1
|
Avila-Vanzzini N, Santana-Ortiz A, Sánchez-Estrada D, Springall R, Lerma A, Herrera-Bello H, Calderón-Juárez M, Lerma C. Poor Sympathetic Compensation During Active Standing Increases the Risk of Morbidity-Mortality in the Post-Surgery of Patients with Severe Calcific Aortic Stenosis. BIOLOGY 2025; 14:146. [PMID: 40001914 PMCID: PMC11851686 DOI: 10.3390/biology14020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/19/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
(1) Background: Although all severe calcific aortic stenosis (SCAS) patients have decreased sympathetic compensation to active standing, it has not been studied in patients who underwent aortic valve replacement (AVR). The objective was to assess the association of the heart rate variability (HRV) response to an active orthostatic challenge before AVR with the risk of complications or death during the AVR postoperative period in patients with SCAS. (2) Methods: This observational study included 49 patients. The cardiac autonomic activity was assessed by HRV analysis during supine position and active standing (five minutes each). (3) Results: Twenty-four patients (48.9%) who presented outcomes (complication or death) had a greater left ventricular (LV) mass and a smaller magnitude of change during active standing in both the mean cardiac period and sympathetic predominance. Poor sympathetic compensation to active standing and LV mass were independently associated with the outcome odds ratio (OR) = 4.8 [(1.06, 21.8), p < 0.041] and 1.03 [(1.007, 1.062), p < 0.013], respectively. (4) Conclusions: In SCAS patients, poor sympathetic compensation in the face of orthostatic challenge and greater LV mass are associated with complications or death after AVR surgery. This approach offers an opportunity to find new criteria to reduce the surgical risk of these patients.
Collapse
Affiliation(s)
- Nydia Avila-Vanzzini
- Faculty of Health Sciences, Universidad Anahuac Mexico, Huixquilucan 52786, Mexico;
| | - Anayanci Santana-Ortiz
- Departamento de Consulta Externa, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 04480, Mexico; (A.S.-O.); (D.S.-E.)
| | - Daniela Sánchez-Estrada
- Departamento de Consulta Externa, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 04480, Mexico; (A.S.-O.); (D.S.-E.)
| | - Rashidi Springall
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 04480, Mexico;
| | - Abel Lerma
- Faculty of Health Sciences, Universidad Anahuac Mexico, Huixquilucan 52786, Mexico;
- Area de Psicología, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, San Agustín Tlaxiaca 42160, Mexico
| | | | | | - Claudia Lerma
- Faculty of Health Sciences, Universidad Anahuac Mexico, Huixquilucan 52786, Mexico;
| |
Collapse
|
2
|
Konieczyńska M, Natorska J, Ząbczyk M, Undas A. Lipoprotein(a) and thromboembolism: current state of knowledge and unsolved issues. Arch Med Sci 2024; 20:1770-1783. [PMID: 39967936 PMCID: PMC11831339 DOI: 10.5114/aoms/197357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 02/20/2025] Open
Abstract
Lipoprotein(a) [Lp(a)], a low-density lipoprotein-like particle containing a highly polymorphic apolipoprotein(a) [apo(a)] homologous in > 80% to plasminogen, was identified as a genetically determined independent risk factor for cardiovascular disease. Elevated Lp(a) levels, found in about 20% of Europeans, are strongly linked to higher rates of myocardial infarction, major adverse cardiac events, accelerated plaque progression, ischemic stroke (especially in younger adults), and calcific aortic valve disease. However, its role in venous thromboembolism, including atypical locations like cerebral and retinal vein thrombosis, remains controversial despite several shared mechanisms underlying arterial and venous thromboembolism. The most robust evidence supports antifibrinolytic properties of elevated Lp(a), particularly smaller apo(a) isoforms, which inhibit plasminogen activation mainly by interacting with the tissue-type plasminogen activator, plasminogen, and fibrin. Other prothrombotic mechanisms include increased synthesis of plasminogen activator inhibitor (PAI-1), formation of denser fibrin networks composed of thinner fibers, less susceptible to lysis, increased platelet activation, enhanced oxidation of phospholipids leading to a low-grade proinflammatory state, upregulated tissue factor expression, and suppression of tissue factor pathway inhibitor. Targeted Lp(a) lowering therapies are currently being tested in randomized clinical trials and could potentially have clinically relevant antithrombotic effects, evidenced by the reduced risk of thromboembolism. This review summarizes the available data on the prothrombotic and antifibrinolytic actions of Lp(a), along with clinical evidence for the increased risk of thromboembolic events related to elevated Lp(a). It also introduces new concepts to explain discrepant clinical results regarding venous events, highlighting the impact of oxidized phospholipids on a prothrombotic state under conditions of high Lp(a).
