indeed, there is an inherent complexity in the design and conduct of these trials at multiple levels. Here we discuss specific aspects requiring consideration in the context of investigating novel cell and gene therapies for neurodegenerative disease. This extends to overarching trial designs that could be employed and the factors that underpin design choices such outcome assessments, participant selection and methods for delivery of cell and gene therapies. We explore methods of data collection that may improve efficiency in trials of cell and gene therapy to maximize data sharing and collaboration. Lastly, we explore some of the additional context beyond efficacy evaluations that should be considered to ensure implementation across relevant healthcare settings.
Collapse
Affiliation(s)
- Cheney J G Drew
- Centre For Trials Research, Cardiff University, Cardiff, United Kingdom; Brain Repair and Intracranial Neurotherapeutics Unit (BRAIN), College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom.
| | - Monica Busse
- Centre For Trials Research, Cardiff University, Cardiff, United Kingdom; Brain Repair and Intracranial Neurotherapeutics Unit (BRAIN), College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|