Collapse
Affiliation(s)
- Małgorzata Konieczyńska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The John Paul II Hospital, Krakow, Poland
| | - Joanna Natorska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The John Paul II Hospital, Krakow, Poland
| | - Michał Ząbczyk
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The John Paul II Hospital, Krakow, Poland
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The John Paul II Hospital, Krakow, Poland
| |
Collapse
|
3
|
Klauzen P, Basovich L, Shishkova D, Markova V, Malashicheva A. Macrophages in Calcific Aortic Valve Disease: Paracrine and Juxtacrine Disease Drivers. Biomolecules 2024; 14:1547. [PMID: 39766254 PMCID: PMC11673549 DOI: 10.3390/biom14121547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
A significant role in the pathogenesis of CAVD is played by innate immunity cells, such as macrophages. In stenotic valves, macrophages have enhanced inflammatory activity, and the population's balance is shifted toward pro-inflammatory ones. Pro-inflammatory macrophages release cytokines, chemokines, and microRNA, which can directly affect the resident valvular cells and cause valve calcification. In CAVD patients, macrophages may have more pronounced pro-inflammatory properties, enhanced not only by paracrine signals but also by juxtacrine Notch signaling and epigenetic factors, which influence the maturation of macrophages' progenitors. In this review, we observe the accumulated data on the involvement of macrophages in CAVD development via paracrine and juxtacrine interactions.
Collapse
Affiliation(s)
- Polina Klauzen
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg 194064, Russia.; (L.B.)
| | - Liubov Basovich
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg 194064, Russia.; (L.B.)
| | - Daria Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia; (D.S.); (V.M.)
| | - Victoria Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia; (D.S.); (V.M.)
| | - Anna Malashicheva
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg 194064, Russia.; (L.B.)
| |
Collapse
|
4
|
Björnson E, Adiels M, Borén J, Packard CJ. Lipoprotein(a) is a highly atherogenic lipoprotein: pathophysiological basis and clinical implications. Curr Opin Cardiol 2024; 39:503-510. [PMID: 39360655 DOI: 10.1097/hco.0000000000001170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
PURPOSE OF REVIEW Lipoprotein(a) has been identified as a causal risk factor for atherosclerotic cardiovascular disease (ASCVD) and aortic valve stenosis. However, as reviewed here, there is ongoing debate as to the key pathogenic features of Lp(a) particles and the degree of Lp(a) atherogenicity relative to low-density lipoprotein (LDL). RECENT FINDINGS Genetic analyses have revealed that Lp(a) on a per-particle basis is markedly (about six-fold) more atherogenic than LDL. Oxidized phospholipids carried on Lp(a) have been found to have substantial pro-inflammatory properties triggering pathways that may contribute to atherogenesis. Whether the strength of association of Lp(a) with ASCVD risk is dependent on inflammatory status is a matter of current debate and is critical to implementing intervention strategies. Contradictory reports continue to appear, but most recent studies in large cohorts indicate that the relationship of Lp(a) to risk is independent of C-reactive protein level. SUMMARY Lp(a) is a highly atherogenic lipoprotein and a viable target for intervention in a significant proportion of the general population. Better understanding the basis of its enhanced atherogenicity is important for risk assessment and interpreting intervention trials.
Collapse
Affiliation(s)
| | - Martin Adiels
- Department of Molecular and Clinical Medicine
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Manik KA, Joice PPS, Jagadal IA, T K J, Samundeeswari V, Madompoyil B, Pinjar MJ. The Role of Lp-PLA2 as a Mediator Between Serum Magnesium and Zinc Levels and Cardiovascular Risk in Patients With Metabolic Syndrome. Cureus 2024; 16:e72107. [PMID: 39574996 PMCID: PMC11580104 DOI: 10.7759/cureus.72107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a collection of conditions that includes abdominal obesity, low high-density lipoprotein (HDL) levels, high triglycerides, hypertension, and impaired glucose metabolism, all of which are risk factors for cardiovascular diseases. Of the biomarkers above, lipoprotein-associated phospholipase A2 (Lp-PLA2) has been highlighted as a critical link between inflammation and the pathogenesis of atherosclerosis, which strongly predicts cardiovascular events. Micronutrients like magnesium and zinc are essential in maintaining metabolic and cardiovascular health, but these micronutrient deficiencies occur frequently among individuals with MetS. This study aimed to consider the association between serum magnesium and zinc levels with Lp-PLA2 and how these associations could link pathways in cardiovascular risk among MetS patients. METHODS This was a comparative cross-sectional study of 100 cases diagnosed as MetS and compared with an equal number (n = 100) of age and matched healthy control. Blood magnesium, zinc, and Lp-PLA2 levels were determined by colorimetric assay. We also tested the association of Lp-PLA2 with levels of micronutrients, and we evaluated whether Lp-PLA2 was a mediator in the pathway between MetS and cardiovascular risk. The data were analyzed on IBM Corp. Released 2021. IBM SPSS Statistics for Windows, Version 28.0. Armonk, NY: IBM Corp; the results will be considered statistically significant if p < 0.05. RESULTS The serum magnesium and zinc concentrations in patients with MetS were significantly lower than in the controls (p < 0.001). The Lp-PLA2 level was much higher in the MetS group than the no-MetS, and it correlated inversely with serum Mg (r = -0.35, p < 0.001) or Zn levels (r = -0.42, p < 0.001). After multivariate analysis, the mediating effect of Lp-PLA2 in the pathway from micronutrient deficiency to cardiovascular risk was maintained, whereby high levels were associated with increased atherogenic index and oxidative stress markers. CONCLUSIONS These results show that Lp-PLA2 is an intermediate step in the relationship between low levels of some micronutrients and cardiovascular risk among MetS patients. Our findings indicate that a sufficient magnesium and zinc status might offer cardiovascular protection through lessening Lp-PLA2 activity. These observations demonstrate the potential benefits of high-risk enrichment and dietary intervention for detecting and controlling micronutrient deficiencies in MetS subjects to impede further cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Jithesh T K
- Biochemistry, Muslim Educational Society (MES) Medical College, Perinthalamanna, IND
| | | | - Basheer Madompoyil
- Physiology, Al-Azhar Medical College and Specialty Hospital, Thodupuzha, IND
| | | |
Collapse
|
6
|
Chen SY, Kong XQ, Zhang JJ. Pathological Mechanism and Treatment of Calcified Aortic Stenosis. Cardiol Rev 2024; 32:320-327. [PMID: 38848535 DOI: 10.1097/crd.0000000000000510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Calcified aortic stenosis (AS) is one of the most common valvular heart diseases worldwide, characterized by progressive fibrocalcific remodeling and thickening of the leaflets, which ultimately leads to obstruction of blood flow. Its pathobiology is an active and complicated process, involving endothelial cell dysfunction, lipoprotein deposition and oxidation, chronic inflammation, phenotypic transformation of valve interstitial cells, neovascularization, and intravalvular hemorrhage. To date, no targeted drug has been proven to slow down or prevent disease progression. Aortic valve replacement is still the optimal treatment of AS. This article reviews the etiology, diagnosis, and management of calcified aortic stenosis and proposes novel potential therapeutic targets.
Collapse
Affiliation(s)
- Si-Yu Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing 210006, China
| | - Xiang-Quan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing 210006, China
- Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| | - Jun-Jie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing 210006, China
- Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| |
Collapse
|
7
|
Cimmino G, Natale F, Alfieri R, Cante L, Covino S, Franzese R, Limatola M, Marotta L, Molinari R, Mollo N, Loffredo FS, Golino P. Non-Conventional Risk Factors: "Fact" or "Fake" in Cardiovascular Disease Prevention? Biomedicines 2023; 11:2353. [PMID: 37760794 PMCID: PMC10525401 DOI: 10.3390/biomedicines11092353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular diseases (CVDs), such as arterial hypertension, myocardial infarction, stroke, heart failure, atrial fibrillation, etc., still represent the main cause of morbidity and mortality worldwide. They significantly modify the patients' quality of life with a tremendous economic impact. It is well established that cardiovascular risk factors increase the probability of fatal and non-fatal cardiac events. These risk factors are classified into modifiable (smoking, arterial hypertension, hypercholesterolemia, low HDL cholesterol, diabetes, excessive alcohol consumption, high-fat and high-calorie diet, reduced physical activity) and non-modifiable (sex, age, family history, of previous cardiovascular disease). Hence, CVD prevention is based on early identification and management of modifiable risk factors whose impact on the CV outcome is now performed by the use of CV risk assessment models, such as the Framingham Risk Score, Pooled Cohort Equations, or the SCORE2. However, in recent years, emerging, non-traditional factors (metabolic and non-metabolic) seem to significantly affect this assessment. In this article, we aim at defining these emerging factors and describe the potential mechanisms by which they might contribute to the development of CVD.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, 80138 Naples, Italy
| | - Francesco Natale
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Roberta Alfieri
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Luigi Cante
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Simona Covino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Rosa Franzese
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Mirella Limatola
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Luigi Marotta
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Riccardo Molinari
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Noemi Mollo
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Francesco S Loffredo
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Paolo Golino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (F.S.L.)
- Vanvitelli Cardiology Unit, Monaldi Hospital, 80131 Naples, Italy
| |
Collapse
|
8
|
Sun L, Wolska A, Amar M, Zubirán R, Remaley AT. Approach to the Patient With a Suboptimal Statin Response: Causes and Algorithm for Clinical Management. J Clin Endocrinol Metab 2023; 108:2424-2434. [PMID: 36929838 PMCID: PMC10438872 DOI: 10.1210/clinem/dgad153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
CONTEXT Statins are the lipid-lowering therapy of choice for the prevention of atherosclerotic cardiovascular disease (ASCVD) but their effectiveness in lowering low-density lipoprotein cholesterol (LDL-C) can substantially differ between individuals. In this mini-review, we describe the different causes for a suboptimal statin response and an algorithm for the diagnosis and clinical management of these patients. EVIDENCE ACQUISITION A PubMed search using the terms "statin resistance," "statin sensitivity," "statin pharmacokinetics," "cardiovascular disease," and "lipid-lowering therapies" was performed. Published papers in the past 10 years that were relevant to the topic were examined to provide content for this mini-review. EVIDENCE SYNTHESIS Suboptimal lowering of LDL-C by statins is a major problem in the clinical management of patients and limits the value of this therapeutic approach. There are multiple causes of statin hyporesponsiveness with compliance being the most common explanation. Other causes, such as analytical issues with LDL-C measurement and the presence of common lipid disorders (familial hypercholesterolemia, elevated lipoprotein[a] and secondary dyslipidemias) should be excluded before considering primary statin resistance from rare genetic variants in lipoprotein-related or drug-metabolism genes. A wide variety of nonstatin lipid-lowering drugs are now available and can be added to statins to achieve more effective LDL-C lowering. CONCLUSIONS The evaluation of statin hyporesponsiveness is a multistep process that can lead to the optimization of lipid-lowering therapy for the prevention of ASCVD. It may also lead to the identification of distinct types of dyslipidemias that require specific therapies and/or the genetic screening of family members.
Collapse
Affiliation(s)
- Lufan Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcelo Amar
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafael Zubirán
- Departamento de Endocrinología y Metabolismo de Lípidos, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Pantelidis P, Oikonomou E, Lampsas S, Zakynthinos GE, Lysandrou A, Kalogeras K, Katsianos E, Theofilis P, Siasos G, Vavuranakis MA, Antonopoulos AS, Tousoulis D, Vavouranakis M. Lipoprotein(a) and calcific aortic valve disease initiation and progression: a systematic review and meta-analysis. Cardiovasc Res 2023; 119:1641-1655. [PMID: 37078819 DOI: 10.1093/cvr/cvad062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 04/21/2023] Open
Abstract
Although evidence indicates the association of lipoprotein(a) [Lp(a)] with atherosclerosis, the link with calcific aortic valve disease (CAVD) is unclear. This systematic review and meta-analysis explores the connection between Lp(a) and aortic valve calcification and stenosis (AVS). We included all relevant studies, indexed in eight databases, up to February 2023. A total of 44 studies (163 139 subjects) were included, with 16 of them being further meta-analysed. Despite considerable heterogeneity, most studies support the relationship between Lp(a) and CAVD, especially in younger populations, with evidence of early aortic valve micro-calcification in elevated-Lp(a) populations. The quantitative synthesis showed higher Lp(a) levels, by 22.63 nmol/L (95% CI: 9.98-35.27), for patients with AVS, while meta-regressing the data revealed smaller Lp(a) differences for older populations with a higher proportion of females. The meta-analysis of eight studies providing genetic data, revealed that the minor alleles of both rs10455872 and rs3798220 LPA gene loci were associated with higher risk for AVS (pooled odds ratio 1.42; 95% CI: 1.34-1.50 and 1.27; 95% CI: 1.09-1.48, respectively). Importantly, high-Lp(a) individuals displayed not only faster AVS progression, by a mean difference of 0.09 m/s/year (95% CI: 0.09-0.09), but also a higher risk of serious adverse outcomes, including death (pooled hazard ratio 1.39; 95% CI: 1.01-1.90). These summary findings highlight the effect of Lp(a) on CAVD initiation, progression and outcomes, and support the early onset of Lp(a)-related subclinical lesions before clinical evidence.
Collapse
Affiliation(s)
- Panteleimon Pantelidis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 152 Mesogeion St, Athens 11527, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 152 Mesogeion St, Athens 11527, Greece
| | - Stamatios Lampsas
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 152 Mesogeion St, Athens 11527, Greece
| | - Georgios E Zakynthinos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 152 Mesogeion St, Athens 11527, Greece
| | - Antonios Lysandrou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 152 Mesogeion St, Athens 11527, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 152 Mesogeion St, Athens 11527, Greece
| | - Efstratios Katsianos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 152 Mesogeion St, Athens 11527, Greece
| | - Panagiotis Theofilis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 152 Mesogeion St, Athens 11527, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 152 Mesogeion St, Athens 11527, Greece
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Michael Andrew Vavuranakis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 152 Mesogeion St, Athens 11527, Greece
| | - Alexios S Antonopoulos
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, Athens 11527, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Ippokrateio Hospital, 114 Vasilissis Sofias St, Athina 11527, Greece
| | - Manolis Vavouranakis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 152 Mesogeion St, Athens 11527, Greece
| |
Collapse
|
10
|
Shu L, Yuan Z, Li F, Cai Z. Oxidative stress and valvular endothelial cells in aortic valve calcification. Biomed Pharmacother 2023; 163:114775. [PMID: 37116353 DOI: 10.1016/j.biopha.2023.114775] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/15/2023] [Accepted: 04/23/2023] [Indexed: 04/30/2023] Open
Abstract
Calcified aortic valve disease (CAVD) is a common cardiovascular disease in elderly individuals. Although it was previously considered a degenerative disease, it is, in fact, a progressive disease involving multiple mechanisms. Aortic valve endothelial cells, which cover the outermost layer of the aortic valve and are directly exposed to various pathogenic factors, play a significant role in the onset and progression of CAVD. Hemodynamic changes can directly damage the structure and function of valvular endothelial cells (VECs). This leads to inflammatory infiltration and oxidative stress, which promote the progression of CAVD. VECs can regulate the pathological differentiation of valvular interstitial cells (VICs) through NO and thus affect the process of CAVD. Under the influence of pathological factors, VECs can also be transformed into VICs through EndMT, and then the pathological differentiation of VICs eventually leads to the formation of calcification. This review discusses the role of VECs, especially the role of oxidative stress in VECs, in the process of aortic valve calcification.
Collapse
Affiliation(s)
- Li Shu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Zhen Yuan
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China.
| | - Zhejun Cai
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China.
| |
Collapse
|
11
|
Zhang J, Liu M, Ferdous M, Zhao P, Li X. Serum lipoprotein(a) predicts 1-year major cardiovascular events in patients after percutaneous coronary intervention. Am J Transl Res 2023; 15:165-174. [PMID: 36777853 PMCID: PMC9908492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/03/2022] [Indexed: 02/14/2023]
Abstract
BACKGROUND Lipoprotein(a) [Lp(a)], which is predictive of coronary heart disease (CHD), plays an important role in the pathogenesis of atherosclerosis. This study aimed to evaluate the association of Lp(a) with major adverse cardiovascular events (MACEs) and readmission in individuals who had undergone a percutaneous coronary intervention (PCI). METHODS A total of 1,938 patients with CHD who had undergone a PCI from January 2010 to December 2018 were assigned to three groups based on Lp(a) level. Follow-up was performed to assess the 1-year occurrence of MACEs and readmission. RESULTS Kaplan-Meier survival curves showed that the cumulative hazard incidence rate of MACEs and repeat PCI (re-PCI) significantly increased with Lp(a) level. Multivariate Cox proportional hazards regression analysis further confirmed Lp(a) as a significant independent predictor of MACEs. The area under the curve of the complex index risk score was significantly larger than those of other independent indicators. In individuals with low-density lipoprotein-cholesterol (LDL-C) levels either below 70 mg/dL or between 70 mg/dL and 100 mg/dL, Lp(a) was associated with increased rates of MACEs and readmission. In addition, a nomogram was constructed to predict 1-year MACE. CONCLUSIONS High Lp(a) levels may be a residual risk factor for MACEs in individuals with LDL-C levels under 100 mg/dL. Additionally, the built nomogram could predict 1-year MACEs with high accuracy. Lp(a) independently predicts 1-year MACEs, indicating its importance in risk assessment and the selection of clinical strategies in patients who have undergone a PCI.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong UniversityJinan 250012, Shandong, China,Department of Clinical Nutrition, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
| | - Mengyu Liu
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
| | | | - Peng Zhao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China,Department of Cardiology, Shandong Provincial Hospital, Shandong UniversityJinan 250021, Shandong, China
| | - Xiujun Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong UniversityJinan 250012, Shandong, China
| |
Collapse
|
12
|
Tanase DM, Valasciuc E, Gosav EM, Floria M, Costea CF, Dima N, Tudorancea I, Maranduca MA, Serban IL. Contribution of Oxidative Stress (OS) in Calcific Aortic Valve Disease (CAVD): From Pathophysiology to Therapeutic Targets. Cells 2022; 11:cells11172663. [PMID: 36078071 PMCID: PMC9454630 DOI: 10.3390/cells11172663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a major cause of cardiovascular mortality and morbidity, with increased prevalence and incidence. The underlying mechanisms behind CAVD are complex, and are mainly illustrated by inflammation, mechanical stress (which induces prolonged aortic valve endothelial dysfunction), increased oxidative stress (OS) (which trigger fibrosis), and calcification of valve leaflets. To date, besides aortic valve replacement, there are no specific pharmacological treatments for CAVD. In this review, we describe the mechanisms behind aortic valvular disease, the involvement of OS as a fundamental element in disease progression with predilection in AS, and its two most frequent etiologies (calcific aortic valve disease and bicuspid aortic valve); moreover, we highlight the potential of OS as a future therapeutic target.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Ionut Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Cardiology Clinic St. Spiridon County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|